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Abstract: Waste management workers experience high stress and physical strain in their work
environment, but very little empirical evidence supports effective health management practices for
waste management workers. Hence, this study investigated the effects of worker characteristics and
biometric indices on workers’ physical and psychological loads during waste-handling operations. A
biometric measurement system was installed in an industrial waste management facility in Japan to
understand the actual working conditions of 29 workers in the facility. It comprised sensing wear for
data collection and biometric sensors to measure heart rate (HR) and physical activity (PA) based
on electrocardiogram signals. Multiple regression analysis was performed to evaluate significant
relationships between the parameters. Although stress level is indicated by the ratio of low frequency
(LF) to high frequency (HF) or high LF power in HR, the results showed that compared with workers
who did not handle waste, those who did had lower PA and body surface temperature, higher stress,
and lower HR variability parameters associated with higher psychological load. There were no
significant differences in HR, heart rate interval (RRI), and workload. The psychological load of
workers dealing directly with waste was high, regardless of their PA, whereas others had a low
psychological load even with high PA. These findings suggest the need to promote sustainable work
relationships and a quantitative understanding of harsh working conditions to improve work quality
and reduce health hazards.

Keywords: waste management; psychological load; physical workload; occupational risks; biometric
information

1. Introduction

Waste management workers responsible for collecting, transporting, and sorting waste
face various challenges [1,2]. They face numerous occupational risks, including long work-
ing hours, exposure to physical, chemical, mechanical, biological, ergonomic, and social
risks, and frequent occupational accidents, which result in physical or mental illness [3].
The United States Department of Labor Occupational Safety and Health Administration
includes toxic metals, crushing hazards, and dangerous energy release, among the potential
hazards of working with waste [4]. In 2020, the frequency (number of fatalities and injuries
due to occupational accidents per one million hours of total actual work) and intensity rates
(number of lost workdays per one million hours of total actual work, i.e., the severity of the

Int. J. Environ. Res. Public Health 2022, 19, 15964. https://doi.org/10.3390/ijerph192315964 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph192315964
https://doi.org/10.3390/ijerph192315964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0001-5650-7968
https://orcid.org/0000-0002-2355-1222
https://orcid.org/0000-0003-2740-5537
https://orcid.org/0000-0001-8008-3667
https://orcid.org/0000-0002-2360-2034
https://doi.org/10.3390/ijerph192315964
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192315964?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 15964 2 of 23

accident) of occupational accidents in Japan’s waste management industry were very high;
approximately four times higher than the average of all other industries [5]. Accidents such
as ‘falling and crashing’, ‘getting caught in or between’, and ‘tumbling’ are common. These
represent the following: accidents due to falls from buildings and collapses and injuries
resulting from a person being squeezed, caught, crushed, pinched, or compressed between
two or more objects, or between parts of an object. Moreover, the waste work environment
is rarely air-conditioned, and physical illnesses related to high body and environmental
temperatures, such as heatstroke, are increasing in the field due to climate change.

Waste management facilities are mainly involved in processes such as crushing, sort-
ing, compacting, and incineration. In areas where automated operations are difficult, waste
work can be labour-intensive and dangerous. The Japan Construction Occupational Safety
and Health Association (JCOSHA) regulates safety management efforts in the manufac-
turing and construction industries [6]. In labour-intensive industries such as construction,
efforts are made to improve the sophistication of safety management using information
and communication technologies for process refinements, such as abnormality detection
and maintenance related to processes and equipment [7]. They monitor workers’ bio-
information and behaviour, analyse risk, and evaluate the practicality of education and
training. The use of information and communication technology in safety management is
expected to improve the waste management working environment, which enhances the
working conditions, quality of life, and health of workers, thereby ultimately reducing the
industry’s impact on public health by contributing to environmental sustainability [1].

Significant advancements in wearable technology in recent years have enhanced
opportunities to monitor the biometric data and physical condition of workers in the
workplace. The use of wearable devices to observe working conditions through the mea-
surement of heart rate (HR), body temperature, and physical activity (PA) is rapidly gaining
popularity [8,9]. Assessing daily HR changes can help determine workload [10], mental
state [11,12], and heart health [13]. Measuring heart rate variability (HRV) over a relatively
short period (up to five minutes) can provide a highly accurate analysis [14]. Fatigue and
stress resulting from physical and psychological strain can reduce satisfaction, well-being,
and work efficiency in any workplace. An imbalance between physical and psychological
resources and demands can threaten safety at work. Workers who continuously handle
hazardous and potentially hazardous waste throughout the working day face daily risk,
often under harsh conditions. The working conditions of high-risk workers have been
monitored by observing their HR and HR interval variability. Tiwari et al. [15] and Hwang
and Lee [16] analysed changes in HR during work to quantify workers’ physical and
mental load. Changes in PA and biometric data are useful in quantitatively analysing the
condition of subjects. For example, Jebelli et al. [17] examined the possibility of using
physiological information collected from wearable devices to determine the physical and
psychological state of workers in the construction industry. These workers also face a harsh
working environment, and the characteristics of their work and working conditions pose
high potential risks to their physical and mental health, including physical fatigue and
mental stress. Considering that physical fatigue and induced mental stress can have detri-
mental effects on motivation, job satisfaction, productivity, quality, and safety, it is crucial to
consider physical and mental health. Although it is crucial for waste management facilities
to manage working conditions to maintain a healthy employment relationship with waste
workers, there is little empirical evidence to support effective health management practices.
Therefore, this study measured the physical and psychological load associated with the
work of waste workers and identified factors that increase it. These results will contribute
to the efficient management of workers in the waste industry.

2. Materials and Methods
2.1. Study Design

This cross-sectional study of workers in the waste treatment industry compared
biometric information and workload index of workers completing two different types of
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tasks—industrial waste handling vs. non-industrial waste handling—at the same waste
treatment facility. In this study, two groups were set up: “waste handling workers” and a
“control group” who were not involved in waste handling tasks.

2.2. Hypotheses

Based on the research objectives and literature review, the following hypotheses were
proposed:

Hypothesis 1 (H1): Differences in the biological parameters of the workers are apparent in the
comparison between waste treatment and non-waste treatment workers.

Hypothesis 2 (H2): Worker workload in a waste management facility is positively correlated with
PA and body surface temperature.

Hypothesis 3 (H3): Using the measured parameters of waste workers, their workload and psycho-
logical load can be estimated.

2.3. Ethical Approval

This study was approved by the Research Ethics Review Committee of Ritsumeikan
University (BKC-2019-009) in accordance with the Declaration of Helsinki, United Nations
Educational, Scientific and Cultural Organization’s Universal Declaration on the Human
Genome and Human Rights.

