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Abstract: Transportation is the main carrier of population movement, so it is significant to clarify how
different transportation modes influence epidemic transmission. This paper verified the relationship
between different levels of facilities and epidemic transmission by use of the K-means clustering
method and the Mann–Whitney U test. Next, quantile regression and negative binomial regression
were adopted to evaluate the relationship between transportation modes and transmission patterns.
Finally, this paper proposed a control efficiency indicator to assess the differentiated strategies. The
results indicated that the epidemic appeared 2–3 days earlier in cities with strong hubs, and the
diagnoses were nearly fourfold than in other cities. In addition, air and road transportation were
strongly associated with transmission speed, while railway and road transportation were more
correlated with severity. A prevention strategy that considered transportation facility levels resulted
in a reduction of the diagnoses of about 6%, for the same cost. The results of different strategies
may provide valuable insights for cities to develop more efficient control measures and an orderly
restoration of public transportation during the steady phase of the epidemic.

Keywords: transportation modes; transmission pattern; quantile regression; negative binomial regression;
control efficiency

1. Introduction

Coronavirus disease 2019 (COVID-19) was first detected in Wuhan, Hubei Province of
China, at the end of 2019. The human-to-human transmission nature of the virus was officially
announced by the government on 20 January 2020. Three days later, the central government
of China imposed a lockdown in Wuhan to quarantine the center of the epidemic. Public
transportation services were severely restricted in Wuhan at that time, including the closure
of train stations, airports, and major highways. However, an estimated 5 million people
were reported to have left Wuhan before the implementation of the lockdown, to celebrate
the Lunar New Year, resulting in rapid spread of the virus throughout the country [1]. As
one of the major transportation hubs in China, Wuhan is well connected to many other
cities [2]. It has been universally demonstrated that population movement is a major factor
that influences the spread of this kind of infectious disease, with outflows from Wuhan
playing a key role [3].

Previous studies have evaluated the relationship between the spread of COVID-19
and air transportation [4–6], railway transportation [7–9] and road transportation [1,10].
Nevertheless, the existing studies have not clarified the mechanism of how different trans-
portation modes affect epidemic transmission. Therefore, it is crucial to understand how
different transportation modes contribute to epidemic transmission, and, thus, more rea-
sonable traffic restriction strategies can be proposed.
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The main contributions of this paper are reflected in the following aspects: (1) to reveal
the correlation between levels of transportation facilities and epidemic transmission, we em-
ployed K-means clustering with Mann–Whitney U testing; (2) before clarifying the degree
of impact, we first quantified the role of different transportation modes in the transmission,
by two indicators (i.e., transmission speed and pandemic severity), and then fit them
by quantile regression and negative binomial regression, respectively; (3) we examined
the implementation effect of prevention strategies considering transportation modes and
facilities levels in order to provide a scientific foundation for urban epidemic prevention.

The remainder of the paper is organized as follows: Section 2 discusses the related litera-
ture. Section 3 provides the collected data and describes the modelling approach. Section 4
reports the results. Section 5 proposes the related prevention strategies. Section 6 presents the
discussion. Conclusions are drawn in Section 7.

2. Literature Review

The world has been hit by several infectious diseases this century, including SARS, H1N1,
MERS and COVID-19. Many academics are interested in how transportation affects the trans-
mission of infectious diseases. Air transportation was found to accelerate the transmission of
SARS significantly [4]. Additionally, accessibility to the airline network substantially impacted
the spread speed of SARS [4,6,11]. Chang et al. [11] verified the relationship between H1N1
and air transportation. The H1N1 virus is more contagious in locations near national roads
and highways than it is in other parts of the country [12]. The severity of impact of the H1N1
virus also varies by transportation modes at different stages of transmission [10]. Since
COVID-19’s epidemiological traits differ greatly from those of infectious diseases such as
SARS and H1N1, some researchers have conducted further studies. Liu et al. [13] proposed
that the COVID-19 pandemic posed significant challenges to public transport operators.
Thus, some scholars conducted targeted studies for different transportation modes. Zhao
et al. [7] discovered a significant correlation between railway transportation and epidemic
spread. A study by Wan et al. [9] confirmed that railway systems accelerated epidemic
transmission. In addition, Chen et al. [8] constructed a cities’ network in Northeast China
and employed the spreading dynamics model to simulate the spread of infectious diseases
based on the data of Baidu Migration. Oztig et al. [14], Liu et al. [5], and Colizza et al. [15]
studied the role of air transportation in epidemic transmission. They discovered a strong
connection between flight volume and the number of confirmed cases. In addition, curtail-
ing flights was a crucial component of containing epidemic spread. Further, Zhu et al. [16]
discovered that railway transportation had a greater impact than air transportation. Road
transportation was considered in research by Zhang et al. [1] and Lu et al. [17]. They pointed
out that air and railway transportation had a particularly significant impact on epidemic
spread compared to road transportation. Additionally, the “counterfactual” concept was
also employed by some researchers to examine the relationship between transportation
modes and epidemic spread [18,19]. The above studies have demonstrated the differential
impact of various transportation modes on epidemic spread. However, the extent of this
effect has not been quantified, especially under multiple transportation modes.

Researchers have looked further into the link between urban transportation facilities
and epidemic spread. Browne et al. [20] concluded from overall findings that airports are
highly susceptible to epidemic. By simulating the spread of epidemic through transporta-
tion hubs, Xu et al. [21] illustrated the significance of these hubs in epidemic transmission.
According to Gaskin et al. [22], areas closer to transit stops had higher case numbers and
fatality rates. Kutela et al. [23] sought to explore the long-term impact of COVID-19 on
transportation facilities. They found that responses instituted for economic recovery and
public health were less likely to be long-term, while responses meant to improve safety or
bicycle/pedestrian mobility were more likely to be long-term. Most of the previous studies
defined transportation facilities as the presence of transportation stations within the city.
However, neither the transportation volume nor the function of transportation facilities
has been considered. Thus, it is not possible to develop differentiated prevention strategies
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according to the level of transportation facilities. This paper attempts to address the issues
by identifying key transportation hub cities that influence epidemic transmission, as well
as evaluating the implementation effect under diverse prevention strategies.

This paper describes the epidemic spread pattern and creates regression models from
two perspectives: speed and severity. Due to discrepancies in the evaluation dimensions
of the above two indicators, different regression methods needed to be selected. Standard
ordinary least squares (OLS) regression only reflects the conditional mean, as well as
requiring stricter distribution of the dependent variable. Due to significant variability in
the transmission speed of the epidemic disease in different cities, OLS regression models fit
poorly [17]. Another commonly used model is the proportional hazards model (COX). It is
applied to continuous variables such as survival status and survival time, but is a poor fit
for discontinuous variables such as transmission speed [22]. Quantile regression estimates
the independent variable based on the conditional quantile of the dependent variable. It can
achieve an accurate fit to the full range of dependent variables [24]. Therefore, this paper
adopted quantile regression to quantify the influence of different transportation modes on
the transmission speed. The regression for transmission severity is a counting regression
problem. The typical counting regression model is the Poisson regression model, but due
to issues such as data complexity, it is challenging to obtain precise findings in practical
situations [14]. Hence, we utilized a generalized model of the Poisson regression model,
i.e., negative binomial regression model, to overcome these problems. Table 1 demonstrates
the synthesizing papers on research topics.

Table 1. Comprehensive papers on research topics.

Categories Subjects Epidemic Findings References

Influence of
transportation modes on
epidemic transmission

Air transportation

SARS

(a) Airline network accessibility
was a vital variable in
determining the spread of SARS;

(b) The larger the throughput of the
airport city in the Chinese
aviation network, the stronger
the spreading ability of the node
as the source of infection.

[4,6]

H1N1

The results confirmed that there was a
definite relationship between H1N1

and air travel. Additionally, the
prevention measures were effective in

containing the spread of virus.

[11]

COVID-19

(a) The findings suggested a
positive relationship between
higher volume of airline
passenger traffic carried in a
country and higher numbers of
patients with COVID-19;

(b) The study provided concrete
evidence that the severe
curtailing of flights had a
spontaneous impact in
controlling the spread of
COVID-19;

(c) The air transportation
networkproperties were
responsible for the global
pattern of emerging diseases.

[5,13,14]
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Table 1. Cont.

Categories Subjects Epidemic Findings References

Influence of
transportation modes on
epidemic transmission

Railway
transportation COVID-19

(a) The results indicated that the
prevalence of COVID-19
infection was 40% higher in
cities connected to Wuhan with
HSR than in the rest of the cities;

(b) The epidemic mainly spread
along the axis of “Three
Horizontal and One Vertical”
with population flow.

[8,9]

Air, railway and road
transportation

H1N1

(a) Proximity to airports and being
intersected by national
highways or freeways, but not
railways, were variables
associated with the presence of
the disease in a county;

(b) Both air and road travel played a
significant role in accelerating
the spread during phases I and
II, but rail travel was only
significant during phase II.

[10,12]

COVID-19

(a) There was strong and significant
association between travel by
train and the number of cases;

(b) The findings demonstrated that
high-speed rail and air
connectivity with Wuhan
resulted in 25.4% and 21.2%
increases in the average number
of daily new confirmed cases,
respectively;

(c) The outcomes suggested that
frequencies of air flights and
high-speed train services out of
Wuhan were significantly
associated with the number of
COVID-19 cases in the
destination cities;

(d) The results indicated that the
most effective way to prevent
the coronavirus from spreading
quickly and extensively was to
control the routes linked to the
epicenter at the beginning of the
pandemic.

[1,7,15,16]

The role of transportation
facilities in epidemic

transmission

Airports SARS Airports were highly susceptible to
the epidemic, from overall findings. [20]

Transit stops

COVID-19

Areas closer to transit stops had
higher case numbers and fatality rates. [22]

All transportation
facilities

The findings showed that responses
instituted for economic recovery and

public health were less likely to be
long-term.

[23]
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3. Materials and Methods
3.1. Research Region

This paper focuses on the volume of air, railway, and road transportation from Wuhan
to other cities during the initial phase of the epidemic outbreak. After excluding cities with
no confirmed cases in the studied duration or with missing data, 310 cities were eventually
selected as the research region. The daily confirmed cases and the cumulative confirmed
cases were collected from 11 January to 28 April 2020. Figure 1 shows the temporal and
spatial distribution of COVID-19 in China.
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Since the emergence of COVID-19 in Wuhan, confirmed cases have emerged in various
cities in China. The cumulative number of confirmed cases displays an “S-curve” growth
pattern (Figure 1a). According to Ai et al. [2], more than 5 million people left Wuhan
between 10 January 2020 and the commencement of the lockdown. By 31 January, the
disease had spread to approximately 300 cities, following an east-to-west evolutionary
trend (Figure 1b). One of the main factors contributing to the epidemic spread was the
outflow from Wuhan. Thus, tracking people from Wuhan was an essential task for each
city, to contain the transmission. This paper mainly focused on the epidemic data from
11 January to 29 February 2020 due to the fact that more than 90% of the cases at that time
had a history of travel to the epicenter [1]. Although community transmission had started
to occur between 20 February and 29 February, the overall percentage was relatively small.
This paper employed robustness testing to prevent the impact of this small-scale data on
the fluctuation of the results.

3.2. Data Sources

In this paper, three transportation modes were mainly considered, i.e., air, railway
and road. The flight data were from the OAG database. The railway data were from the
China Train Time Query website (https://qq.ip138.com/train, accessed on 8 May 2022).
The road data were from the China Bus Schedule Query (https://www.keyunzhan.com/
qicheshikebiao, accessed on 8 May 2022). The daily confirmed cases and the cumulative
confirmed cases were obtained from the National Health Commission of China and the
provincial health commissions.

3.3. Definition of Epidemic Transmission Patterns Indicators

To reflect the epidemic transmission pattern more accurately, two indicators are de-
fined in this paper for measurement of the transmission pattern.

https://qq.ip138.com/train
https://www.keyunzhan.com/qicheshikebiao
https://www.keyunzhan.com/qicheshikebiao
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(1) Transmission speed: the number of days between the announcement of the first
confirmed case of COVID-19 in Wuhan (11 January 2020) and the first confirmed case
in that city (Equation (1));

(2) Transmission severity: the cumulative number of confirmed cases in a given city (until
the end of February 2020) (Equation (2)).

vi = ti − t0 (1)

si =
T

∑
1

m1 + m2 + · · ·+ mT (2)

where vi and si denote the transmission speed and severity in city i, respectively; t0 and ti
denote the time of the first confirmed case in Wuhan and the time when the first confirmed
case appeared in city i, respectively; and mT is the number of confirmed cases in city i on
day T.

3.4. Classification of Transportation Facilities and Inspection Methods

(1) K-means clustering algorithm

The simplicity and effectiveness of the K-means clustering method outweigh its
drawback, which is the need for pre-determined K values. The fundamental principle of
K-means clustering is to calculate the distance between each data point and each cluster
center after selecting initial K cluster centers at random, and then placing each data point
in the closest cluster center [25].

The specific process of the algorithm is as follows:
Step 1: Initialize a partition randomly or based on some prior knowledge. Calculate

the cluster prototype matrix M =
[
m1 . . . mk

]
.

Step 2: Assign each object in the data set to the nearest cluster.
Step 3: Recalculate the cluster prototype matrix based on the current partition.
Step 4: Repeat steps 2–3 until there is no change for each cluster.
The process will continue until the termination condition is satisfied. The distortion func-

tion can be used to determine the change in cost resulting from each iteration (Equation (3)).

J(x1, x2, · · · xm; µ1, µ2, · · · µK) =
1
m

m

∑
i=1

(
xi − µc(i)

)2
(3)

where x represents data points, µ represents the cluster centres, and µc(i) represents the
nearest cluster centroid.

Analogously to the algorithm in this paper, we counted and categorized the number
of transportation facilities (i.e., airports, railway stations, and bus stations) in 310 cities in
terms of transportation volume and socio-economic characteristics (i.e., population, GDP).

We first gave the convergence for different K values under the same convergence
condition and found that the algorithm was more likely to reach convergence at a K value
of 2. Table 2 shows the iterative results. Meanwhile, according to previous studies on
the impact of different transportation facilities on epidemic transmission [1,10,26], the K
value was set to 2 generally. Thus, we set the K value to 2 comprehensively. The K-means
clustering algorithm was implemented in SPSS version 23.0.
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Table 2. Iterative results.

Iteration

Change of Clustering Center

K = 2 K = 3 K = 4

1 2 1 2 3 1 2 3 4

1 282.861 472.872 197.474 190.283 223.367 126.837 44.238 72.258 157.254
2 16.424 119.873 2.135 25.949 87.703 11.968 94.562 3.557 43.450
3 9.339 58.619 5.356 22.958 22.871 0.907 47.560 3.904 44.634
4 1.674 11.558 6.477 28.990 44.285 0.000 37.307 7.528 23.667
5 4.910 32.456 6.246 21.258 19.936 0.907 26.226 6.446 22.286
6 3.243 19.649 3.064 7.354 0.000 0.876 26.038 6.098 19.781
7 0.000 0.000 3.008 12.162 20.092 0.881 33.784 15.498 0.000
8 / / 2.974 11.754 18.702 1.739 9.610 7.484 0.000
9 / / 1.971 4.409 0.000 1.690 5.149 4.876 0.000
10 / / 1.965 4.312 0.000 2.520 0.000 4.035 0.000

As can be seen from the table, convergence was achieved when the clustering centers
did not change after 7 iterations. This demonstrated that convergence could be reached
faster for a value of K of 2. Therefore, this paper divided different transportation facilities
into two categories.

(2) Mann–Whitney U test

To assess the effect of the level of transportation facilities on epidemic transmission,
further testing of the data from both groups was required. Conventional parametric tests
such as t-test are mainly applied to single-group data tests. Moreover, the data distribution
must satisfy normality and variance chi-square [27]. Therefore, we verified the normality
of the data using the Kolmogorov–Smirnov test. The statistical results indicated that the
data did not follow a normal distribution because they were significant at the 1% level.
Thus, the Mann–Whitney U test with 95% confidence level was chosen to investigate the
correlation between the level of transportation facilities and epidemic transmission.

The procedure for this test is as follows.
Step 1: Mix the two sets of data and arrange the ranks in order of size. The smallest

data rank is 1, and so on.
Step 2: Find the rank sum of the two samples separately W1, W2.
Step 3: Calculate the Mann–Whitney U test statistic for the two samples (i.e., n1, n2),

respectively (Equations (4) and (5)).

U1 = n1n2 +
n1(n1 + 1)

2
− W1 (4)

U2 = n1n2 +
n2(n2 + 1)

2
− W2 (5)

Choose the smaller of U1 and U2, then compare with the critical value UA. When
U < UA, reject H0 and accept H1.

Step 4: Make a judgement.

3.5. Modelling the Impact of Transportation Modes on the Epidemic Transmission
3.5.1. Epidemic Transmission Patterns

(1) Transmission speed

Figure 2 illustrates how closely the amount of transportation leaving Wuhan is re-
lated to the transmission speed of the epidemic. Overall, the epidemic occurred early in
cities near Wuhan, mostly because road transportation is crucial to epidemic transmission
(Figure 2c). Roads such as the Wu-Huang Expressway and the Han-Cai Expressway en-
abled the epidemic to spread across cities in Hubei Province earlier. Around 15% of the
total road transportation volume is comprised of road transportation between Wuhan and
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Huanggang. However, cities far away from Wuhan (e.g., Shenzhen, Beijing, Shanghai,
Chengdu, etc.) experienced the epidemic within a short period of time (approximately 7–9
days) due to air and railway transportation (Figure 2a,b). Due to Wuhan’s share of air and
railway transportation volume being up to 25% and 30%, respectively, with such cities, the
epidemic quickly expanded to those locations.
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(2) Transmission severity

As can be seen in Figure 2, the more cumulative diagnoses there were, the more
tightly Wuhan was connected to that city by transportation. The cities with frequent air
transportation are in the Beijing–Tianjin–Hebei region, the Pearl River Delta region, etc. This
demonstrates that the epidemic is more likely to spread to megacities via air transportation
(Figure 2d). Wuhan is situated at a significant node of China’s high-speed railway system
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(Figure 2e), which provides fast access to many cities. This is also in line with the epidemic
spread pattern identified by Cui et al. [28]. Cities with more road transportation are
mostly concentrated in Hubei Province, which indicates that road transportation plays an
important role in short-distance transmission.

3.5.2. Regression Modelling of the Transmission Speed and Severity

(1) Quantile regression

Previous studies have shown the variability in the timing of the occurrence of the first
confirmed cases in different cities. Therefore, it was necessary to study the extent to which
different transportation modes affected the transmission speed. Common conditional mean
regression is more demanding on the data set itself, as it requires the dependent variable to
adhere to conditions such as normal distribution. Additionally, it is prone to interference
from outliers. Quantile regression is an extension of traditional linear regression, which
can accurately fit the complete distribution of the dependent variable [29], and this model
is more robust to outliers [24]. Therefore, we utilized a quantile regression model to clarify
the influence of different transportation modes on the epidemic transmission.

Separate fits were performed for the interquartile point range of 0.05–0.95 to carefully
measure the variation in impact (0.1 per interval). Sajadi et al. [30] showed that COVID-19
virus is more likely to spread in cities between 30◦ N and 50◦ N. Accordingly, city latitude
and longitude coordinates were also included as covariates. The final model variables were
determined as shown in Table 3. Considering that the orders of magnitude of population
and GDP were much larger than other variables, we referred to the method in the existing
studies [1,14] to obtain their logarithms to avoid their error on the model fit.

Table 3. Variable properties.

Variable Sample Size Symbols Average Value Standard
Deviation

Minimum
Value

Maximum
Value

Population 310 x1 15.06 0.73 12.51 17.35
GDP 310 x2 25.95 0.96 23.03 28.97

Air transportation volume 310 x3 0.95 2.70 0 17
Railway transportation volume 310 x4 7.78 27.08 0 215

Road transportation volume 310 x5 37.48 178.34 0 1799
Number of airports 310 x6 0.65 0.67 0 4

Number of railway stations 310 x7 9.38 10.52 0 83
Number of bus stations 310 x8 7.59 5.51 1 52

Longitude 310 x9 113.17 7.97 80.27 131.16
Latitude 310 x10 32.80 6.82 18.25 52.34

Time of first diagnosis 310 v 13.89 3.55 8 34
Cumulative number of confirmed cases 310 s 97.41 316.70 1 3427

We developed a multivariate quantile regression model to estimate the association
between the quantile of the epidemic transmission speed and different transportation
modes in each city (Equation (6)).

Qt(yi) = β0(t) + β1(t)× lnx1 + β2(t)× lnx2 + β3(t)× x3 + β4(t)× x4
+β5(t)× x5 + β6(t)× x6 + β7(t)× x7 + β8(t)× x8
+β9(t)× x9 + β10(t)× x10

(6)

where yi denotes the time of first confirmed cases in different cities (i = 1, 2, · · · 310); t
denotes the different quantile points; β0(t) denotes the intercept at different quantile points;
and β2(t), · · · β10(t) is the regression coefficient at different quantile points.

(2) Negative binomial regression

We were also interested in the effect of each variable on the transmission severity.
However, the essence of the problem was to build a count-based regression model. The basic
count regression model is the Poisson regression model. Practical issues can be challenging
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to match with the count regression model due to problems such as data complexity [31].
To build the model, the variance of the data must equal the mean value, which is often
challenging to meet in real situations. Furthermore, the regression line deviates more from
reality when the ratio between the variance and the mean is high, resulting in excessive
observational heterogeneity [32].

To analyze the variation in the cumulative number of confirmed cases across cities, we
adopted the negative binomial regression model. This model is based on the initial Poisson
distribution by introducing the Gamma distribution. We selected this method since the
variance of dependent variable was greater than the mean (Table 3). Thus, it was applicable
to solve this problem.

To ascertain whether the model was applicable, we first performed an over-discrete O
test on the data. The test results are displayed in Table 4.

Table 4. Overdispersion O Test.

Sample Size Average Variance O-Value p-Value

310 97.4065 100,295.7954 12,786.0753 0.000

The findings of the test evidently showed that the data were too discrete because the
absolute value of O value was more than 1.96 (p-value less than 0.05). Thus, the negative
binomial regression model was adopted to overcome the problem of discrete data. The
modelling process is explained as follows.

P(Yi = yi) =
µ

yi
i exp(−µi)

yi!
(7)

where P(·) demonstrates the probability of Y confirmed cases observed in city i over a
specified period (until 29 February); yi can take the values 0, 1, 2, · · · ; and µi denotes the
expected infected frequency for city i.

As a function of the variables in the regression model, the µi parameter is estimated as
follows.

ln(µi) = xT
i β (8)

where β is a vector of estimated coefficients of exploratory variables including the men-
tioned variables in Table 3. A vector of coefficients is then estimated by maximizing the
likelihood function.

lnL(β) = ∑
i

[
−exp

(
xT

i β
)
+
(

xT
i β
)

yi − lnyi!
]

(9)

The least squares estimation for the negative binomial regression model has a signif-
icant error rate [32]. Therefore, the Gauss–Newton iterative algorithm was used for the
maximum likelihood estimation. The core idea of the Gauss–Newton iterative method is to
use the Taylor series expansion to approximate the nonlinear regression model instead. This
allows the regression coefficients to approximate the best nonlinear regression coefficients.

The least squares method is used to directly solve the system of equations in order to
obtain the optimal solution. However, it is frequently challenging to put into practice in real
settings. In contrast, the more popular Gauss–Newton method iteratively approaches the
ideal answer step by step. In addition, the least squares method is generally only applicable
to linear regression.

A high variance-to-mean ratio is frequently caused by heterogeneity among obser-
vations, resulting in overdispersion. The Poisson regression assumption is relaxed by
including an additional randomness term in Equation (8) which is gamma-distributed.

ln(µi) = xT
i β + εi (10)
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where εi follows gamma distribution with mean µi and variance α. The NBR distribution
has a mean µi and variance µi + αµi

2, where α is the overdispersion parameter. The model
for analyzing the variation of the dependent variable is proposed as follows.

ln(s) = β0 + β1 × (lnx1) + β2 × (lnx2) + β3 × x3 + β4 × x4 + β5 × x5
+β6 × x6 + β7 × x7 + β8 × x8 + β9 × x9 + β10 × x10

(11)

where β0 represents the intercept of the negative binomial regression model; and β1, β2, · · · β10
represents the regression coefficient of the corresponding variable.

4. Results
4.1. Division of Transportation Hubs

Figure 3 displays the clustering and classified results for airports, railway stations,
and bus stations using the division method in Section 3.5.
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The strong hubs were located mainly in the eastern region and roughly bordered by
the Hu Huanyong line (i.e., a comparison line proposed by geographer Hu Huanyong
to classify the population density of the country).The weak hubs were scattered in small
and medium-sized cities in various provinces. Combined with the spatial distribution of
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the epidemic (Figure 2), it can be found that cities with strong hubs reported the first case
earlier, and had a higher cumulative number of confirmed cases.

Compared to the strong airport hubs, strong hubs of railway and bus stations were
much more densely distributed. Nearly 36% of cities have train stations which were
classified as strong hubs, while the number for bus stations and airports were 23% and 11%,
respectively. Mostly in megacities with a population of 10 million or more, airports that
were classified as strong hubs are shown in Figure 3a with a dotted distribution pattern.
This allowed the epidemic to spread from Wuhan to distant provinces via air transportation.
The railway stations that were classified as strong hubs demonstrated dispersion belt
distribution, as well as extending along the national high-speed railway network of four
vertical and four horizontal (Figure 3b). This feature allowed the epidemic to spread to the
eastern region. Figure 3c presents the aggregate cluster distribution at the strong hubs of
bus stations, which was the primary factor in epidemic transmission to cities near Wuhan.

4.2. The Role of Transportation Hubs in the Epidemic Transmission

The distribution of the time of first confirmed cases, and the cumulative number of
confirmed cases in cities with strong and weak transportation hubs, are shown in Figure 4.
The curves in the figure from left to right depict the aforementioned information for airports,
railway stations and bus stations, respectively.
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As can be seen in Figure 4, the curves of both sets of plots exhibited a single-peaked
distribution. