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Abstract: Continuous resource misallocation not only results in total factor productivity loss but
also leads to ecological degradation. Therefore, in the process of changing from extensive growth to
intensive growth, Chinese agriculture should pay attention to the problem of resource misallocation.
There is currently a lack of relevant research, especially concerning the spatial spillover effects of
resource misallocation at the city level. To fill this gap, we employ a spatial panel model for empirical
testing on the basis of measuring agricultural green total factor productivity (GTFP) in 306 cities in
China from 1996–2017. We found that there is positive spatial autocorrelation in Chinese agricultural
GTFP, but it decreases year by year. Misallocation in land, labor, machinery and fertilizer all directly
hinder the local GTFP. The eastern is mainly negatively affected by neighbor resource misallocation,
while the central and western are mainly negatively affected by local resource misallocation. Finally,
the indirect effect of neighbor resource misallocation on GTFP gradually shifts from inhibiting effect
to a facilitating effect with increasing spatial distance. These findings have clear policy implications:
Chinese government should strengthen agricultural green technology innovation and diffusion,
strengthen environmental regulation and promote the free movement of labor between regions
and sectors.

Keywords: agricultural economics; resource misallocation; green total factor productivity; sequential
DEA; spatial panel model

1. Introduction

Since its reform and opening up (reform and opening up is a policy of domestic
reform and opening up that China began to implement at the Third Plenary Session of
the Eleventh Central Committee in December 1978), China has made great achievements
in agriculture, feeding 1/5 of the world’s population on less than 10% arable land [1]. It
even achieved what was described as “twelve consecutive increases” in food production
during the period 2003–2015, strongly responding to the question of “who feeds China”.
However, while Chinese agriculture is growing rapidly, it is also facing many serious
problems, such as excessive consumption of resources, serious non-point source pollution
and the agroecological deterioration [2,3]. In order to reverse the unsustainable situation
of agricultural development, the Chinese government has introduced a series of laws,
regulations and policies to promote green growth (namely, to make resources efficient, clean
and recyclable without slowing down the growth rate [4]) in agriculture. The promulgation
of these policies has undoubtedly provided useful ideas and feasible solutions to the
dilemma of food security and ecological safety faced by China. It is foreseeable that green
growth will become an inevitable trend in Chinese agricultural development in the future.

However, in the process of changing from extensive growth to intensive growth,
Chinese agriculture has had to pay attention to the problem of resource misallocation. It is
generally accepted that in a perfectly competitive economy, homogeneous factors should
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have the same marginal returns, otherwise there will be a flow from the side with lower
returns to the side with higher returns, and eliminating such gaps will eventually lead to
achieving market equilibrium. If factor markets are distorted, the free flow of factors will
be restricted, resulting in an inability to be allocated to where they are most efficient [5,6].
In this case, the economy would fail to achieve the Pareto optimal allocation and result in
social efficiency loss [7,8]. According to Restuccia and Rogerson [9], Ouyang et al. [10] and
Su and Liang [11], market segmentation, government regulation and lagging factor market
reforms can all lead to resource misallocation. Especially in a government-dominated
economy, lower factor prices help drive economic growth through increased factor inputs,
so distorting factor markets are often used by governments as a policy tool for catch-up
development strategies [6,12].

The Chinese agricultural sector has been largely dominated by the government in
terms of resource allocation, with the flow of resources being regulated, and thus being un-
able to be allocated to the most efficient side (region or sector). This has led to an imbalance
between marginal factor returns and factor prices, resulting in serious distortions in the
allocation of agricultural production factors. Adamopoulos et al. [13] found that under the
household contract responsibility system (HRS), rural land is allocated equally, ignoring
differences in productivity in agriculture, making the degree of land resource misallocation
in rural China worse over time, resulting in a 36–84% loss in additive TFP. Zhao [14] point
out that the Rural Land Contract Law (RLCL) enacted by the Chinese government in
2003 prohibits land reallocation, which, while alleviating labor misallocation, also reduced
farmers’ willingness to outsource their land, thereby exacerbating land misallocation and
contributing to a 6% loss in total output.

The continuous resource misallocation not only results in TFP loss, but also leads to
ecological degradation. On the one hand, lower factor price reduces producers’ willingness
to improve the efficiency of resource use through technological innovation, leading to a
stagnation of resource-saving technological progress [15,16]. On the other hand, a distorted
price system fails to reflect the scarcity and opportunity of the cost of resources, and
changes in factors of production, in turn, hinder the role of factor markets in optimizing
resource allocation [17]. Based on their respective studies, scholars have found that resource
misallocation or factor market distortions can aggravate pollution emissions [6,18] and haze
pollution [19], reduce environmental efficiency [20], green total factor productivity [21],
green technological progress [22] and energy efficiency [23]. For instance, Bian et al. [18]
studied the impact of market segmentation on environmental pollution from the perspective
of resource misallocation and found that market segmentation has significantly aggravated
the misallocation of labor and capital resources, which led to environmental pollution.
However, the existing literature is mainly based on provincial or industry-level data, and
the spatial spillover effects of resource misallocation affecting agricultural GTFP have not
been studied at the city level. To fill this gap, this paper empirically examines the impact
of resource misallocation on green total factor productivity in Chinese agriculture using a
spatial panel model based on balanced panel data from 306 cities in China from 1996–2017.
It is helpful to provide theoretical support for solving the dilemma of food security and
ecological safety in China from a resource allocation perspective and also have implications
for developing countries with similar resource endowments and facing similar problems.

The paper contributes to the literature in three major ways. Firstly, this paper uses data
from 306 cities in China as the research sample. Most of the existing studies on resource
misallocation and total factor productivity use provincial and farmer-level data, and there
is a lack of empirical studies at the city level. The motivation for using city-level data in
this paper stems from two points: On the one hand, it is difficult to precisely capture the
spatial spillover effects of resource allocation on the impact of agricultural GTFP due to
the huge differences in cropping structure, economic development, policies and resource
endowments among provinces. In contrast, there is relatively little variation in various
aspects across cities in the same province, thus allowing the interference of external factors
in the empirical results to be eliminated. On the other hand, data at the household level are
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limited by the method of sample collection and the perceptions of the respondents, which
may lead to problems, such as sample selection bias. The data at the city level are directly
sourced from official statistics, which can effectively avoid biased results caused by data
distortion. For this reason, this paper collects a total of 306 cities in China from 1996–2017
as a balanced panel data for the study sample.

Secondly, this paper focuses its research on green growth in agriculture. Existing stud-
ies on the impact of resource misallocation on green growth have mainly focused on regions
and industries [16,20,21,23], and the causal relationship between resource misallocation
and green growth in the Chinese agricultural sector has not been studied. As the ballast
and propeller of economic growth, social progress and national development, the green
growth of agriculture determines the bottom line and potential of the country’s livelihood.
In this paper, we refer to Chen et al. [22], Han et al. [24], Han et al. [25], Liu and Feng [26],
Tang et al. [27], Zou et al. [28], Qu et al. [29] to account for agricultural non-point source
pollution (unexpected output), and then measure agricultural GTFP using a sequential
data envelopment analysis (DEA) method to provide indicator guarantees for subsequent
empirical studies.

