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Abstract: The accelerated urbanization process in China has led to land-cover changes, triggering a
series of environmental issues as one of the major drivers of global change. We studied the land-cover
changes in the built-up areas of 50 major cities in China from 1990 to 2015 with Landsat data combined
with spectral unmixing methods and decision tree classification. The overall accuracy of urban land-
cover type products with 30 m resolution was obtained as 84%, which includes impervious surfaces,
bare soil, vegetation, and water bodies. Based on these land-cover type products, the results show that
the urbanization of major cities in China manifests itself as a steep expansion of impervious surfaces
(+32.91%) and vegetation (+36.93%), while the proportion of bare soil (−68.64%) and water bodies
(−1.20%) decreases. The increase in vegetation indicates an increasing emphasis on greening during
urbanization, which is especially vital for the sustainability of urban ecosystems. Increasing economic
standards and population sizes are significantly correlated with impervious surface expansion and
may be the main drivers of urbanization. Nationwide, there is a decreasing trend of shape complexity
among different large cities, which indicates that landscape shapes will gradually become regular
when cities grow to a certain level. Greenspace areas in the cities increased significantly during
1990–2015 and became more fragmented and tended to disperse across cities. These changes reflect
the government’s efforts to enhance urban ecosystem functions to serve the rapidly increasing urban
population in China over the past three decades.

Keywords: urban expansion; land-cover change; greening; impervious surfaces; China

1. Introduction

A major land-use change in the 21st century is urbanization [1,2]. In the first half
of the century, the built-up area is expected to triple [3]. In China, the urbanization rate
is twice that of the world, with 67% of the urban space impervious to water, far higher
than the average for the world [4,5]. Most previous national-scale studies on urban lands
in China focused on the overall urban area [6,7] or a certain urban land-cover type, such
as impervious surfaces or greenspaces [8,9], while the detailed land-cover/landscape
structures and their evolving patterns across the urbanized areas in China are still unclear.

Recent decades have seen large-scale changes in land-use patterns all over the world,
impacting the landscape patterns and functions of metropolitan areas [10,11]. A landscape
ecology perspective can be used to measure the evolution of urban systems [12]. The
research methods of landscape analysis include landscape indices, statistical analysis of land
space, and ecological models of landscapes [13]. On the one hand, urbanization increases
the fragmentation and complexity of urban landscapes to some extent in accordance with
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the aggregation-dispersion hypothesis (urbanization results in landscape patterns with
increasing compositional diversity, geospatial complexity and ecological fragmentation),
and on the other hand, it has been hypothesized that intensive human management and
disturbances could lead to similar landscape patterns and reduced structural complexity of
urban ecosystems in cities from regions with very different bioclimatic backgrounds (i.e.,
the homogenization hypothesis) [14]. It is not clear what kind of landscape patterns are
changing in China’s major cities.

The urbanization process is a dynamic change process of human-land relations [15],
and urban population density and urban land-use structure cannot be ignored when study-
ing human-land relations in the urbanization [16]. To achieve sustained growth, the Chinese
government has proposed supply-side structural reforms [17]. Land is a fundamental re-
source for participation in socioeconomic activities [15], and structural reform of the supply
side of urban land is crucial for optimizing the structure and distribution of elements and
attributes of cities. Therefore, it is necessary to study the effects of population density and
socioeconomic level on urban land cover dynamics to reveal the response of urban land
cover changes to the socioeconomic factors.

These knowledge gaps have severely limited our ability to evaluate the urbanization
effects on China’s ecosystem sustainability, considering the high heterogeneity of urban
landscapes and the huge differences in ecological structure/functions among different
urban land-cover types. Therefore, it is necessary to characterize spatial and temporal
changes in urban landscape patterns to elucidate trends in land structure changes in China’s
metropolitan areas and to provide insights into the driving forces (e.g., socioeconomic fac-
tors) and accompanying ecological impacts that are important for the design of sustainable
urban development policies.

Ensuring the sustainable development goals (SDGs) of China requires detecting the
land dynamic patterns in urbanized areas across the nation and answering important
questions, including the following: How did the composition and configuration of different
land functional types (water, impervious surfaces, greenspaces, and bare soils) evolve over
time? How did urbanization respond to the social economy? Therefore, the objectives
of this study are (1) to obtain the dynamic characteristics of land cover in large cities in
China from 1990 to 2015 using change detection analysis strategy, especially the urban
impervious surface, and (2) to explore the response of urban impervious surface change to
socioeconomic development (Figure 1).
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2. Materials and Methods
2.1. Study Area

Based on the built-up area of China in 2015 published by the Ministry of Construction
of the People’s Republic of China and Urban-Rural Development (https://www.mohurd.
gov.cn/ (accessed on 23 April 2021)), the top 50 large cities with built-up areas in 2015 were
selected as the research subjects. These cities constitute 43.3% of the overall urban built-up
areas in China. Therefore, these 50 cities are representative of urban cover change patterns
(Figure 2). The 50 cities are divided into eastern, central and western cities based on their
level of economic development.
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2.2. Land-Cover Mapping
2.2.1. Data Acquisition and Preprocessing

Landsat 5 (TM) and Landsat 8 (OLI) images at 30 m spatial resolution were obtained
from the United States Geological Survey (USGS) database for 1990 and 2015, respectively.
The Landsat images were geometrically corrected based on topographic maps obtained
from the USGS using ENVI 5.3 software. The effect of atmospheric scattering in the images
was removed by subtracting pixel values representing the background features in each
band of the radiometric correction by dark subtraction correction. Atmospheric correction
was carried out to eliminate radiation errors. The areas and proportions of urban land-cover
types were counted based on the same projection (Albers) and coordinate system (WGS
1984). Urban built-up area boundaries (1990 and 2015 built-up boundaries, respectively)
were determined using the Finer Resolution Observation and monitoring global land cover
(http://data.ess.tsinghua.edu.cn/ (accessed on 21 October 2021)).
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2.2.2. Urban Land-Cover Classification

Images with medium spatial resolution (30 m) have the advantage of convenience
of acquisition and suitable spectral resolution, making them an in-vital and preferable
data source for current large-scale land structure studies [18]. Based on their ecological
functions, urban land-cover types excluding water bodies can be classifiable into three
categories by the vegetation-impervious surface-soil (VIS) model [19,20]. Lu applied the
VIS model combined with the linear spectral mixture analysis (LSMA) model for mixing
pixel decomposition to extract urban land-cover type information from medium spatial
resolution images [21]. Zhang et al. [22] reported a method combining decision tree
classification and LSMA to improve the classification accuracy of land-cover types. In this
paper, we adopt this method as the basis and combine it with the change detection analysis
strategy of Pan et al. [23] to provide accurate and reliable land-cover type information for
large cities in China.

The VIS model was used to classify urban land-cover types by combining vegetation,
soils, low and high albedo features [23]. Selecting the optimal end member for each compo-
nent is a critical part of this step in the process. The multispectral bands were converted
into three principal components using the least noise fraction conversion method, and then
the end elements for the four land-cover types were determined. Landsat images were de-
composed into four component results using a fully constrained least squares method [20].

According to the urban VIS model proposed by Ridd [19], the mixed image elements
were unmixed by combining linear decomposition. Minimum noise fraction transformation
(MNF) was performed to reorganize the information in the initial bands so that the main in-
formation was focused in the first three bands [23] and the first three bands were combined
two by two to obtain the scatter plot. By this method, only the scatter plot generated from
the first three bands is analyzed to obtain the end element, which saves computing time
and results in a better scatter plot. Eventually, four end elements were selected: high albedo
objects, vegetation, soil, and low albedo objects [24]. The traditional linear decomposition
method with an abnormal threshold interval affects the extraction accuracy of the image,
but the least squares hybrid decomposition method is used to control the threshold of
the extracted components within 0–1, thus improving the extraction accuracy [20], so the
original image is decomposed into four-component images using the fully constrained
least squares method. Since the image elements are more complex in urban areas, the
decision tree approach can better solve the problem that the medium-resolution remote
sensing inversion is prone to misclassify urban land classes, so this paper uses the decision
tree approach to define the threshold by superimposing the original synthetic image with
the help of the normalized difference water index (NDWI), normalized difference vege-
tation index (NDVI), and image element values of mid-infrared bands to identify urban
land-cover types.

2.2.3. Accuracy Evaluation

The accuracy of surface classification was verified using high-resolution Google satel-
lite images (1 m). A total of 100 sample points (50 random points for impervious surfaces,
20 random points for vegetation, 20 random points for bare soil, and 10 random points
for water bodies) were randomly selected for each period in of each city to evaluate the
classification accuracy.

2.3. Detection of Changes

Information on urban land-cover types at different spatial scales can be used to
understand land-cover type changes in major cities in China. The landscape pattern index
provides a quantitative reflection of the spatial morphological characteristics of urban
land-cover types [25]. The detection of changes includes the following aspects. First,
information on the land-cover changes of major cities in China was obtained, and the
differences between cities in the three sub-regions were analyzed. Second, land-cover
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changes within the old urban areas were studied. Finally, landscape pattern changes in
urban land-cover types were analyzed at national and subregional scales.

2.4. Calculation of Landscape Pattern Index

Landscape indices, for which many metrics are available, have been widely used
to assess land-cover changes and landscape patterns [26]. The landscape pattern index
quantifies the fragmentation of landscape patterns, connectivity, and heterogeneity at the
patch, class and landscape levels [27]. Most of the landscape index models were collected
in Fragstats 4.2 and are easy to calculate. It is very important to choose the appropriate
metrics to analyze the landscape patterns. Patch density (PD) and largest patch index
(LPI) metrics were chosen to analyze the landscape components. The PD and LPI metrics
quantify characteristics such as area, diversity, and density associated with each land-cover
type. Indicators such as aggregation index (AI) and landscape shape index (LSI) are used
to explain the configuration of the landscape pattern and landscape characteristics such as
shape, spatial distribution, continuity, clustering, and fractality. Overall landscape indices
at the land-cover type level and at the national and subregional levels were calculated to
comprehensively analyze the landscape pattern of large cities in China.

2.5. Effects of Socioeconomic Factors on Urban Land-Cover Changes

Impervious surface area (ISA) is a significant symbol of the transformation from
natural to artificial surfaces in the urbanization process, and its transformation changes the
proportion of land-cover types in built-up urban areas [28]. We analyzed whether there
is a significant correlation between changes in ISA and changes in socioeconomic factors
(GDP and population) and tried to develop a corresponding linear model. We explored
whether changes in socioeconomic factors have a driving/hindering effect on changes in
urban land cover, with a positive correlation representing a positive feedback effect and a
negative correlation representing a negative feedback effect. Data for socioeconomic factors
(GDP and urban population) were collected from the National Bureau of Statistics of China
(http://www.stats.gov.cn/tjsj/tjgb/ndtjgb/ (accessed on 11 May 2022)).

3. Results
3.1. Urban Land-Cover Type Classification Accuracy

For the 50 major cities in China, the overall classification accuracy of land-cover type
classification results in 1990 and 2015 were 83.28 ± 0.04% and 84.28 ± 0.03% (mean ± 1 SD),
with kappa coefficients of 0.75 ± 0.05 and 0.78 ± 0.04, respectively (Table 1). At the
subregional scale, the overall classification accuracy in 1990 ranged from 82.2 ± 0.02% to
83.75 ± 0.04%, and the kappa coefficient ranged from 0.73 ± 0.02 to 0.75 ± 0.06. At the
subregional scale, the overall classification accuracy in 2015 ranged from 82.4 ± 0.03% to
84.68 ± 0.03%, and the range of kappa coefficients was 0.73 ± 0.05 to 0.78 ± 0.04. The
overall classification accuracy for all cities was above 80%.

Table 1. Accuracy of land-cover type classification of major cities in China.

Time Subregions East Middle West China

1990
OCA * 83.54 ± 0.04% 82.2 ± 0.02% 83.75 ± 0.04% 83.28 ± 0.04%
Kappa 0.75 ± 0.06 0.73 ± 0.02 0.75 ± 0.05 0.75 ± 0.05

2015
OCA * 84.68 ± 0.03% 82.4 ± 0.03% 84.28 ± 0.03% 84.28 ± 0.03%
Kappa 0.77 ± 0.04 0.73 ± 0.05 0.77 ± 0.04 0.78 ± 0.04

* OCA: overall classification accuracy.

3.2. Urban Land-Cover Type Changes
3.2.1. Dynamic Changes in the Characteristics of Urban Land-Cover Types

The results of the change detection (Figures 3 and 4) show that the urban built-up area
increased from 5912 km2 to 39,592.86 km2 from 1990 to 2015, or an increase of 33,681.09 km2.

http://www.stats.gov.cn/tjsj/tjgb/ndtjgb/
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Of this amount, ISA increased by 17,750.31 km2 (32.91% in the urban built-up area), which
indicates a compact urbanization pattern. The vegetation (GV) increased by 12,145 km2

(36.93% in the urban built-up area), which indicates better greening of the urban space. The
shrinking of the bare soil (−68.64%) is the most prominent urban land change, while the
water bodies remained stable (−1.20%). In addition, urban development was higher in the
original urban built-up areas and near the main roads, and many new urban cores were
formed along the main roads. (Figure 3).
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3.2.2. Changes in Land Cover in Old Urban Areas

Table 2 summarizes the changes in land cover in the old urban areas during the
urbanization process. In the old urban area, ISA increased by 1031 km2, of which 41%
was previously vegetated and 55% was previously bare soil. At the same time, 700 km2 of
ISA in the old urban area was converted to other types (vegetation, bare soil and water).
Moreover, the area converted from bare soil and ISA to vegetation corresponded to 67%
of the lost vegetation area; as a result, the proportion of vegetation in the old urban area
was reduced by 4.97%. The loss rate of bare soil in the old urban districts is approximately
58.39%, indicating that a large amount of unused land becomes construction land or green
space. The changes in water bodies are small.
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Table 2. Land-cover changes (km2) in the old urban areas between 1990 and 2015.

China ISA Vegetation Soil Water 1990 Total

ISA 2499 409 232 58 3199
Vegetation 833 323 105 15 1276

Soil 794 233 158 21 1205
Water 104 20 7 45 175

2015 total 4230 985 502 139 5855

3.3. Spatial and Temporal Changes in Landscape Patterns

Landscape patterns at the national scale, subregional scale and land-cover patch scale
were analyzed for 50 large cities between 1990 and 2015 using landscape indices, including
PD, LPI, SHDI, AI and LSI. The results show that at the national landscape scale, the
degree of spatial heterogeneity of urban landscapes in major cities in China decreased
(PD = −2.01), large patches in urban landscapes tended to fragment (LPI = −10.39), and
urban landscape patches were more separated (LSI = 67.05) and less aggregated (AI = −1.79)
during 1990–2015 (Figure 5a). At the subregional scale, PD decreases in all three subregions,
indicating that the urban landscape generally becomes more convergent, with the greatest
change in the central subregion (PD = −7.51). Large patches in the landscape tend to
fragment in the central (LPI = −8.57) and eastern (LPI = −14.77) subregions, while dominant
patches become larger in the western (LPI = 2.65) subregion. The LSI increases in all
subregions, indicating a greater separation of urban landscape patches. In addition, the
degree of aggregation was lower in the central part (AI = 0.88) and higher in the east
(AI = −2.81) and west (AI = −1.26), indicating that the patches of different land-cover types
in the eastern and western subregions become more discrete, and the patches of the same
land-cover types in the central subregion gather with each other (Figure 5c).

At the land-cover patch scale, the fragmentation of ISA and vegetation decreased,
while bare soil and water bodies became becoming more fragmented (Figure 5b). ISA
was more fragmented in the central subregion and eastern subregion, but ISA was more
integrated in the western subregion. Vegetation was more fragmented, expect in the
eastern subregion. The fragmentation degree of bare soil decreased in all subregions
(Figure 5d). Large patches of ISA tended to be more fragmented in the central and eastern
ISAs, and vice versa in the west. Macro patches of vegetation tended to be fragmented
in the central and western parts and vice versa in the east. Large patches of bare soil
became larger in all three subregions. Large patches of water bodies became larger in both
the central and western subregions, and vice versa in the eastern subregion (Figure 5e).
The separation of all land-cover types was greater in all three subregions (Figure 5f).
The degree of aggregation of all land-cover types increased in the central and eastern
subregions, while it decreased in the western subregion. The degree of aggregation of
vegetation was lower in the three subregions. The degree of aggregation of bare soil was
lower in the central and western subregions and lower in the eastern subregion. The
degree of aggregation of water bodies was lower in all three subregions (Figure 5g).

3.4. Impact of Socioeconomic Factors on Changes in ISA

The expansion of ISA in China was significantly and positively correlated with
the growth of GDP (except for Guangzhou) and the growth population (except for
Guangzhou and Chongqing) (Figure 6a,b). Guangzhou experienced rapid ISA ex-
pansion (2580 km2) from 1990 to 2015. Although the economy (GDP increased by
¥17,839 × 108 Yuan) also developed rapidly, the ratio between its economic develop-
ment rate and ISA growth rate was relatively low. Moreover, compared with other
large cities, Guangzhou’s population growth is relatively small (+497 × 104 person).
Chongqing, on the other hand, has a rapidly growing population (1039 × 104 person),
far outpacing the construction of its urban infrastructure. The GDP and population
densities of major cities increased by 3958 ± 4900% and −1.55 ± 85.43%, respectively,
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during 1990–2015, which might have driven the rapid urbanization throughout the
country (Figure 6c,d).
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ISA changes. (b) Correlation between population changes and ISA changes. (c) Changes in national
and regional GDP densities. (d) Changes in national and regional population densities. The symbol
∆ represents a change. The lowercase letters “a” and “b” above the bars in subfigures (c,d) represent
significant differences at 5% level.

4. Discussion

Reliable information on urban land structure is important for understanding the
urbanization characteristics of large cities in China. This study improves the accuracy
of land-use classification (>80% for a single city) by linear spectral decomposition and
decision tree classification methods, which is higher than the accuracy (75–80%) of other
existing large-scale urban datasets [29,30]. This study shows that the rapid expansion of
ISA in China was probably driven by the rapid growth of the economy and population in
large cities (Figure 4), which was consistent with the research results of Pan et al. (2017),
who showed that the ISA expansions in dryland cites of China might be driven by GDP
and population [23]. The environmental impacts of urbanization in China over the past
25 years (1990–2015) were closely related to the landscape changes in major cities, where
the fractions of impervious surface area and vegetation area increased by 30% to 40%,
while the bare soil surface decreased by over 68% and water remained stable (Figure 3).
These results differed from the findings obtained by Yan et al. (2015) [20], who found that
ISA increased and vegetation decreased in the city of Urumqi. The analysis of land-cover
dynamics in Yan et al.’s study was focused on the period from 1990 to 2010 and focused on
a single arid city. In a previous study that investigated the dryland cities in China, Pan et al.
(2017) found the ISA in urban areas increased by 13.23% and bare soil decreased by 13.41%,
while vegetation (+0.27%) and water (−0.10%) remained stable during 2000–2014 [23]. The
trend of the changes was similar to our study results, but the rates of the changes was
much smaller than ours. Pan et al.’s research focuses on arid areas and most of them are
small cities, while our study focused on big cities across China. Therefore, the differences
may reflect the influences of city sizes and locations on urbanization pattern. Similarly, we
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found that the mean fractions of ISA in the major cities of China in 2015 was 59%, which
was significantly lower than that (75%) identified in the humid cities of eastern China
(including Beijing, Guangzhou, etc.), but closer to the ISA fraction of the arid cities of China
(62%) and American cities (56%) (including Chicago, New York, and Los Angeles) [23,31].

Although urbanization may have taken up a large amount of agricultural land and
green space outside the city [32], the proportion of green space inside the built-up areas of
the city has not decreased sharply. While many previous studies analyzing dynamic urban
land-cover characteristics have concluded that urbanization reduces green space based on
fixed built-up areas [20,33], the results reported in this paper consider dynamic built-up
area changes, analyzed according to the actual built-up area boundaries in each period,
and therefore provide more detailed information. The growing green spaces and stable
water bodies in the major cities of China show that China has shifted to more sustainable
urban development over the past three decades.

At the national scale, we found less landscape heterogeneity among major cities across
China, which is in accordance with the results of previous findings [34]. However, at the
city level, we found more land fragmentation, esp. for the green spaces. As an approach
to improve the human living environment, more green areas are interspersed among
impervious surfaces, leading to the tendency of large patches in the urban landscape to be
fragmented. The fragmentation of green spaces not only makes them more accessible to the
urban population but might also improve the efficiencies of urban ecosystem services [35].

More than half of human population live in urban areas. Policymakers are working
hard to improve urban landscape planning and management to enhance urban ecosystem
services to city residents while maintaining the city’s socio-economic functions [4]. To reach
the sustainable development goals, it is important to understand the evolving pattern of
urban landscape structure and evaluate whether the sustainable development policies in the
past have changed the pattern of urban landscape development [36]. Such understanding
and evaluation rely on large-scale (in both space and time domains) research and inter-city
comparisons. Considering the high spatial heterogeneity of the urban landscape, it is
important that a study should cover most of the urban regions in the whole study area (for
a country or a continent or the whole world). Until recently, most national to global urban
landscape studies only focused on describing the overall expansion pattern of urban areas,
but having overlooked the evolution of urban landscape structure such as the changes
in the composition and configuration of various land-cover types in cities [37]. This gap
limits their ability to evaluation the changes in urban land functions and the impacts of
sustainable development policies on urban landscape development. Although there were
many small-scale studies that have analyzed landscape structure on individual cities, they
were unable to provide an overall picture of the urbanization pattern at national to global
scale due to the strong the spatial heterogeneity of urban lands [20,23,38]. This study
examined the long-term landscape structure changes in the built-up areas of 50 major
cities that cover over 43% of the developed areas in China. The urban landscape dynamic
patterns revealed by this study are comparable to previous assessments in dryland China
and in a few cities in the southern and eastern China, but found more acute land structure
changes esp. in the rapid expansion of greenspace (by 36.93%) and fast decrease in the
bare soil area (by −68.64%). It reveals a fast and imbalanced landscape changes across the
country and among different land-cover types in the developed areas. It also shows that
the greenspace areas both in magnitude and in proportion have increased significantly
and consistently across the country, thus confirming the effectiveness of the governments
sustainable urban development policies.

There are still some limitations and uncertainties in the data and methods of this study.
First, there is uncertainty in the detailed characterization of urban land-cover types using
medium-resolution data due to the complexity of the urban landscape. The adoption of
higher-resolution remote sensing data can improve the classification accuracy and facilitate
the extraction of fine urban overlays [39–42]. In addition, limited by the resolution of
Landsat data, the green space types (grassland, shrub, and woodland) were not further
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subdivided in this study. Finally, it is possible that the built-up area boundaries [43] used
in the study may lead to uncertainty in the statistical results within the urban area due to
the uncertainty in the data production process as well, despite the manual correction to
improve the accuracy before use.

5. Conclusions

Landsat data from 1990 and 2015 were used to extract four land-use types of imper-
vious surfaces, bare soil, vegetation, and water bodies for 50 large cities in China using
decision tree and spectral decomposition methods. The overall classification accuracy was
over 80% for each city. The urbanization of large cities in China was characterized by the
growth of impervious surfaces and vegetation, while water bodies stabilized and bare
soil decreased. Urban expansion was driven by rapid economic and population growth
in major cities, particularly in southern China. Efforts have been taken to make urban
development more sustainable, as indicated by the increased urban green spaces with
higher accessibility. The rapid increase in urban population density and expansion of ISA
require careful urban landscape planning to improve ecological services from limited green
space and water bodies.
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