2.4. Measurement Tools

The specifications of the measurement devices and equipment used in this study are
listed in Appendix A, and the status of the measurement devices attached to the workers
is shown in Appendix B. The waste management workers in this study wore uniforms
to prevent direct contact with waste. The sensing wear used for data collection was
placed under their uniform, next to their skin. It comprised a vest fitted with a biometric
sensor to measure the HR and PA based on electrocardiogram (ECG) signals. The sensing
wear was made of stretchable fabric, and the stretchable ECG electrodes were integrated
with hardware for HR measurement. For the measurement of biometric data, we used
the WHS-2 for HR measurement, a triaxial accelerometer (Union Tool Co., Ltd., Tokyo,
Japan) to measure PA, COCOMI (Toyobo Co., Ltd., Osaka, Japan) as sensing wear, and the
CC2650 data acquisition device (Texas Instruments, Dallas, TX, USA). WHS-2 was chosen
because it can measure three-axis acceleration information and HR with high resolution.
By measuring three-axis acceleration information, the workers’ body movements become
clear. COCOMI was chosen because it can collect biometric information with high precision
and is soft to the touch, with little foreign body sensation when it touches the skin. As
in the case of previous studies, we deciphered the physical and mental state of workers
using biometric information. The wet-bulb globe temperature (WBGT) of the working
environment was measured using an AD-5696 data recorder (A&D Co. Ltd., Tokyo, Japan).
The complete measurement system is presented in Figure 1. Using a low-energy Bluetooth
device, the HR and triaxial acceleration data were first transmitted to the data acquisition
device worn by the worker. Subsequently, the data were transmitted to a cloud server on
the network using wireless access points (WiFi and 4G-based transfer devices) installed in
the work area.

A flowchart of the background, objectives, and analysis in this study is presented in
Figure 2, and the study was conducted according to this flowchart.
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2.5. Participants

The data were collected from 3 to 4 September 2019, and 24 to 26 August 2020,
at the Kyoto Environmental Conservation Corporation, a waste management facility in
Fushimi-Ku, Kyoto, Japan. The participants were recruited from among the facility’s
employees; workers who responded to the call from the facility took part in this experiment.
The participants were defined as healthy adults aged 20–63; those with neurological or
cardiovascular diseases were excluded. All the participants were men. A total of 29 workers
(average age: 35, standard deviation (SD): 15.7 years; average body mass index (BMI): 21.5,
SD 3.2; average work experience (EXP): 7.7, SD: 4.2 years) were included in the final sample.
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Based on their job profile or responsibilities, the participants were allocated to two
groups. Group A (n = 22) was responsible for the transport, dismantling, and sorting
of industrial waste, and Group B (n = 7), for the maintenance and repair of the facility.
The list of participants in each group is presented in Appendix C. Group A workers were
responsible for unloading waste from trucks at the facility, manually arranging it, and
then moving it by cart to the loading dock for incineration. In the waste sorting process,
relatively small waste articles (not suitable for heavy machinery) were sorted manually,
thus posing a continuous exposure risk. Group B workers were tasked with inspecting
and repairing equipment at the facility and did not come into direct contact with waste.
The difference in the number of Group A and Group B workers is due to the staffing of the
facility where this experiment was conducted.

2.6. Protocols

Before data collection, the research team tested the sensing wear. They confirmed that
it was a non-invasive measurement tool that posed no risk to the wearer, such as interference
or discomfort with daily work tasks. An informed consent form was distributed to all the
participants prior to data collection. It included an explanation of their rights and assured
them of the confidentiality of their data. To minimise the risk of personal information leaks,
personal identification codes (identifiers) were assigned to each participant during the
experiment and data analysis.

2.7. Analysis Tools and Statistical Tests

Statistical analysis was conducted using SPSS Version 26 for Windows (IBM Corp.,
Armonk, NY, USA) and Excel add-in software Bell Curve (Social Survey Research Informa-
tion Co., Ltd., Tokyo, Japan) for Excel version 3.21 (Microsoft Corporation, Redmond, WA,
USA). In addition, the following statistical tests were performed on the three hypotheticals:

Hypothesis 4 (H4): When comparing waste treatment workers to non-treatment workers, we
tested whether there were significant differences in the biological parameters of the two populations
of workers. The normality of data was tested using the Shapiro–Wilk and Kolmogorov–Smirnov
tests (Appendix G). First, the normality between the data in the two populations was tested. If there
was normality, a T-test was performed; if not, a Mann–Whitney U test was performed.

Hypothesis 5 (H5): To analyse the relationship between changes in biological parameters and
temperature fluctuations that cause heat stroke and other physical ailments experienced by waste
treatment workers, the effect of workers’ biological parameters on body surface temperature was
analysed. Multiple regression analysis was performed, with the independent variable being the
biological parameters of the workers and the dependent variable being body surface (BS) TEMP.

Hypothesis 6 (H6): To investigate whether the measured biological parameters of waste treatment
workers could be used to estimate workload and psychological load, a multiple regression analysis
was conducted with the workers’ biological parameters as independent variables and physical and
psychological load as dependent variables. The multiple regression analysis conducted in this study
investigated the presence or absence of multicollinearity among candidate variables and proceeded
by combining dependent and independent variables with no multicollinearity.

2.8. Body Temperature and HR

Human performance is affected by various environmental factors in a working system,
including heat stress [18,19]. The measurement of body temperature is an effective way
to observe heat stress in workers in hot environments. However, invasive methods such
as rectal and oesophageal measurements are often impractical [20,21]. Humans need
to dissipate excess heat generated by the body to maintain thermal equilibrium with
their internal temperature maintained at approximately 37 ◦C. However, the uniforms
provided by waste management companies often do not provide adequate protection,
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especially in the summer when workers are thinly clad. Thus, metabolic heat from the
body, environmental factors (temperature, humidity, radiant heat, etc.), and the overall
heat load from clothing can result in heat stress [22]. When the core body temperature
increases due to poor heat dissipation, the physiological burden of heat can cause health
problems such as heatstroke, heat exhaustion, and heat cramps [23]. The physiological
process for maintaining body temperature becomes inadequate when personal risk factors
are added to excessive environmental or metabolic heat stress, thus resulting in an elevated
body temperature and pulse rate and weight loss due to dehydration [24]. If early signs
of heat-related illness are disregarded, heat stress can lead to poor work performance and
also heat-related injuries and death [25].

Studies using non-invasive wearable devices have found a significant correlation
between human HR and body surface temperature measurements and the thermal en-
vironment [26–29]. Eggenberger et al. [30] investigated different exercises and clothing
conditions in a hot and humid environment and found two measured parameters, HR and
body surface temperature at the scapular region, suitable for predicting rectal temperature.
The air layer trapped inside a garment creates a specific microclimate around the body [31],
influencing perceived comfort [32]. The microclimate inside a garment influences human
satisfaction and performance during activities [33]. Thus, HR and ambient temperature in
clothing may be used as indicators of human thermal sensation and heat stress. However,
few studies have investigated the effects of HR and ambient temperature on the heat stress
of workers.

2.9. HRV Metrics

Heart rate variability (HRV) is not only related to its effect on physical load, but
also to autonomic control, such as self-regulation and psychological and physiological
stress, making it useful for psychological load analysis [14,34]. A low HRV index indicates
inadequate coordination between the sympathetic and parasympathetic nervous systems
and is a reliable predictor of future cardiovascular diseases [35,36]. Therefore, HRV analysis
provides important information for the assessment of physical function and helps identify
the risk of physical fatigue and debilitation [37]. The time-domain index of HRV quantifies
the extent of variation in the heart rate interval (RRI), which is the time between successive
heartbeats, and the frequency-domain index can be obtained from the power spectrum
density of a specific frequency band of RRI data. HRV time-domain indicators include
the standard deviation of the normal heart rate interval time (NN), called SDNN, the root
mean square successive difference (RMSSD), the index of difference between adjacent
normal heart rate intervals greater than 50 ms (NN50), and the index of the percentage of
the difference between adjacent normal heart rate intervals greater than 50 ms (pNN50).
The main frequency indicators are low frequency (LF) power and high frequency (HF)
power [14].

In a previous study, RMSSD was related to workers’ perception of mental stress [38],
with lower values indicating higher stress. The RMSSD metric is not significantly affected
by the number of missing data points, thus indicating its robustness for assessing patients
with poor data quality. The standard deviation of the RRI (SDRR) is calculated from the
SD of the normal RR interval; a lower SDRR indicates lower HRV [39]. Taelman et al. [40],
who explored the interaction between HRV and mental stress, reported significantly lower
NN50 and mean RR intervals in mentally demanding tasks.

HRV metrics have shown promise in multiple applications for healthcare professionals,
and several researchers have focused on this field [41–44]. Despite concerns about the
validity of some HRV indices for measuring sympathetic and parasympathetic nerve
activity [45,46], the significance of HRV analysis is supported by many studies, such as
LF (0.04–0.15 Hz) power, HF (0.15–0.40 Hz) power, and their ratios. LF is considered an
indicator of both sympathetic and parasympathetic nervous system activity, and its ratio to
HF, an indicator of parasympathetic nervous system activity, can quantitatively indicate
whether the sympathetic or parasympathetic nervous system is dominant. Such analysis
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has been used clinically to understand the tension state of sympathetic and parasympathetic
nervous systems [47,48]. HRV is an objective measure of stress in healthcare workers, and
Joseph et al. [49] found self-reported stress to be associated with proportionately elevated
physiological levels. Their results provided convincing evidence that physicians who
routinely perform surgical tasks assess their own stress under severe time constraints. The
dissemination of objective and ecologically valid measures of stress may offer important
clues for understanding stressful situations and reducing the psychological load [50,51].

HRV measurements are derived from RR data and are influenced by the length of
the time series (number of data points), body posture, and activity type. In the present
study, these factors were derived using the five-minute RRI, which provides values for
each activity. Fuentes-García et al. [52] reported lower average HRV values even during
relatively short periods of mental stress.

Outliers or error beats due to artefacts are typically found in the time series of heart-
beat intervals and have no physiological significance. Artefacts can significantly distort
measurements in the time and frequency domains and increase the power over a wide band
of frequencies [53]. In HRV data, if the time series is clean and sufficiently long to calculate
the power of a given frequency band, the value is valid for evaluating the power of LF and
HF. For example, at least 2.5 min of clean data are required to evaluate LF power [54]. For a
stable interpretation of autonomic function, Chen et al. [55] established that time-domain
HRV indices (e.g., SDNN, RMSSD, pNN50) require one minute of short-term recordings,
while the specifications for frequency-domain HRV indices (LF and HF) require at least
three minutes of recorded data to be accurately measured. The HRV data analysed in this
study comprised one segment of five minutes, which is considered sufficiently long.

The data set collected in this study consisted of evaluation data collected at five-minute
intervals and was filtered based on previous studies to exclude the effect of artefacts on
HR [56,57]. Briefly, at the centre point of a moving window of length l, data points outside
the interval were excluded, and the mean of the data points within the moving window
was calculated, excluding the centre point; a is a positive number equal to or less than one.
In this study, l = 41 and a = 0.2 were used.

2.10. Workload (Percentage HR Reserve) and PA

To determine the physical load during waste management work, the HR and PA
of workers were used as indicators. The basic relationship equations are presented in
Appendices E and F. Percentage heart rate reserve (%HRR) is a measure of the physical
load or pressure intensity associated with muscle activity [58]. Norton et al. [59] stated
that 40–60% HRR lasting 30–60 min is equivalent to moderate physical load. Hwang and
Lee [16] and Hashiguchi et al. [10], who focused on construction workers, noted that an
HRR of 30–40% in all-day work continues to pose a health risk for workers. Equation (1)
shows how it can be estimated:

%HRR = (HRworking − HRresting)/(HRmaximum − HRresting) × 100 (%) (1)

where HRworking is the average working heart rate, HRresting is the resting heart rate, and
HRmaximum is the maximum heart rate based on age [60]. In this study, HRresting was
defined as the lowest stable five-minute heart rate in the work break.

A small accelerometer (WHS-2) attached to the sensing wear placed on the chest was
used to obtain the composite acceleration along three axes (vertical axis: X, horizontal
axis: Y, and vertical axis: Z) [23]. Five-minute average values were used to calculate the
amount of PA and to observe the overall intensity of workers’ movements during working
hours. The intensity of PA was calculated from the five-minute average values, which
is a predictor of health status [61]. Detailed movement data could be obtained from the
biometric data parameters, thus providing an understanding of the movement intensity of
workers concerning work actions performed during the working day (e.g., lifting a load,
carrying a load and walking, standing, and squatting) [62].
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3. Results
3.1. Data Collection

We collected data on the participants’ HR, physical acceleration, and body surface
temperature at various times during the working day. The WBGT of each group was mea-
sured in their respective work areas. A total of 1945 data points, measured approximately
every five minutes, were collected from the 29 participants. The monitoring of workers was
conducted throughout the working day, which included a one-hour break, and observa-
tions were made from 9:00 a.m. to 4:30 p.m. The data are presented in Appendix D. We
collected self-reported information on age, years of work experience, height, and weight
from the workers.

The research team did not monitor participants’ behaviour but recorded their work
activities using two cameras installed near each work area. Prior to the experiment, we told
the participants that we would not measure their operating skills and instructed them not
to deviate from their daily working routines, thereby avoiding the Hawthorne effect [63].

3.2. Descriptive Statistics and Intergroup Comparisons

The normality of data was tested using the Shapiro–Wilk and Kolmogorov–Smirnov
tests (Appendix G). In both tests, the null hypothesis assumes that the data set is normally
distributed at p = 0.05 [64]. However, there was a slight discrepancy between the tests; all
the data except HR satisfied the condition of normal distribution.

The Mann–Whitney U test does not require a normally distributed data set [65], and
its null hypothesis is ‘no difference between the two groups at a significance level of 0.05.’
At p < 0.05, the null hypothesis is rejected, indicating a statistically significant difference
in the distribution of data for each group [39]. Statistically significant differences were
found between workers for PA, BS TEMP, WBGT, NN50, pNN50, and RMSSD of HRV
time-domain parameters and LF power, HF power, and LF/HF of HRV frequency domain
parameters. For all the other parameters, no statistically significant differences were found
between workers. The results of the analysis are presented in Table 1.

In addition, the time-domain parameters related to the autonomic nervous system,
NN50, pNN50, and RMSSD, were low in waste management workers, thus indicating
a decrease in parasympathetic activity or a state of relaxation. In the frequency-domain
parameters, they may also have lower LF power associated with the parasympathetic
nervous system and higher LF/HF, indicating stress. The ratio of LF power to HF power
(LF/HF) is a classic indicator of sympathetic balance [66]. This value represents the overall
balance between the sympathetic and parasympathetic nervous systems. A high value
indicates sympathetic dominance, while a low value indicates parasympathetic dominance.

Table 1. Means, standard deviations, and p-values of each parameter for both work groups.

Parameters (Unit)
Workers in Waste Management Facility p-Value

between Groups1. Group A 2. Group B

Workers’ characteristics
Age (years) 35.5 ± 16.8 33.3 ± 12.7 0.38
EXP (years) 7.23 ± 4.6 9.29 ± 1.9 0.07
BMI (%) 21.2 ± 3.5 22.6 ± 1.4 0.23

Physical and environmental
HR (bpm) 94.2 ± 13.2 94.3 ± 16.2 0.21
%HRR (%) 21.6 ± 12.7 23.2 ± 14.5 0.15
PA (mG) 222.4 ± 116.3 261.8 ± 126.2 <0.001
BS TEMP (◦C) 31.4 ± 1.86 31.9 ± 2.02 <0.001
WBGT (◦C) 30.0 ± 0.72 31.2 ± 0.57 <0.001
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Table 1. Cont.

Parameters (Unit)
Workers in Waste Management Facility p-Value

between Groups1. Group A 2. Group B

HRV time-domain
RRI (ms) 650.3 ± 94.5 653.8 ± 106.6 0.21
SDRR (ms) 15.4 ± 16.2 25.6 ± 16.2 0.13
CVRR 0.039 ± 0.003 0.039 ± 0.039 0.14
NN50 20.2 ± 20.8 30.5 ± 30.2 <0.001
pNN50 (%) 0.058 ± 0.058 0.083 ± 0.087 <0.001
RMSSD (ms) 21.7 ± 8.00 24.3 ± 9.87 <0.001

HRV frequency-domain
LF power (ms2) 1070.5 ± 8853 695.6 ± 1120 <0.001
HF power (ms2) 263.0 ± 537.6 740.6 ± 695.6 <0.001
LF/HF 3.74 ± 7.58 2.38 ± 2.65 <0.001

Note: Group A = waste treatment workers; Group B = non-waste treatment workers; EXP = experience;
BMI = body mass index; HR = heart rate; %HRR = percent heart rate; PA = physical activity; BS TEMP = body
surface temperature; WBGT = wet bulb globe temperature; HRV = heart rate variability; RRI = heart beat in-
terval; SDRR = standard deviation of heart beat interval; CVRR = coefficient of variation of heart beat interval;
NN50 = index of difference between adjacent normal heart rate intervals greater than 50 ms; pNN50 = index of
the percentage of the difference between adjacent normal heart rate intervals greater than 50 ms; RMSSD = root
mean square successive difference; HRV = heart rate variability; LF = low frequency; HF = high frequency. Among
the parameters, only HR showed a normal distribution, so HR was t-tested. Other parameters were tested for
significance using the Mann–Whitney U test.

3.3. Relationship of Workers’ Characteristics, Body Load, and HRV Index with Body
Surface Temperature

The data collected in each work environment were merged and analysed for their
effects on the body surface temperature of the workers. Multiple regression analysis was
performed to evaluate significant relationships between each parameter. The results are
presented in Table 2. In the multiple regression analysis, we checked for multicollinearity
among the independent variables (worker characteristics, body load, and HRV index). Age,
EXP, and BMI for worker characteristics, HR and PA for workload, SDNN, CVRR, and
RMSSD for HRV time domain, WBGT for the work environment, and LF power, HF power,
and LF/HF for HRV frequency domain all had variance inflation factors (VIFs) of less than
10. Age, HR, PA, and WBGT showed a significant relationship with BS TEMP.

Table 2. Relationship between independent (worker characteristics, workload, HRV index) and
dependent (BS TEMP) variables.

Independent Variable
Dependent Variable: BS TEMP

B S.E. Std. β p-Value

AGE 0.011 0.0037 0.0962 0.02
EXP −0.011 0.012 −0.0249 0.36
BMI −0.0853 0.0649 −0.0572 0.19
HR 0.060 0.0085 0.412 <0.0001
PA 1.78 0.398 0.111 <0.0001

WBGT 0.335 0.062 0.120 <0.0001
SDNN −0.0016 0.0382 −0.0017 0.97
CVRR 12.8 24.6 0.0212 0.60

RMSSD −0.0067 0.0072 −0.030 0.35
LF power 0.00001 0.00001 0.0096 0.69
HF power 0.00001 0.00001 −0.0210 0.34

LF/HF 0.012 0.0065 −0.0341 0.17
Note: BS TEMP = body surface temperature; EXP = experience; BMI = body mass index; HR = heart rate;
PA = physical activity; WBGT = wet bulb globe temperature; SDRR = standard deviation of normal heart
rate interval; CVRR = coefficient of variation of heart beat interval; RMSSD = root mean square successive
difference; HRV = heart rate variability; LF = low frequency; HF = high frequency; B = slope (coefficient) of
regression equation.
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As shown in Table 3a,b, higher HR and PA were positively correlated with BS TEMP.
Table 3c,d reveals that WBGT and AGE had a positive effect on BS TEMP, but the coefficient
of determination was low, which suggests a small but statistically significant effect.

Table 3. Effect of independent variables on body surface temperature.

(a) Effect of Independent Variable (HR) on BS TEMP

Independent Variable
Dependent Variable: BS TEMP

Estimated S.E. t-Value p-Value

HR 0.0686 0.0029 23.7 <0.001
(Intercept) 30.0 0.0738 406.8 <0.001

Adjusted R2 0.223
F static value 559.9 <0.001

(b) Effect of Independent Variable (PA) on BS TEMP

Independent Variable
Dependent Variable: BS TEMP

Estimated S.E. t-Value p-Value

PA 4.96 0.342 14.5 <0.001
(Intercept) 30.4 0.088 344.6 <0.001

Adjusted R2 0.198
F static value 210.8 <0.001

(c) Effect of Independent Variable (WBGT) on BS TEMP

Independent Variable
Dependent Variable: BS TEMP

Estimated S.E. t-Value p-Value

WBGT 0.596 0.066 9.10 <0.001
(Intercept) 13.5 1.98 6.83 <0.001

Multiple R2 0.048
F static value 82.9 <0.001

(d) Effect of Independent Variable (AGE) on BS TEMP

Independent Variable
Dependent Variable: BS TEMP

Estimated S.E. t-Value p-Value

AGE 0.0094 0.0026 3.61 <0.001
(Intercept) 31.8 0.104 298.63 <0.001

Multiple R2 0.0062
F static value 813.1 <0.001

Note: BS TEMP = body surface temperature; HR = heart rate; PA = physical activity; WBGT = wet bulb
globe temperature.

3.4. Indexes of Physical and Psychological Load

The data collected from each work environment were merged to evaluate the re-
lationship among worker characteristics, PA, BS TEMP, HRV index, and physical and
psychological loads as dependent variables. Table 4 presents the results. Prior to the
multiple regression analysis of workload, multicollinearity was assessed with VIF, and no
multicollinearity among the independent variables was confirmed. Among the indepen-
dent variables of workload %HRR, BMI, PA, BS TEMP, Age, EXP, and LF power had a VIF
of one to two, suggesting no possibility of multicollinearity. Multiple regression analysis of
psychological load LF/HF indicated that among the independent variables of psychological
load LH/HF, the indices RRI, PA, BS TEMP, Age, experience, and LF power had low VIF,
thus suggesting no possibility of multicollinearity. RRI in workload %HRR and BMI in
psychological load LH/HF were excluded from the independent variables in each multiple
regression equation because VIF > 10. For each workload %HRR and psychological load
LF/HF ratio, statistically significant independent variables were adopted in the multiple
regression equations.
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Table 4. Relationships between dependent and independent variables representing physical and
psychological load.

Independent Variables

Dependent Variables

%HRR LF/HF

B S.E. p-Value B S.E. p-Value

BMI −0.099 0.145 0.50
RRI −0.0089 0.0014 <0.001
PA 12.5 1.26 <0.001 −2.25 1.07 0.04

BS TEMP 0.772 0.080 <0.001 −0.163 0.0646 0.01
AGE 0.270 0.0082 <0.001 0.0046 0.0085 0.59
EXP 0.008 0.045 0.86 −0.218 0.0324 <0.001

LF power 0.00001 0.0001 0.61 0.0003 0.00001 <0.001
Note: %HRR = percent heart rate; LF = low frequency; HF = high frequency; BMI = body mass index; RRI = heart
beat interval; PA = physical activity; BS TEMP = body surface temperature; EXP = experience; B = slope (coefficient)
of regression equation.

3.5. Relationship to Workload %HRR and Psychological Load LF/HF

First, we obtained a multiple regression equation that demonstrated the effects of the
independent variables PA, BS TEMP, and age on the workload. The regression equation, as
shown in Equation (2), has an adjusted R2 of 0.449. The results of the analysis are shown in
Table 5, where the changes in PA, BS TEMP, and LF power all had a positive impact on the
workload of the workers. The standard regression deviations of the independent variables
revealed approximately the same values, and the percentage of influence on the workload
was equal.

Workload: %HRR = 37.1 × PA + 2.34 × BS TEMP + 0.269 × AGE − 70.1 (2)

Table 5. Relationship between workers’ biological information and %HRR.

Independent Variable
Dependent Variable: %HRR

VIF
Partial β S.E. Standard β t-Value p-Value

PA 37.1 1.94 0.340 19.2 <0.001 1.11
B.S. TEMP 2.34 0.122 0.339 19.1 <0.001 1.11

AGE 0.269 0.0134 0.339 20.0 <0.001 1.01
(Intercept) −70.1 3.75 − −18.7 <0.001 −

Adjusted R2 0.449
F static value 529.0

Sig. <0.001

Subsequently, we obtained a multiple regression equation showing the effects of the
independent variables RRI, BS TEMP, LF power, and EXP on psychological load. The
multiple regression equation, as shown in Equation (3), has an adjusted R2 of 0.356. The
results of the analysis are given in Table 6, wherein changes in BS TEMP and LF power
had a positive impact on the psychological load of workers, whereas RRI and EXP had a
negative impact. The standard regression bias of the independent variables suggested that
the greatest effect was due to the LF power related to the autonomic nervous system.

Psychological load: LF/HF = −0.0065 × RRI − 0.186 × BS TEMP + 0.0003 × LF power − 0.205 × EXP + 0.356 (3)

The biometric data of waste treatment workers were analysed to obtain a multiple
regression equation for estimating their load at work, and the results established that
BS TEMP was significantly affected by both workload (%HRR) and psychological load
(LH/HF).
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Table 6. Relationship between workers’ biological information and LF/HF.

Independent Variable
Dependent Variable: LF/HF

VIF
Partial β S.E. Standard β t-Value p-Value

RRI −0.0065 0.0012 −0.147 −6.11 <0.001 1.27
B.S. TEMP 0.186 0.0549 0.088 2.74 0.006 1.26
LF power 0.0003 0.00001 0.561 18.3 <0.001 1.01

EXP −0.205 0.0425 −0.018 −8.11 <0.001 1.01
(Intercept) 12.9 2.22 − 5.81 <0.001 −

Adjusted R2 0.356
F static value 156.6

Sig. <0.001

4. Discussion
4.1. Principal Findings

This study investigated the effects of workers’ individual characteristics and biometric
indices on their physical and psychological loads during waste-handling operations. The
results indicated significant differences in the workers’ HRV time-domain parameters
(NN50, pNN50, and RMSSD), and HRV frequency parameters (LF power, HF power, and
LF/HF) when comparing waste handling and non-waste handling operations. Compared
with workers who did not handle waste, those who did had a lower PA and BS TEMP;
lower HRV parameters (NN50, pNN50, RMSSD) associated with higher psychological load,
and higher LF/HF and LF power were associated with stress. There were no significant
differences in HR, RRI, and %HRR. These results suggest that waste disposal workers
work under a high psychological load, regardless of their HR and workload %HRR due to
their work.

Workers’ workloads and psychological loads were estimated using measurement
parameters. Although studies have analysed the relationship between body temperature,
WBGT, and HR [67,68], this study confirmed that body surface temperature could be used
for this estimation. Workload %HRR was estimated from PA, body surface temperature,
and workers’ age (adjusted R2 = 0.449), and psychological load LF/HF was estimated
from the autonomy-influenced RRI, LF power, BS TEMP, and years of experience (adjusted
R2 = 0.356). PA and BS TEMP had a positive effect on workload %HRR [17], and the three
independent variables, including workers’ age, affected workload almost equally. RRI had
a negative effect, and LF power and BS TEMP had a positive effect on the psychological
load of LF/HF of workers [69,70]. There was a tendency to report a lower psychological
load with increasing years of work experience. These findings support all three hypotheses.
Although RMSSD, NN50, and pNN50 showed significant differences when comparing
workers who handled waste to those who did not, they were not parameters that deter-
mined psychological load LF/HF. Orsila et al. [38] confirmed the relationship between
RMSSD and mental stress during relatively long periods of time in the morning, afternoon,
and evening among employees of an electronics company. However, the environment and
conditions of work were different compared with this study, which focused on waste work,
and there were differences in the results of each of these studies.

4.2. Physical and Psychological Load in Waste Management Workplaces

UEMAE et al. [71] observed the relationship of temperature and humidity near the skin
to changes in HR, a physiological index, and stated that changes in skin temperature affect
HR and that the factors are related to HR’s autonomous thermoregulatory function [71]. The
sympathetic activity of the autonomic nervous system can be used to estimate the intensity
of physical and psychological loads, such as stress [72]. Therefore, it can be inferred
that the body surface temperature affects %HRR and HRV, which are load indicators
related to the work environment. This inference is based on the relationships shown in
Equations (2) and (3). We also found that waste workers are exposed to various levels
of stress due to the handling of waste and the temperature of their work environment.
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Our results indicate that uncertainty about workers’ psychological load and its acceptable
limits can be resolved by analysing the environment in which waste is handled and the
temperature conditions of the workers.

In the estimation of %HRR, body surface temperature was affected as an explanatory
variable, but there was no effect of environmental temperature on WBGT. This relationship
indicates a low correlation between body surface temperature and WBGT, as evident from
Table 3c. Studies have reported the effects of WBGT on biological information [18,73].
However, it can be inferred that WBGT near each work site may not be related to workers’
body temperature and that analyses using body surface temperature can show changes
in worker HR more accurately. Furthermore, the LF/HF estimation revealed that workers
handling waste had higher sympathetic nervous activity (i.e., higher LH/HF and LF
power) than parasympathetic nervous activity (i.e., lower RRI, SDRR, RMSSD, and HF
power) related to the catatonic state. In addition, workers’ HRV indices were low, which
aligned with previous findings [74,75], suggesting that increased work-related stress leads
to decreased parasympathetic activity and increased sympathetic activity. Thus, the LF/HF
ratio of workers provides insight into their work stress levels.

The participants of this study were exposed to low physical load and high mental
stress. This indicates that waste workers may experience higher psychological stress due to
the characteristics of their jobs, such as taking extra care in regards to the safety of their
environment and working with hazardous waste, than those engaged in hard physical
labour. Eggenberger et al. [30] demonstrated that the frequency of exposure of waste
handlers to hazardous materials significantly increased perceptual stress, and workers with
a higher frequency of exposure reported 2.14 times more stress than those with a lower
exposure. As waste management companies have high psychological job demands, it is
necessary to assess workers’ job-related psychological factors. It would be useful for waste
management companies to use this research tool to regularly and quantitatively assess the
physical and psychological load of workers. Instead of using questionnaires and interviews
to assess workers’ health and well-being, this research tool will enable companies to more
effectively assess workers’ health and provide an appropriate working environment.

4.3. Approaches to Worker Stress Reduction and Worker Management

In the estimation of workers’ psychological load, experience was inversely correlated
with LF/HF (standard β of EXP = −0.018). Experience is negatively correlated with
LF/HF because, as workers gain more experience, they have more knowledge about
dealing with the waste. Thus, the psychological load may be reduced by improving
inexperienced workers’ knowledge of health literacy, waste to be handled, protective gear,
and tools and education and training. Studies using questionnaire surveys of waste workers
have established that worker demographics (e.g., education level, marital status, and the
number of children) and working conditions (e.g., shift work, work hours, and income)
are significantly related to psychological load levels [76–78]. Waste workers have a high
turnover rate, which makes it difficult to collect personal information in some cases. Our
results confirm that work stress can be estimated independent of worker demographics
and working conditions, and may be used for worker management independent of country
or industry.

4.4. Theoretical and Practical Contributions

This study makes the following theoretical contributions. The psychological load
LH/HF by HRV and %HRR as workload were used to quantify the workload of waste
management workers. In addition, equations for estimating these loads using physical
and psychological loads from HR and biometric data, including PA and body surface
temperature, were developed.

Regarding practical contributions, the study found that the physical and psychological
loads of waste workers, which have not been clarified previously, differ depending on the
type of work. This evidence and monitoring of workers will assist the waste management
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industry to reduce health risks and enhance the working conditions of workers, and it can
suggest new management concepts to companies by considering these factors from the
perspective of health psychology.

4.5. Limitations

This study has several limitations. First, physical characteristics and age were not
equally balanced in the sample. Although physical characteristics affecting workload
and stress vary with age and gender [79,80], the results may not be generalisable to all
waste workers as the study was conducted on healthy men aged 20–63 years. The waste
management industry in Japan is dominated by men, and future studies should include
women in their sample. Second, this study was a cross-sectional analysis, with data
collected during the working days for seven days. Additionally, the mental and physical
status of workers at the beginning of the workday was not measured. Since nutritional
status, family environment, past stress conditions, lack of sleep, and lack of physical activity
(sports) affect personnel activities, observing workers’ conditions over a longer period
of time could yield more useful results. Investigation of background factors and initial
conditions should be the subject of future research. Finally, as frequency-based metrics
have been reported to represent the balance between sympathetic and parasympathetic
activity more accurately [81], it is vital to improve the quality of HR interval recordings in
wearable devices. Certain data collected in this study had missing HR data intervals, which
affected the selection of HRV metrics and necessitated the removal of a few participants
from the statistical analysis. Future studies aimed at further improving sensing wear and
wearable technology and enhancing recording quality (e.g., further minimising motion
artefacts) are essential to investigate large samples over time. Such improvements will
increase the usefulness of these devices.

5. Conclusions

In this study, physical and psychological loads in the workplace were investigated
among workers at a waste management facility in Japan. The workers performed their
daily tasks in an environment exposing them to high stress depending on environmental
temperature and task. Those who directly handled waste had lower PA, lower body
surface temperature, and lower HRV parameter values associated with the autonomic
nervous system than maintenance workers at the facility. Workload and stress among waste
management workers, which has not been investigated in previous studies, suggested a
significant relationship between HR variability, body surface temperature, PA, age, and
years of experience. The workers’ body surface temperature was significantly related to HR,
PA, environmental temperature, and age. The psychological load LF/HF was affected by
the HRV parameters, RRI and LF power, body surface temperature, and years of experience.

Regular monitoring of biometric and physical information such as HR, body surface
temperature, and activity can help understand the working environment of workers with
high physical and psychological loads and promote the maintenance of sustainable re-
lationships among them in harsh manufacturing and construction environments [10]. A
quantitative understanding of working conditions in harsh work environments is important
for improving work quality and reducing health hazards. Waste management companies
can reduce the negative impacts on the environment and public health by promoting
sustainable working relationships.
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Appendix A

Table A1. List of devices and equipment for measuring heart rate and acceleration.

Measurements Equipment Model
(Name of the Manufacturer)

Sampling
Frequency Interval Note

Physical workload

ECG (Sensing clothing) COCOMI
(TOYOBO Co., Ltd.) − − Stretchable conductive film

Heart rate sensor WHS-2
(Union Tool Co., Ltd.)

1 kHz Per beat Analysis of RRI
3-axis acceleration 31.25 Hz Per beat Capacitive sense

Infrastructure

Data acquisition time CC2650 and ThinkPad
(Texas Instruments and Lenovo Co., Ltd.) 1 msec. Per beat Synchronized time with server

Data transfer Raspberry Pi Zero W
(Raspberry Pi Foundation) − −

IEEE802.11 b/g/n
(Wireless LAN)
Bluetooth 4.1

Appendix B

Picture of measurement equipment for physiology in this study: (a) Heart rate and
acceleration sampling device (WHS-2), (b) Sensing-ware (COCOMI®), and (c) Device for
collecting data (CC2650). Electrodes are placed inside the COCOMI® to acquire heart rate
information and body temperature via the WHS-2.
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Appendix C

Table A2. Measurement parameters and measurement methods.

Measurement
Parameter Method Unit

HRworking average heart rate in 5 min during working hours bpm
HRresting average heart rate in 5 min during the rest hours bpm
HRmax 208 − 0.7 × age bpm
%HRR %HRR =

HR working−HR resting
HR max.−HR resting × 100 %

ACC
√

AXn
2 + AYn

2 + AZn
2 mG

Appendix D

Table A3. List of the collected data on subjects.

Data ID# Data Collection Dates
Duration of Data

Collection
(min)

Scheduled
Resting
(min)

Number of Data *
(Sets) Main Job Tasks

A1 3 September 2019 360 70 72

Crushing,
classifying and

transshipping of
industrial waste

A2 445 60 89
A3 4 September 2019 330 70 66
A4 325 60 65
A5 5 September 2019 175 10 35
A6 480 40 96
A7 6 September 2019 455 70 91
A8 24 August 2020 190 10 38
A9 190 30 38
A10 25 August 2020 415 30 83
A11 26 August 2020 455 70 91
A12 3 September 2019 395 70 79
A13 315 60 63
A14 4 September 2019 480 60 96
A15 480 60 96
A16 5 September 2019 430 60 86
A17 385 60 77
A18 6 September 2019 255 60 51
A19 330 70 66
A20 24 August 2020 190 20 38
A21 25 August 2020 405 30 81
A22 26 August 2020 450 90 90

B1 24 August 2019 190 10 38
Maintenance and

repair of
equipment and
facilities, and

vehicle guidance

B2 185 10 37
B3 25 August 2029 455 90 91
B4 195 70 39
B5 310 70 62
B6 26 August 2020 270 20 54
B7 190 10 38

Note: * The time interval of one data is 5 min.
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Appendix E

Table A4. Overview of subjects’ physical data measurements in this study (n = 29).

Data ID#
Estimated

HRmax
(bpm)

Estimated
HRresting

(bpm)

HRworking
Ave. ± SD

(bpm)

%HRR
Ave. ± SD

(%)

P.A.
Ave. ± SD

(mG)

B.S. TEMP
(mG)

A1 191.2 67.4 82.7 ± 6.91 12.3 ± 6.91 144.2 ± 91.7 31.0 ± 1.90
A2 163.9 72.3 101.8 ± 11.0 35.2 ± 12.0 271.3 ± 10.6 32.4 ± 1.49
A3 191.2 63.3 87.2 ± 11.7 18.7 ± 9.13 188.2 ± 130.0 31.7 ± 1.82
A4 163.9 67.6 90.0 ± 9.29 23.2 ± 9.65 244.9 ± 91.5 31.7 ± 1.92
A5 194.0 61.5 79.6 ± 9.43 13.6 ± 7.11 246.3 ± 106.3 30.2 ± 1.51
A6 163.9 66.5 93.0 ± 9.79 27.2 ± 10.1 210.9 ± 125.0 30.9 ± 1.18
A7 163.9 66.0 94.2 ± 12.5 28.7 ± 12.8 174.0 ± 99.2 32.2 ± 1.14
A8 164.6 62.9 124.4 ± 9.18 60.4 ± 9.03 274.8 ± 65.0 32.9 ± 0.45
A9 189.1 73.6 96.6 ± 10.5 19.9 ± 9.13 257.9 ± 124.6 32.7 ± 1.27

A10 189.1 68.4 96.3 ± 11.3 23.2 ± 9.39 253.1 ± 111.5 31.6 ± 1.12
A11 189.1 67.9 93.2 ± 10.5 20.9 ± 8.62 185.6 ± 109.1 31.8 ± 0.97
A12 191.2 65.5 93.6 ± 13.1 21.8 ± 10.5 272.9 ± 134.4 31.9 ± 1.81
A13 191.9 73.8 89.1 ± 10.2 13.0 ± 8.63 182.9 ± 98.9 30.8 ± 2.22
A14 168.1 63.2 81.2 ± 9.20 17.1 ± 8.77 217.5 ± 87.7 29.7 ± 2.07
A15 191.9 78.3 94.7 ± 8.00 14.5 ± 7.04 208.8 ± 102.7 30.0 ± 2.36
A16 191.2 68.2 85.6 ± 11.2 14.2 ± 9.14 168.8 ± 101.8 31.2 ± 1.57
A17 191.9 85.2 98.7 ± 7.50 12.6 ± 7.03 201.3 ± 95.1 30.8 ± 1.50
A18 188.4 72.7 96.0 ± 13.4 20.1 ± 11.6 214.7 ± 110.0 30.9 ± 1.83
A19 191.9 79.0 95.9 ± 9.81 15.0 ± 8.69 180.4 ± 94.4 31.1 ± 1.88
A20 186.3 80.7 106.9 ± 9.16 24.8 ± 8.68 275.3 ± 119.0 33.5 ± 1.39
A21 186.3 72.7 103.9 ± 11.4 27.5 ± 10.0 273.4 ± 110.4 32.4 ± 1.77
A22 186.3 73.5 101.0 ± 10.7 24.4 ± 9.50 293.2 ± 142.6 31.0 ± 1.45

B1 187.7 79.9 95.8 ± 10.8 14.8 ± 10.0 214.8 ± 119.7 31.3 ± 1.47
B2 188.4 70.1 87.5 ± 8.75 14.7 ± 7.39 305.0 ± 98.6 32.6 ± 6.59
B3 164.6 62.9 93.5 ± 14.7 30.1 ± 14.5 278.0 ± 117.6 32.8 ± 1.13
B4 187.7 74.2 108.8 ± 23.9 30.5 ± 21.1 186.5 ± 120.3 31.1 ± 3.21
B5 188.4 59.3 87.6 ± 14.7 21.9 ± 11.4 259.8 ± 144.4 31.3 ± 2.35
B6 188.7 70.3 91.0 ± 11.1 17.7 ± 9.47 249.1 ± 111.4 31.8 ± 1.27
B7 188.4 71.8 101.6 ± 16.5 25.6 ± 14.2 321.7 ± 123.3 32.1 ± 2.43

Total 183.5 ± 11.0 70.3 ± 6.30 92.9 ± 17.4 21.8 ± 13.0 228.7 ± 119.3 31.5 ± 2.15
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Appendix F

Table A5. Supplementary data: measurement data of the participants collected in the work environment.

Operation Type ID HR [bpm] %HRR [%] P.A. [G] B.S TEMP [°C] RRI [msec.] SDNN CVRR NN50 pNN50 RMSSD LFpow HFpow LF/HF

A. Crushing,
classifying and
transshipping of
Industrial waste.

A-1 82.67 12.32 0.144 30.97 733.2 26.88 0.037 35.58 0.100 28.29 612.5 248.1 2.75

A-2 101.78 32.22 0.271 32.39 597.1 24.43 0.041 10.19 0.033 17.10 568.5 216.8 2.26

A-3 93.64 21.80 0.273 31.93 653.3 25.63 0.039 26.33 0.067 23.22 553.7 210.1 5.37

A-4 89.11 12.95 0.184 30.78 681.8 26.13 0.038 31.79 0.091 27.17 871.2 328.1 3.22

A-5 87.18 18.66 0.188 31.69 702.2 27.10 0.037 34.12 0.095 27.85 336.1 179.1 2.39

A-6 89.96 23.22 0.245 31.64 674.3 26.05 0.038 32.11 0.082 25.87 283.0 292.7 1.29

A-7 81.19 17.13 0.217 29.69 748.1 27.55 0.036 18.13 0.052 21.76 300.3 187.5 1.83

A-8 94.71 14.45 0.209 30.00 638.2 25.32 0.040 21.77 0.069 24.06 1874.1 345.1 4.32

A-9 79.56 13.62 0.246 32.23 765.1 27.74 0.036 69.03 0.197 37.52 290.6 346.4 1.09

A-10 93.02 27.22 0.211 30.87 652.8 25.61 0.039 18.47 0.058 22.72 1303.2 337.6 3.87

A-11 85.60 14.10 0.170 31.20 712.0 25.53 0.039 17.98 0.059 22.73 411.9 445.0 1.65

A-12 98.70 12.64 0.201 30.80 611.2 24.77 0.040 15.58 0.050 21.94 1299.0 297.6 4.25

A-13 94.18 28.77 0.174 32.16 649.1 25.52 0.039 18.52 0.047 20.54 205.0 196.1 1.31

A-14 95.97 20.11 0.215 31.11 637.2 25.20 0.040 6.69 0.016 16.64 221.7 114.2 2.27

A-15 95.52 14.99 0.180 31.12 632.2 25.20 0.040 20.59 0.065 23.46 1361.8 293.6 4.82

A-16 124.37 60.44 0.275 32.94 485.0 21.93 0.046 4.82 0.008 11.19 202.9 234.7 0.96

A-17 96.61 19.92 0.258 32.70 629.0 25.09 0.040 21.61 0.053 19.66 380.0 180.8 2.70

A-18 106.88 24.77 0.275 33.46 566.0 23.68 0.042 7.18 0.019 13.17 959.8 229.4 6.06

A-19 96.34 23.17 0.253 31.58 631.9 25.18 0.040 17.37 0.060 23.20 2149.0 279.7 8.98

A-20 103.85 27.45 0.273 32.43 585.7 24.11 0.042 7.12 0.023 14.63 7250.1 541.9 10.07

A-21 93.15 20.85 0.186 31.83 653.0 25.57 0.039 18.98 0.046 19.70 455.4 224.4 2.66

A-22 101.00 24.41 0.293 31.03 601.4 24.22 0.041 10.41 0.026 16.11 0.309 0.084 5.60

B. Maintenance and
repair of facility.

B-1 95.84 14.79 0.215 31.25 633.8 25.19 0.040 16.76 0.038 19.29 470.0 353.0 1.89

B-2 87.48 14.72 0.306 32.64 629.7 26.46 0.038 62.46 0.153 33.19 457.6 3898.3 1.05

B-3 93.51 30.07 0.278 32.78 657.2 25.53 0.039 12.12 0.033 18.30 509.3 433.2 2.26

B-4 108.80 30.49 0.186 31.07 577.6 23.91 0.042 9.69 0.039 18.57 1853.8 320.4 5.60

B-5 87.58 21.88 0.260 31.29 705.0 26.62 0.038 63.68 0.169 33.65 331.7 298.2 1.21

B-6 90.99 17.65 0.249 31.75 669.2 25.86 0.039 26.98 0.089 26.39 1130.2 498.1 3.19

B-7 102.44 26.29 0.328 32.19 599.0 24.58 0.041 28.84 0.073 22.17 378.5 274.9 1.90
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Appendix G

Table A6. Results of the normality test for each of the subject’s parameters.

Parameters
Kolmogorov-Smirnov Shapiro-Wilk Normality Test

ResultStatistics Significant * Statistics Significant *

AGE 0.322 <0.001 0.707 <0.001 non-parametric
EXP 0.173 <0.001 0.903 <0.001 non-parametric
BMI 0.216 <0.001 0.882 <0.001 non-parametric
HR 0.0174 0.162 0.0272 0.0506 parametric
%HRR 0.0468 <0.001 0.961 <0.001 non-parametric
PA 0.0464 <0.001 0.981 <0.001 non-parametric
B.S.TEMP 0.0976 <0.001 0.832 <0.001 non-parametric
WBGT 0.0684 <0.001 0.956 <0.001 non-parametric
RRI 0.322 <0.001 0.707 <0.001 non-parametric
SDRR 0.0482 <0.001 0.948 <0.001 non-parametric
CVRR 0.0292 <0.001 0.951 <0.001 non-parametric
NN50 0.171 <0.001 0.792 <0.001 non-parametric
pNN50 0.170 <0.001 0.789 <0.001 non-parametric
RMSSD 0.0572 <0.001 0.957 <0.001 non-parametric
LF power 0.449 <0.001 0.0542 <0.001 non-parametric
HF power 0.454 <0.001 0.0302 <0.001 non-parametric
LF/HF 0.289 <0.001 0.441 <0.001 non-parametric

Note: * indicates p-value.

Appendix H

Table A7. Summary list of variables with the abbreviation, full name, and description of each variable.

%HRR percent heart rate

B slope (coefficient) of regression equation

BMI body mass index

BS TEMP body surface temperature

CVRR coefficient of variation of heart–beat interval

EXP experience

Group A waste treatment workers

Group B non–waste treatment workers

HF high frequency

HR heart rate

HRV heart rate variability

HRV heart rate variability

LF low frequency

NN50 index of difference between adjacent normal heart rate intervals greater than 50 ms

PA physical activity

pNN50 index of the percentage of the difference between adjacent normal heart rate
intervals greater than 50 ms

RMSSD root mean square successive difference

RRI heart–beat interval

SDRR standard deviation of heart–beat interval

WBGT wet bulb globe temperature
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