Thirdly, this paper uses a spatial panel model to examine the spatial spillover effects
of resource misallocation on the impact of GTFP in agriculture. Existing studies have only
considered resource misallocation to local regions or aggregate total factor productivity
loss and have not yet focused on the spatial spillover effects of agricultural resource
misallocation. Hao et al. [21] used a spatial panel model to find that resource (labor and
capital) misallocation has a negative impact on GTFP in 30 Chinese provinces. However,
the study was not on agriculture, and the marginal effects of resource misallocation were
not decomposed into direct and indirect effects, making it impossible to distinguish the
spillover effects of resource misallocation on agricultural GTFP as coming from the local
region or from other regions. Based on this, this paper uses a spatial panel model to
empirically test the spatial spillover effect of resource misallocation on the impact of
agricultural GTFP, and decomposes the regression coefficients into total, direct and indirect
effects. The direct effect represents the net effect of changes in the independent variables
in the local region, the indirect effect represents the effect of changes in the independent
variables in other regions on the local region, and the total effect is the sum of the direct
and indirect effects.

The remainder of the paper is organized as follows. Section 2 describes the methods,
variables and data. Section 3 presents panel data test results. Section 4 presents and
discusses the empirical results, and Section 5 ends with conclusions.

2. Materials and Methods
2.1. Methods
2.1.1. Sequential DEA

The concept of “green total factor productivity” was first proposed by the United Na-
tions Environment Programme [30], which refers to the comprehensive utilization efficiency
of all input factors in the social production process, including “factor utilization efficiency”
and “environmental efficiency”. The former represents the output level brought by factors
input, while the latter represents that the matching combination of each factor can meet the
bearing range of the ecological environment, emphasizing the coordinated development
of economic growth and ecological environment. Green total factor productivity directly
connects environmental impact and economic development and is an effective tool for the
comprehensive evaluation of green production. Compared with total factor productivity,
green total factor productivity is the efficiency level after deducting the negative impact on
the environment, which can better reflect the real productivity level.

The DEA method is widely used to calculate GTFP because it does not require a specific
production function and can include multiple inputs and outputs (expected and unexpected
outputs). This paper uses each city as a decision module (DMU) to construct the production
frontier. Assuming each DMU uses K inputs, xkj(n = 1, . . . , K) ε R+. Where i represents
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the i-th city that has obtained M non-negative expected outputs, ymj(m = 1, . . . , M) ε R+,
U non-negative unexpected outputs, and buj(u = 1, . . . , U) ε R+. At the same time, in
order to eliminate the degradation of the pseudo technology of the traditional DEA method,
the current output set has nothing to do with the previous feasible technology; this paper
uses the method of Shestalova [31] and adopts the output-oriented sequential DEA to
construct the technological frontier.

Pt
(x) =

{
(y, b) : y ≤ Yt(1 + βt), b = Bt(1− βt), x ≥ Xt

λ, λ ≥ 0
}

(1)
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In this paper, GTFP is further decomposed by Malmquist–Luenberger index:
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The GTFP is further decomposed into an efficiency change index (EFFCH) and a
technology change index (TECH).

EFFCHt+1
t =
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(5)

GTFPt+1
t = EFFCHt+1

t × TECHt+1
t (6)

GTFP, EFFCH and TECH greater than (less than) 1 represent GTFP growth (decrease),
technical efficiency is improved (decreased), and if technological progress is equal to 1, it
means that the period from t to t + 1 is unchanged. It should be noted that TECH is greater
than or equal to 1, except that the base period TECH may be less than 1.

2.1.2. Spatial Panel Model

In order to verify the impact of resource misallocation on agricultural GTFP, this paper
constructs the following benchmark model:

GTFPit = α+ β·LnMisit + γ·Controlit + εit (7)
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where LnMis = [LnMis_L, LnMis_N, LnMis_M, LnMis_F] denotes the matrix of resource
misallocation variables, Control is the control variable and εit is the residual term; i denotes
the i-th city, t denotes time and Ln denotes taking the natural logarithm.

Considering the resource misallocation worthy of this paper, it means that the spatial
flow of resources is restricted from achieving optimal allocation. Thus, resource misalloca-
tion is spatially correlated. Therefore, we refer to Elhorst [32] and use a spatial econometric
model, which is undoubtedly more in line with reality. In addition, the resource misalloca-
tion variable contains a dependent variable component that is inversely influenced by total
factor productivity, i.e., there is endogeneity. In this paper, the previous period of GTFP is
used as the dependent variable.

GTFPit+1 = α+ β·LnMisit + γ·Controlit + µit + λ·W·Yit (8)

where W = Wij =

{
1, i 6= j
0, i = j

is the spatial adjacency matrix. If the i-th municipality has the

same boundary as the j-th municipality, then Wij = 1, otherwise Wij = 0; µit = ρ·W·µit + εit
is the spatial error term and εit is the random perturbation term. If λ = 0 and ρ 6= 0, then
it shows the spatial error model (SEM); if λ = 0 and ρ 6= 0, then it shows the spatial lag
model (SAR); if λ 6= 0 and ρ = 0, then it shows the more general spatial lag and error model
(SAREM).

Finally, considering that the degree of resource misallocation in the neighbor regions
may affect the level of green growth in the region, this paper further adds the spatial lag
term of the independent variables on the basis of Equation (8) to obtain the spatial Durbin
model (SDM).

GTFPit+1 = α+ β·LnMisit + γ·Controlit + θ1·W·LnMisit + θ2·W·Controlit + λ·W·Yit + µit (9)

It should be noted that the use of OLS to estimate the spatial model will lead to bias
and inefficiency. In order to avoid these problems, we refer to Lee [33] and use maximum
likelihood (ML) to estimate the model.

2.1.3. Resource Misallocation

According to the theoretical model of Hsieh and Klenow [34] and others, there is a
misallocation of resources due to the presence of distortion τX

it . In this paper, the resource
misallocation is defined as:

MisXt =
1

1 + τX
it

, X = N, L, M, F (10)

MisXt = 1 when τX
it = 0, indicating that there is no resource misallocation in the i-th

city; otherwise, there is a misallocation. However, τX
it is not directly observable in the

reality. Hsieh and Klenow [34] argue that in a perfectly competitive market, the marginal
return of the same factor should be equal for each individual, i.e., MVPXit = MVPXjt.
Ultimately, MVPXit = MVPXst where MVPXst is the factor marginal return in the s-th
province. Therefore, the relative degree of misallocation of each factor can be defined as:

MisX =
MVPXst

MVPXit
(11)

Yit = AitNαit Lβit Mγ
it Fϕit (12)

MVPXit = α
PitYit

Xit
(13)

Similarly,

MVPXst = α
PstYst

Xst
(14)
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Substituting Equations (13) and (14) into Equation (11), respectively, we can find:

MisXt =
Xit

∑i Xit

∑i PitYit

PitYit
=

Xit

Xst

PstYst

PitYit
(15)

This paper assumes a high degree of substitutability of output between different cities
within the same province. Thus, the output at the provincial level can be obtained by
summing the output of cities.

Yst = ∑
i

Yit (16)

Thus, Pst
Pit

= 1; substituting Equation (15), we can find:

MisXt =
Xit

Xst

Yst

Yit
(17)

When MisXt = 1, it means that there is no misallocation, while MisXt > 1 or MisXt < 1
means that there is a misallocation. This indicates that the larger the absolute value of the
difference between MisXt and 1, the greater the degree of resource misallocation. Therefore,
this paper uses |MisXt − 1| to indicate the degree of resource misallocation. Finally, we get
Mis = [Mis_L, Mis_N, Mis_M, Mis_F]. When Mis = 0, there is no resource misallocation;
when Mis > 0, there is a misallocation, and the greater the LnMis, the more serious the
misallocation.

2.2. Materials
2.2.1. Variable and Definition
Input and Output Variables

Measuring GTFP requires the use of expected output, unexpected output and input
variables, and the selection of relevant variables in this paper follows the existing literature.

Agricultural output. Many scholars divide output into expected output (Y) and
unexpected output (B). Expected output (Y): in this paper, total agricultural output is used
to measure output and deflated using the 1978 price index of primary industry output.
Unexpected output (B) mainly includes total phosphorus (TP), total nitrogen (TN) and
chemical oxygen demand (COD). This paper refers to Chen et al. [22], Han et al. [24], Han
et al. [25], Liu and Feng [26], Tang et al. [27], Zou et al. [28] and Qu et al. [29] for the unit
survey assessment method using inventory analysis for accounting.

Ej = ∑
i

EUij × ηij
(
EUij, S

)
= ∑

i
PEij × ρij × ηij

(
EUij, S

) (18)

where E is agricultural pollution emissions, EUi is the indicator statistic for unit i
(i = agricultural waste and fertilizer loss pollutants) pollutant j (j = TP, TN and COD),
ηij is the nutrient loss rate for unit i pollutant j, PEij is the amount of agricultural pollution
produced and ρij is the pollution production coefficient, mainly determined by the unit and
spatial characteristics that S determines.

Figure 1 depicts the generation process of agricultural non-point source pollution.
From 1978 to 2016, China’s total fertilizer-using increased by nearly six times [35], account-
ing for more than a 1/3 usage of global fertilizer, but the utilization rate was less than
half of the world average [36], and long-term excessive use of agrochemicals will not be
absorbed by plants to increase production but will lead to environmental pollution due
to the loss of fertilizer [36,37]. In addition, due to small-scale decentralized agricultural
operation, straw and waste fruits are difficult to be comprehensively utilized and will also
cause environmental pollution if discarded.
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For the pollution production coefficient of chemical fertilizer (ρij), this paper refers to the
work Chen et al. [38] in which the calculations are performed according to the chemical com-
position of fertilizer conversion: The TN pollution production coefficients of nitrogen fertilizer,
phosphorus fertilizer and compound fertilizer (the nutrient ratio of nitrogen, phosphorus and
potassium is 1:1:1) are 1, 0 and 0.33, respectively. The TP pollution production coefficients of
nitrogen fertilizer, potassium fertilizer and compound fertilizer are 0, 0.44 and 0.15, respectively.
For the loss rate of chemical fertilizer (ηij), this paper refers to Chen et al. [38] to determine the
results (see Table S1 in Supplementary Materials).

In order to ensure the integrity of the indicators and the quality of data, we refer
to Chen et al. [22], Han et al. [24], Han et al. [25], Liu and Feng [26], Tang et al. [27],
Zou et al. [28] and Qu et al. [29] who mainly consider straw produced by rice, wheat,
corn, oil crops, soybeans and potatoes and also the solid waste produced by vegetables.
Meanwhile, this paper refers to Chen et al. [38] to determine the pollution production
coefficient (see Table S2 in Supplementary Materials) and nutrient loss coefficient (see Table
S3 in Supplementary Materials) of different crops.

Agricultural input. Labor (N): In this paper, the number of people employed in agri-
culture is used as labor input, but as the available statistics do not distinguish the data on
agricultural employees from those employed in agriculture, forestry, and animal husbandry
and fishery, the total agricultural output value as a proportion of the total agricultural out-
put value of agriculture, forestry, and animal husbandry and fishery is used as the weight
in this paper to separate out the number of people employed in agriculture. Land (L): In
order to reflect the situation of replanting and replacing crops, this paper uses the total
sown area of crops. Machinery (M): In this paper, the total power of agricultural machinery
is used. Fertilizer (F): This paper expresses fertilizer input as the discounted amount of fer-
tilizer applied to agricultural production each year, including nitrogen fertilizer, phosphate
fertilizer, potash fertilizer and compound fertilizer.

2.2.2. Control Variables

The control variables in this paper include: rural population proportion (RPP), per
capita GDP (PGDP), population density (PD), environmental regulation (ER), technological
innovation (Patent) and foreign direct investment (FDI).

Rural population proportion (RPP): On the one hand, the shift of the rural population
will ease the tense human–land relationship in the countryside and contribute to the in-
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crease in total factor productivity in agriculture. On the other hand, the rural population
shift is only a result of China’s urbanization, and the encroachment of urban construction
on agricultural land will lead farmers to applying large amounts of chemical fertilizer in
order to increase food production on limited land, thus increasing agricultural surface
pollution [37]. Based on this, this paper uses the ratio of the rural population to the total
population at the municipal level as the rural population proportion (RPP) indicator. Per
capita GDP (PGDP): Existing studies generally use per capita GDP to express the level of
regional economic development and argue that higher levels of economic development
facilitate access to agricultural production factors and advanced agricultural technolo-
gies [37,39]. The population density (PD): Overpopulation in cities will cause problems,
such as over-consumption of resources, traffic congestion and occupation of arable land,
which will affect the ecological environment. In this paper, the number of people per square
kilometer is expressed. Environmental regulation (ER): Environmental regulation will
crowd out normal investment, and thus be detrimental to the competitiveness of a coun-
try’s industries. On the other hand, environmental regulation will stimulate technological
innovation, and the resulting technological innovation will contribute to green total factor
productivity. This paper is expressed in terms of the total number of environmental protec-
tion establishments at the end of the year. Technological innovation (patent): Technological
innovation is a key variable in resolving the contradiction between economic development
and environmental pollution [40] and has a positive impact on GTFP, which is expressed
in this paper as the number of domestic patent applications. Foreign direct investment
(FDI): FDI has a two-way impact on the green development of developing countries: On
the one hand, FDI can use developing countries as “pollution haven”, thus worsening
the environmental quality of the host country. On the other hand, FDI contributes to the
improvement of GTFP in the host country through technology spillovers and relatively
strict environmental standards, that is, the “pollution halo”. The variable definitions are
shown in Table S4 (see in Supplementary Materials).

2.2.3. Data Sources

The raw data in this paper come from the China Urban Statistical Yearbook, the China
County Statistical Yearbook, the China Statistical Yearbook, the China Rural Statistical
Yearbook and various local statistical yearbooks, and all of them can be found on the
EPSDATA website (https://www.epsnet.com.cn/index.html#/Index, accessed on 1 May
2020). Considering the missing data of some cities, the following methods are used in this
paper to ensure data coherence.

(1) Data at the county level were summed to the city level. (2) A linear fitting method
was used to fill in the missing values. (3) The provincial data were decomposed to the city
level based on the ratio of the city aggregate data to the province. (4) Samples that still
had missing values were removed. In addition, as the DEA measurement of GTFP is more
sensitive to abnormal data, this paper applies 1% tail reduction to the data before and after.
Finally, in order to preserve as much sample size and data quality as possible, we obtain
balanced panel data for a total of 6732 samples from 306 cities in China from 1996–2017. The
descriptive statistics of this paper are shown in Table S5 (see in Supplementary Materials).

3. Spatial Panel Model Test
3.1. Unit Root and Cointegration Tests

In order to avoid the spurious regression of the model due to the non-stationarity of
the data, this paper first conducted a panel unit root test on each variable. In this paper,
the IPS test [41] and Fisher test [42] are used to conduct the unit root test. The results are
shown in Table 1. All the variables are significant at a 1% significance level, indicating that
all the variables are stationary and there is no pseudo-regression problem.

https://www.epsnet.com.cn/index.html#/Index
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Table 1. Panel unit root tests results.

Variable IPS Test P Test Inverse
Normal Test Logit Test Modified P Test

GTFP −7.6441 *** 2031.9801 *** −29.2566 *** −30.9081 *** 40.5874 ***
LnMis_L −12.3208 *** 2246.0403 *** −31.7215 *** −34.4199 *** 46.7059 ***
LnMis_N −12.1691 *** 2229.5186 *** −31.5401 *** −34.1267 *** 46.2337 ***
LnMis_M −12.3316 *** 2327.0760 *** −33.0143 *** −35.8447 *** 49.0222 ***
LnMis_F −13.3892 *** 2322.1941 *** −32.8411 *** −35.8331 *** 48.8826 ***
LnRPP −16.6487 *** 3059.5790 *** −39.9604 *** −47.5250 *** 69.9594 ***

LnPGDP −16.9106 *** 3048.1963 *** −37.2356 *** −46.9011 *** 69.6340 ***
LnPD −24.1352 *** 2789.6737 *** −37.9656 *** −43.5162 *** 62.2447 ***
LnER −19.4832 *** 1854.5856 *** −26.1719 *** −27.6148 *** 35.5169 ***

LnPatent 2.8011 1366.4640 *** −20.3258 *** −19.6744 *** 21.5649 ***
LnFDI −12.0636 *** 1935.5231 *** −27.5660 *** −29.0614 *** 37.8304 ***

*** p < 0.01.

The Kao test [43], Pedroni test [44] and Westerlund test [45] are used to test for panel
cointegration. The Kao test is a homogeneous panel cointegration test, and the Pedroni test
and Westerlund test are heterogeneous panel cointegration tests. The results are shown in
Table 2. All the statistics are significant except for the Westerlund test, where LnMis_L and
LnMis_N are not significant at a 10% level of significance. To a large extent, this indicates
that we can reject the original hypothesis of “H0: no cointegration relationship”.

Table 2. Panel cointegration tests results.

Method
LnMis_L LnMis_N LnMis_M LnMis_F

Statistic p Statistic p Statistic p Statistic p

Kao test
Modified Dickey–Fuller t −11.092 0.000 −10.739 0.000 −10.691 0.000 −11.222 0.000

Dickey–Fuller t −12.948 0.000 −12.700 0.000 −12.655 0.000 −13.055 0.000
Augmented Dickey–Fuller t −18.191 0.000 51.831 0.000 62.361 0.000 56.242 0.000

Unadjusted modified Dickey–Fuller t −18.320 0.000 −17.814 0.000 −17.801 0.000 −18.400 0.000
Unadjusted Dickey–Fuller t −16.041 0.000 −15.764 0.000 −15.739 0.000 −16.113 0.000

Pedroni test
Modified Phillips–Perron t 21.781 0.000 21.823 0.000 21.867 0.000 21.727 0.000

Phillips–Perron t −14.018 0.000 −14.583 0.000 −13.882 0.000 −14.845 0.000
Augmented Dickey–Fuller t −11.025 0.000 −11.232 0.000 −10.469 0.000 −11.167 0.000

Westerlund test
Variance ratio 1.243 0.107 1.069 0.143 1.843 0.033 1.615 0.053

3.2. Multicollinearity Test

In this paper, the model is also tested for multicollinearity using the variance infla-
tion factor (VIF). The VIF is the ratio of the variance in the presence of multicollinearity
between the explanatory variables to the variance in the absence of multicollinearity. When
0 < VIF < 10, there is no multicollinearity; when 10 ≤ VIF < 100, there is strong multi-
collinearity; and when VIF ≥ 100, there is severe multicollinearity. As can be seen from the
results in Table 3, the mean value of VIF is 2.19, which is much smaller than 10, so there is
no need to worry about the existence of multicollinearity.
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Table 3. Multicollinearity test results.

Variable
LnMis_L LnMis_N LnMis_M LnMis_F

VIF 1/VIF VIF 1/VIF VIF 1/VIF VIF 1/VIF

LnMis 1.105 0.905 1.079 0.927 1.117 0.895 1.100 0.909
LnRPP 1.692 0.591 1.692 0.591 1.693 0.591 1.693 0.591

LnPGDP 1.368 0.731 1.366 0.732 1.365 0.732 1.368 0.731
LnPD 1.336 0.749 1.334 0.750 1.342 0.745 1.337 0.748
LnER 2.728 0.367 2.717 0.368 2.710 0.369 2.715 0.368

LnPatent 4.312 0.232 4.317 0.232 4.317 0.232 4.315 0.232
LnFDI 2.812 0.356 2.814 0.355 2.852 0.351 2.821 0.354

Mean VIF 2.193 2.189 2.199 2.193

3.3. Spatial Autocorrelation Test

The existing studies generally use Moran’s I index to test for univariate spatial au-
tocorrelation. According to You and Lv [46] and Anselin and Florax [47], a positive and
significant Moran’s I index indicates spatial clustering among the sample areas, while a
significantly negative Moran’s I index indicates spatial dispersion among the sample areas.

Table 4 shows the results of the spatial autocorrelation test for the GTFP of 306 cities
in China from 1996–2017. As can be seen from the second column, the Moran’s I index was
significantly positive at the 1% significance level from 1996–2017, with an overall value of
0.2767, indicating that there is a positive correlation between the GTFP of the region and the
neighbor regions. However, the Moran’s I index showed a predominantly downward trend.
It decreased from 0.3604 in 1996 to 0.1932 in 2017, indicating that the spatial clustering of
GTFP between the local region and the neighbors has weakened year by year.

Table 4. Global Moran’s I statistical indexes of 306 cities.

Year Moran’s I Expectation Std. Dev. z-Value p-Value

1996 0.3604 *** −0.00323 0.0260 13.8346 0.0000
1997 0.3826 *** −0.00323 0.0260 14.6998 0.0000
1998 0.3846 *** −0.00323 0.0260 14.8185 0.0000
1999 0.3344 *** −0.00323 0.0260 12.8724 0.0000
2000 0.3102 *** −0.00323 0.0259 11.9542 0.0000
2001 0.2985 *** −0.00323 0.0259 11.5063 0.0000
2002 0.3107 *** −0.00323 0.0260 11.9687 0.0000
2003 0.2333 *** −0.00323 0.0259 9.0131 0.0000
2004 0.2140 *** −0.00323 0.0259 8.2633 0.0000
2005 0.2309 *** −0.00323 0.0259 8.9097 0.0000
2006 0.2077 *** −0.00323 0.0259 8.0128 0.0000
2007 0.2348 *** −0.00323 0.0259 9.0466 0.0000
2008 0.2271 *** −0.00323 0.0260 8.7500 0.0000
2009 0.2354 *** −0.00323 0.0260 9.0678 0.0000
2010 0.2288 *** −0.00323 0.0260 8.8068 0.0000
2011 0.2400 *** −0.00323 0.0260 9.2372 0.0000
2012 0.2421 *** −0.00323 0.0260 9.3179 0.0000
2013 0.2167 *** −0.00323 0.0260 8.3387 0.0000
2014 0.2118 *** −0.00323 0.0260 8.1480 0.0000
2015 0.1831 *** −0.00323 0.0260 7.0435 0.0000
2016 0.1876 *** −0.00323 0.0260 7.2160 0.0000
2017 0.1932 *** −0.00323 0.0260 7.4336 0.0000

1996–2017 0.2767 *** −0.00323 0.0056 49.1922 0.0000
*** p < 0.01.

The Moran’s I test only describes the average level of spatial autocorrelation. If there
is positive spatial autocorrelation in some regions and negative spatial autocorrelation
in others, the two will cancel each other out, ultimately making the Moran’s I index an
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underestimate. Moran scatter map is used to further characterize the spatial autocorrela-
tion between each region for the years 1996–2000, 2001–2005, 2006–2010 and 2011–2017.
As can be seen from Figure 2, most of the regions are mainly clustered in the first and
third quadrants, indicating that there is high–high and low–low clustering of GTFP in
China, consistent with the aforementioned result that there is a significant positive spatial
autocorrelation between regions.
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3.4. Spatial Panel Model Diagnostic Test

To determine the fixed effect form of the model, the LR test is carried out, according to
Li et al. [48]. As known from Table 5, both spatial and time fixed effects are significant at the
1% significance level, but the spatial fixed effect statistic is undoubtedly larger. Therefore,
for the sake of making the empirical results more robust, the spatial fixed effect model is
used in the subsequent empirical evidence.

Table 5. Spatial and time fixed effects test results.

Test Statistics LnMis_L LnMis_N LnMis_M LnMis_F

Spatial fixed effect LR-test 9668.304 *** 9642.018 *** 9593.892 *** 9671.523 ***
Time fixed effect LR-test 620.769 *** 624.262 *** 617.416 *** 622.755 ***

*** p < 0.01.

In order to further determine which model is most suitable for SEM, SAR and SAREM,
it is necessary to perform (robust) LM lag and (robust) LM error tests. Table 6 shows
statistical tests based on the regression results of no fixed effect, spatial fixed effect, time
fixed effect, and two-way fixed effect in space and time. It can be seen from the results that
only the spatial fixed effect of LMLAG, R-LMLAG, LMERROR and R-LMERROR are all
significant at the 1% significance level. It means that the SAREM model should be used. At
the same time, it further shows that the use of the spatial fixed effect model is reasonable.
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Table 6. Spatial diagnostic test results.

Effect Variable LMLAG R-LMLAG LMERROR R-LMERROR

No fixed effect

LnMis_L 9.259 *** 40.444 *** 0.001 31.186 ***
LnMis_N 7.371 *** 38.699 *** 0.071 31.399 ***
LnMis_M 6.664 *** 36.615 *** 0.149 30.100 ***
LnMis_F 7.591 *** 36.874 *** 0.025 29.309 ***

Space fixed effect

LnMis_L 238.822 *** 184.617 *** 129.156 *** 74.952 ***
LnMis_N 236.288 *** 200.390 *** 124.005 *** 88.106 ***
LnMis_M 239.304 *** 185.106 *** 130.653 *** 76.455 ***
LnMis_F 246.030 *** 184.546 *** 135.612 *** 74.128 ***

Time fixed effect

LnMis_L 52.819 *** 5.950 ** 47.947 *** 1.079
LnMis_N 47.815 *** 4.350 ** 45.044 *** 1.580
LnMis_M 45.461 *** 5.287 ** 41.184 *** 1.010
LnMis_F 48.461 *** 4.131 ** 46.199 *** 1.869

Time-space fixed effect

LnMis_L 1.858 17.070 *** 0.228 15.440 ***
LnMis_N 1.424 30.476 *** 0.004 29.056 ***
LnMis_M 1.843 17.645 *** 0.246 16.048 ***
LnMis_F 2.137 13.866 *** 0.436 12.166 ***

*** p < 0.01, ** p < 0.05.

On the basis of clearly adopting the SAREM model, it is also necessary to determine
whether the SDM should be adopted according to the LR and Wald tests. It can be seen
from Table 7 that both LR and Wald tests reject the hypothesis of H0 : θ = 0, indicating that
the SDM should be used in this paper. In addition, the statistics of the Hausman test are all
significant at the 1% level, indicating that a fixed effect model should be used. Based on
the above model identification test, it is finally determined that this paper should adopt
the spatial Durbin model (SDM) that includes spatial lag and spatial error and, at the same
time, control the city fixed effect.

Table 7. LR, Wald and Hausman test results.

Test Statistics LnMis_L LnMis_N LnMis_M LnMis_F

Wald spatial lag 38.342 *** 39.811 *** 32.250 *** 45.317 ***
LR spatial lag 38.202 *** 39.657 *** 32.157 *** 45.115 ***

Wald spatial error 34.032 *** 35.705 *** 27.244 *** 41.846 ***
LR spatial error 33.804 *** 35.481 *** 27.097 *** 27.097 ***

Wald spatial lag and spatial error 43.956 *** 45.644 *** 38.603 *** 48.646 ***
LR spatial lag and spatial error 43.815 *** 45.470 *** 38.494 *** 38.494 ***

Hausman test 140.460 *** 186.880 *** 94.516 *** 108.440 ***
*** p < 0.01.

4. Results and Discussion
4.1. GTFP Depicts

The average annual growth rate of China’s agricultural GTFP from 1996 to 2017 was
0.58%, which is very close to the 0.49–0.63 measured by Chen et al. [22] and 0.55 measured
by Li et al. [49], indicating that the measurement results in this paper are robust. In
addition, this paper decomposes GTFP change into technical efficiency change (EFFCH)
and technological change (TECH). As can be seen from Figure 3, during the period of
1996–2017, EFFCH has shown a continuous upward trend and TECH has gone through
three stages of decline (1996–2003), rise (2003–2014) and plateau (2014–2017).
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The period 1996–2003 was a stage of decay, with an average growth rate of −1.9%,
mainly due to the significant deterioration in EFFCH and the lack of TECH. The reasons
mainly come from three aspects: Firstly, this paper uses sequential DEA, which does not
allow for technological decline and treats technological progress as a smooth process, thus
attributing all the reasons for the decline and sharp fluctuations in GTFP to technical
inefficiency and variability [31]. Secondly, numerous studies have shown that the lack
of agricultural technology diffusion in China, as well as the small-scale and fine-grained
farmland management pattern, are the primary factors contributing to the lack of GTFP
growth [36,50]. Thirdly, the reduction in the total sown area from 1998 to 2003 was due to
ecological restoration and farmland restructuring. The period 2003–2014 was a rising stage
of agricultural GTFP, with an average growth rate of 2.17%, mainly due to the upward
acceleration of TECH while EFFCH decay slowed. This was followed by an adjustment
phase from 2014–2017, with an average growth rate of 0.55%. This is mainly due to the fact
that TECH showed an upward levelling off during the period of 2014–2017, while EFFCH
did not improve sufficiently.

4.2. Benchmark Results

Table 8 shows the results of the benchmark regression. The variables (1)–(4) are
the regression results of the SAREM model and (5)–(8) are the regression results of the
SDM. As can be seen from the results, the coefficients of LnMis in (1)–(8) are negative
and significant at the 1% statistical level, indicating that the deterioration of resource
misallocation will significantly inhibit the increase in GTFP in agriculture. In terms of the
size of the coefficients, the regression coefficients of the SAREM model will underestimate
the negative effect of LnMis on GTFP. Based on this, only the regression results of SDM are
interpreted in the subsequent empirical evidence in this paper, namely, (5)–(8).
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Table 8. Benchmark model results.

Variable
(1) (2) (3) (4) (5) (6) (7) (8)

LnMis_L LnMis_N LnMis_M LnMis_F LnMis_L LnMis_N LnMis_M LnMis_F

LnMis
−0.054 *** −0.046 *** −0.041 *** −0.053 *** −0.060 *** −0.049 *** −0.041 *** −0.058 ***

(0.005) (0.006) (0.005) (0.005) (0.006) (0.006) (0.005) (0.005)

LnRPP
0.001 0.005 0.005 0.001 0.009 0.009 0.009 0.009

(0.005) (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.006)

LnPGDP
0.045 *** 0.041 *** 0.041 *** 0.044 *** 0.051 *** 0.051 *** 0.052 *** 0.050 ***
(0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) (0.005)

LnPD
−0.002 *** −0.005 *** −0.004 *** −0.002 *** −0.004 *** −0.004 *** −0.003 *** −0.003 ***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

LnER
−0.025 *** −0.050 *** −0.051 *** −0.025 *** −0.0003 −0.001 −0.009 −0.005

(0.007) (0.006) (0.006) (0.007) (0.015) (0.015) (0.015) (0.015)

LnPatent
0.019 *** −0.008 *** −0.008 *** 0.020 *** 0.014 0.017* 0.017 ** 0.016 *
(0.003) (0.002) (0.002) (0.003) (0.009) (0.009) (0.009) (0.009)

LnFDI
0.018 *** 0.011 *** 0.010 *** 0.019 *** 0.029 *** 0.027 *** 0.027 *** 0.031 ***
(0.004) (0.004) (0.004) (0.004) (0.008) (0.008) (0.008) (0.008)

W × Ln_Mis
0.003 0.028 ** −0.007 0.028 **

(0.014) (0.014) (0.013) (0.013)

W × LnRPP
−0.014 −0.014 −0.015 −0.014
(0.009) (0.009) (0.009) (0.009)

W × LnPGDP
−0.019 ** −0.017 ** −0.018 ** −0.015 **

(0.007) (0.007) (0.007) (0.007)

W × LnPD
−0.002 −0.001 −0.002 −0.002
(0.001) (0.001) (0.001) (0.001)

W × LnER
−0.060 *** −0.060 *** −0.050 *** −0.056 ***

(0.018) (0.018) (0.018) (0.018)

W × LnPatent
−0.016 * −0.020 ** −0.021 ** −0.019 **
(0.009) (0.009) (0.009) (0.009)

W × LnFDI
−0.025 *** −0.022 ** −0.021 ** −0.026 ***

(0.009) (0.009) (0.009) (0.009)

λ
−0.847 *** 0.698 *** 0.695 *** −0.850 *** 0.691 *** 0.700 *** 0.696 *** 0.693 ***

(0.041) (0.018) (0.018) (0.041) (0.019) (0.018) (0.019) (0.019)

ρ 0.782 *** −0.788 *** −0.775 *** 0.784 *** −0.766 *** −0.792 *** −0.779 *** −0.765 ***
(0.015) (0.045) (0.045) (0.015) (0.046) (0.045) (0.046) (0.046)

City Yes Yes Yes Yes Yes Yes Yes Yes

N 6426 6426 6426 6426 6426 6426 6426 6426

The parenthesis represents the standard error values, *** p < 0.01, ** p < 0.05, * p < 0.1.

In (5)–(8), the coefficients of LnMis (LnMis_L, LnMis_N, LnMis_M and LnMis_F) are
significantly negative, but the coefficients of W× Ln_Mis_N and W× Ln_Mis_F are sig-
nificantly positive. This suggests that whatever resource misallocation occurs, it will hinder
the achievement of green growth in agriculture in the region and also that the occurrence
of labor and fertilizer misallocation in the periphery has a significant contributing effect
on GTFP. However, it should be noted that because the regression coefficient contains a
feedback effect, that is, the influence of the local region on the surrounding regions, then
the surrounding regions have an adverse effect on the local region. Therefore, understand-
ing the marginal effect of resource misallocation on the impact of the local area requires
subsequent effect decomposition.

In addition, we find that the control variables also have an impact on agricultural GTFP.
The coefficients of LnRPP and W× LnRPP are positive, but neither is significant at the 10%
statistical level. According to Hu et al. [37], there is a substitution relationship between
labor and fertilizer, with farmers preferring to use fertilizer to secure food production when
there is a shortage of labor, and, conversely, increasing labor capital ratios will promote
progress in fertilizer-saving technologies, thereby improving agroecological conditions.
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However, excess agricultural labor will lead to land fragmentation and labor inefficiency
to the detriment of total factor productivity in agriculture. These two opposing forces
cancel each other out, making the effect of LnRPP on GTFP insignificant. The coefficient on
LnPGDP is positive and significant at the 1% statistical level, indicating that local urban
economic development can contribute to an increase in local agricultural GTFP. However,
W× LnPGDP is significantly negative, indicating that neighbor economic development has
a dampening effect on local GTFP. The coefficients of LnPD are all significantly negative,
indicating that any increase in local urban population density will significantly inhibit
the increase in agricultural GTFP. The coefficient of LnER is not statistically significant,
but the coefficient of W× LnER is significantly negative, indicating that an increase in the
intensity of environmental regulations in the local region cannot significantly contribute to
agricultural GTFP, while an increase in the neighbor intensity of environmental regulations
can negatively affect local agricultural GTFP in the local region. The coefficient of LnPatent
is positive, but the coefficient of W× LnPatent is significant, indicating that local technolog-
ical innovation can promote local agricultural GTFP. In contrast, technological innovation
in other regions significantly suppresses local agricultural GTFP. The coefficients for both
LnFDI and W× LnFDI are significant but in opposite directions. The former is positive
and the latter is negative. This indicates that the increase in local investment in the region
can effectively promote the increase in local agricultural GTFP. In contrast, the increase in
FDI in the neighbor regions will significantly reduce the local agricultural GTFP.

4.3. Robustness Test

To test the robustness of the estimation results, this paper uses a spatial weight matrix
based on the square of the inverse of the geographical distance:

WD = Wij =

{ 1
d2

ij
, i 6= j

0, i = j
(19)

where Wij is the weight of geographical distance between the center of region i and j and
dij is the linear distance, 1

d2
ij

is the reciprocal of the square of the linear distance between

two regions. When the distance between region i and region j is relatively close, the larger
is Wij, and the other is the smaller.

It can be seen from Table 9 that the coefficients of LnMis are significantly negative,
indicating that changing the spatial weight matrix did not affect the results of the key
variables in this paper. In other words, the benchmark results in this paper are robust. In
addition, in (1)–(4), the coefficient of W×LnMis is significantly positive at the 5% statistical
level, and the size of the coefficient has also increased. This is because the spatial geographic
distance weight matrix not only considers the influence of areas with common borders, but
also takes into account the influence of non-adjacent areas. For example, areas in the same
province but not adjacent to each other still have spatial spillover effects. This also shows
that compared with the spatial adjacency matrix, the spatial distance weight matrix can
more truly reflect the spillover effect between regions. Therefore, in the follow-up empirical
research, this paper mainly reports the results of the spatial distance weight matrix.
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Table 9. Robustness test results.

Variable
(1) (2) (3) (4)

LnMis_L LnMis_N LnMis_M LnMis_F

LnMis
−0.064 *** −0.050 *** −0.045 *** −0.064 ***

(0.006) (0.006) (0.005) (0.006)

W× LnMis
0.052 ** 0.074 *** 0.045 ** 0.076 ***
(0.022) (0.020) (0.019) (0.021)

λ
0.741 *** 0.747 *** 0.745 *** 0.739 ***
(0.024) (0.024) (0.024) (0.024)

ρ
−0.670 *** −0.685 *** −0.680 *** −0.665 ***

(0.053) (0.053) (0.053) (0.053)

Control Yes Yes Yes Yes

W × Control Yes Yes Yes Yes

City Yes Yes Yes Yes

N 6426 6426 6426 6426
The parenthesis represents the standard error values, *** p < 0.01, ** p < 0.05.

4.4. Effect Decomposition Results

The coefficients of the SDM do not directly reflect the marginal effects of the explana-
tory variables on the dependent variable [48] and need to be further decomposed into
direct, indirect and total effects. The direct effect represents the net effect of changes in the
local dependent on the local GTFP, the indirect effect represents the effect of changes in the
local dependent variable in other regions on the local GTFP and the total effect is the sum
of the direct and indirect effects.

As can be seen from Table 10, the coefficients of direct effects of LnMis are significantly
negative in (1)–(4), indicating that whatever resource misallocation occurs, it will signifi-
cantly inhibit the green growth of agriculture in the region. In terms of impact size, land
misallocation has the greatest negative impact, followed by fertilizer misallocation, labor
misallocation and machinery misallocation. The reason for this is that in a situation where
land is difficult to operate on a large scale, farmers are more inclined to secure yields by
applying excessive fertilizers, which not only makes fertilizer utilization inefficient [36]
but also degrades the agroecological environment [35,36,51,52]. The coefficients of indirect
effects of LnMis are all positive, but only the coefficient of (2) is statistically significant at
10%, indicating that the neighbor labor misallocation can significantly contribute to the
local GTFP. In recent years, with the large-scale transfer of rural labor to economically
developed regions, it is conducive to alleviating the contradiction between rural people
and land. However, the transferred labor is mainly young and middle-aged labor, which
will cause a labor shortage in the outflowing regions, which is not conducive to the local
agriculture development. On the contrary, for those places where labor is transferred, the
labor can contribute to the regional economic development. With the direct and indirect
effects offsetting each other, the coefficients of the total effects are insignificant.
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Table 10. Effect decomposition results.

Variable
(1) (2) (3) (4)

LnMis_L LnMis_N LnMis_M LnMis_F

Direct effect
−0.063 *** −0.048 *** −0.044 *** −0.062 ***

(0.006) (0.006) (0.005) (0.006)

Indirect effect
0.017 0.142 * 0.046 0.109

(0.083) (0.084) (0.071) (0.071)

Total effect
−0.046 0.094 0.002 0.047
(0.085) (0.086) (0.071) (0.074)

The parenthesis represents the standard error values, *** p < 0.01, * p < 0.1.

4.5. Heterogeneity Test

The differences in the economic development, the marketisation and the climate are
responsible for Chinese agricultural development’s obvious regional characteristics. In this
paper, the sample is divided into three sub-sample groups according to the eastern, central
and western parts of the country, in accordance with the usual practice of the academic
community, and the regressions are conducted separately.

As can be seen from Table 11, the coefficients of resource misallocation (LnMis_L,
LnMis_N, LnMis_M, LnMis_F) are significantly negative in the eastern, central and western
sample groups, indicating that the inhibiting effect of resource misallocation on GTFP does
not vary according to regional differences.

In Table 12, the direct effect of LnMis_L is significantly negative, indicating that land
misallocation can significantly reduce GTFP in the region. The direct and indirect effects
of LnMis_N, LnMis_M and LnMis_F are all significantly negative. It is noteworthy that
the indirect effects are smaller than the direct effects in the central and western regions,
except for the eastern region where the indirect effects are larger than the direct effects.
This indicates that GTFP in the eastern region is more susceptible to negative spillovers
from resource misallocation in other regions, while the central and western regions are
mainly affected by local resource misallocation. The reasons for this may come from the
following: Firstly, the degree of factor marketisation in the eastern region is relatively
higher, and the degree of resource misallocation is also lower; thus, the negative impact
of the local resource misallocation on the local total factor productivity is also relatively
smaller. Secondly, compared to the central and western regions, environmental regulations
are stricter in the eastern region, which can mitigate the negative impact of resource
misallocation on environmental pollution. Thirdly, agricultural non-point source pollution
is diffuse, and there is a strong spillover effect of resource misallocation on the agricultural
ecological environment in the other regions.

4.6. Geographical Distance Dynamic Test

Additionally, this paper uses 300 km as the benchmark to construct a spatial distance
weight matrix, and then measures the spatial spillover effect under different geographical
distance thresholds according to the increasing distance of 300 km.

As can be seen from Table 13, the coefficients of LnMis (LnMis_L, LnMis_N, LnMis_M
and LnMis_F) are all significantly negative, indicating that the negative effect of LnMis
on GTFP does not change depending on the spatial geographical distance. In terms of
coefficient magnitude, the coefficients of LnMis_L, LnMis_M and LnMis_F gradually
increase between 300–1500 km and then gradually decrease. The coefficients of WLnMis
(W× LnMis_L, W× LnMis_N, W× LnMis_M and W× LnMis_F) are all positive, and
the significance and size of the coefficients tend to increase with increasing distance. This
indicates that as the spatial distance increases, the more cities are included and the greater
the positive spillover effect of resource misallocation.



Int. J. Environ. Res. Public Health 2022, 19, 15718 18 of 23

Table 11. Heterogeneity test results.

Variable
(1) (2) (3) (4)

LnMis_L LnMis_N LnMis_M LnMis_F

Eastern

LnMis
−0.080 *** −0.033 *** −0.040 *** −0.067 ***

(0.011) (0.010) (0.009) (0.010)

W × LnMis
0.001 0.026 0.005 0.009

(0.021) (0.019) (0.020) (0.020)

λ
−0.552 *** −0.569 *** −0.556 *** −0.559 ***

(0.059) (0.059) (0.060) (0.059)

ρ 0.674 *** 0.673 *** 0.669 *** 0.676 ***
(0.029) (0.029) (0.029) (0.029)

City Yes Yes Yes Yes

N 2289 2289 2289 2289

Central

LnMis
−0.035 *** −0.049 *** −0.046 *** −0.048 ***

(0.010) (0.010) (0.010) (0.010)

W × LnMis
0.023 −0.014 0.026 0.010

(0.018) (0.020) (0.018) (0.018)

λ
0.504 *** 0.493 *** 0.504 *** 0.496 ***
(0.043) (0.044) (0.043) (0.044)

ρ −0.366 *** −0.351 *** −0.370 *** −0.356 ***
(0.069) (0.070) (0.068) (0.069)

City Yes Yes Yes Yes

N 2121 2121 2121 2121

Western

LnMis
−0.085 *** −0.063 *** −0.041 *** −0.078 ***

(0.010) (0.010) (0.008) (0.009)

W × LnMis
0.008 0.064 *** 0.017 0.050 ***

(0.019) (0.019) (0.015) (0.017)

λ
0.274 *** 0.294 *** 0.284 *** 0.262 ***
(0.065) (0.065) (0.070) (0.069)

ρ −0.101 −0.126 −0.105 −0.080
(0.083) (0.085) (0.089) (0.087)

City Yes Yes Yes Yes

N 2016 2016 2016 2016

The parenthesis represents the standard error values, *** p < 0.01.

Table 12. Heterogeneity tests: Effect decomposition.

Variable

Eastern Central Western

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Direct Indirect Total Direct Indirect Total Direct Indirect Total

LnMis_L
−0.084 *** 0.033 ** −0.051 *** −0.035 *** 0.009 −0.025 −0.086 *** −0.021 −0.107 ***

(0.011) (0.016) (0.014) (0.01) (0.032) (0.036) (0.01) (0.022) (0.026)

LnMis_N
−0.037 *** 0.032 ** −0.005 −0.054 *** −0.071 * −0.125 *** −0.060 *** 0.061** 0.000

(0.01) (0.015) (0.012) (0.011) (0.037) (0.042) (0.011) (0.024) (0.027)

LnMis_M
−0.043 *** 0.020 −0.022 −0.045 *** 0.005 −0.040 −0.040 *** 0.007 −0.033

(0.009) (0.014) (0.014) (0.011) (0.039) (0.044) (0.008) (0.022) (0.025)

LnMis_F
−0.072 *** 0.034 ** −0.038 ** −0.050 *** −0.027 −0.077 * −0.076 *** 0.038* −0.038

(0.011) (0.015) (0.015) (0.011) (0.037) (0.043) (0.011) (0.021) (0.024)

The parenthesis represents the standard error values, *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 13. Geographical distance dynamic test results.

Dis. (km) LnMis_L W × LnMis_L LnMis_N W × LnMis_N LnMis_M W × LnMis_M LnMis_F W × LnMis_F

300 −0.0607 *** 0.0111 −0.0477 *** 0.0244 ** −0.0436 *** 0.0171 −0.0604 *** 0.0375 ***
600 −0.0638 *** 0.0156 −0.0514 *** 0.0462 *** −0.0449 *** 0.0164 −0.0641 *** 0.0454 ***
900 −0.0642 *** 0.0234 −0.0517 *** 0.0533 *** −0.0452 *** 0.0262 * −0.0641 *** 0.0511 ***

1200 −0.0644 *** 0.0305 −0.0515 *** 0.0567 *** −0.0455 *** 0.0296 * −0.0644 *** 0.0553 ***
1500 −0.0646 *** 0.0399 ** −0.0512 *** 0.0615 *** −0.0457 *** 0.0363 ** −0.0647 *** 0.0646 ***
1800 −0.0644 *** 0.0449 ** −0.0509 *** 0.0643 *** −0.0456 *** 0.0403 ** −0.0645 *** 0.0698 ***
2100 −0.0641 *** 0.0466 ** −0.0505 *** 0.0653 *** −0.0453 *** 0.0414 ** −0.0642 *** 0.0717 ***
2400 −0.0641 *** 0.0487 ** −0.0503 *** 0.0672 *** −0.0452 *** 0.0421 ** −0.0641 *** 0.0734 ***
2700 −0.0639 *** 0.0498 ** −0.0501 *** 0.0689 *** −0.0451 *** 0.0427 ** −0.0638 *** 0.0743 ***
3000 −0.0638 *** 0.0506 ** −0.0500 *** 0.0706 *** −0.0450 *** 0.0436 ** −0.0637 *** 0.0751 ***
3300 −0.0637 *** 0.0510 ** −0.0500 *** 0.0718 *** −0.0449 *** 0.0442 ** −0.0637 *** 0.0753 ***
3600 −0.0637 *** 0.0513 ** −0.0500 *** 0.0725 *** −0.0449 *** 0.0445 ** −0.0636 *** 0.0754 ***
3900 −0.0637 *** 0.0517 ** −0.0501 *** 0.0734 *** −0.0449 *** 0.0450 ** −0.0637 *** 0.0758 ***
4200 −0.0637 *** 0.0518 ** −0.0501 *** 0.0739 *** −0.0450 *** 0.0453 ** −0.0637 *** 0.0759 ***
4500 −0.0637 *** 0.0518 ** −0.0501 *** 0.0739 *** −0.0450 *** 0.0453 ** −0.0637 *** 0.0759 ***

*** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 4 shows the trends in the direct, indirect and total effects. Where Figure 4a
shows the effect decomposition of LnMis_L, Figure 4b shows the effect decomposition of
LnMis_N, Figure 4c shows the effect decomposition of LnMis_M and Figure 4d shows the
effect decomposition of LnMis_F. As can be seen from the figure, the direct effect is almost
parallel to the horizontal axis, which is largely due to the fact that the calculation of the
direct effect is mainly determined by the coefficients of LnMis and has little to do with the
spatial distance weight matrix. In contrast, the indirect effect rises with increasing spatial
distance, thus driving the total effect to also show an upward trend. This corroborates the
above inference that the positive spillover effect of resource misallocation increases with
increasing spatial distance and the number of cities included.
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5. Conclusions

This paper empirically examines the spatial spillover effects of resource misallocation
affecting agricultural GTFP, based on balanced panel data from 306 cities in China from
1996–2017 using a spatial panel model. The main findings of this paper are summarized
as follows.

Firstly, Chinese agricultural GTFP is generally characterized by a “U” shaped change,
with a decline (between 1996–2003) followed by an increase (between 2003–2017). Secondly,
local resource misallocation hinders the achievement of green growth in agriculture, but
labor misallocation in neighbor regions has a significant contribution to GTFP. The hetero-
geneity test results show that GTFP in the eastern region is more susceptible to negative
spillovers from resource misallocation than in other regions, while the decline in GTFP
in the central and western regions is noted to be affected by resource misallocation in
the region. Finally, the negative effect of local resource misallocation on GTFP does not
change depending on spatial geographical distance. In contrast, the indirect effect rises
with increasing spatial distance, thus driving the total effect to also show an upward trend.

Based on the above conclusions, the policy implications of this paper are as follows.
(1) Chinese government should strengthen agricultural green technology innovation and
diffusion. The empirical results show that Chinese agricultural technological progress has
shown a continuous upward trend, but the technical efficiency has always been in a deteri-
orating trend, thus leading to the weak growth of Chinese agricultural GTFP. Therefore,
while the Chinese government should increase the research and development of green tech-
nologies in agriculture, it should also strengthen the promotion of green technologies and
enhance the training of farmers to apply the new technologies in agricultural production.
(2) Chinese government should strengthen environmental regulation. In this paper, the
excessive use of chemical fertilizer and improper disposal of agricultural straw are the main
causes of environmental pollution. Tang et al. [53] argued that non-point source pollution
caused about 6% of agricultural GDP loss. Based on this, on the one hand, the Chinese
government should strengthen the propaganda and technical guidance on scientific fertil-
izer application and promote soil testing and formula technology. On the other hand, local
governments in China should stop the burning and abandonment of agricultural straw
and introduce new technologies for the comprehensive use of agricultural straw, such as
feed and organic fertilizer. (3) Chinese government should promote the free movement
of labor between regions and sectors. In this paper, resource (labor, land, machinery and
fertilizer) misallocation will inhibit the agricultural GTFP. Therefore, it is urgent to correct
the misallocation and promote the effective allocation of resource and factors. Among them,
labor is the most important input, because if the rural and agricultural sectors gather a large
amount of labor, it will not only lead to labor misallocation but also make it impossible
to transfer and concentrate the cultivated land, achieve a large-scale operation, and then
cause the misallocation of land, machinery and fertilizer. On the one hand, the Chinese
government should eliminate the urban–rural dual structure, realize the equalization of
urban and rural public services, and promote the flow of rural surplus labor to cities; on
the other hand, the Chinese government should strengthen skills training in rural areas, so
that farmers have the skills required to engage in non-agricultural work.

This paper has some limitations, which are as follows: Firstly, in the research sample,
this study uses city data, which can directly reflect the temporal and spatial differences of
agricultural resource misallocation and GTFP. However, the city data will smooth out the
differences in farmers’ preference factors, and it is difficult to reveal the micro-mechanisms
that the effect of resource misallocation will have on GTFP. In the future, sample data at
the level of farmers or agricultural products can be used to explore in depth the micro-
mechanism. Secondly, the Chinese government promises to strive to achieve peak CO2
emissions by 2030 and carbon neutrality by 2060. Although industry is the source of
greenhouse gases, rapid development of agriculture also plays an important role, and the
carbon emissions caused each year should not be underestimated. In the future, we will
consider the relationship between resource misallocation and agricultural carbon emissions.
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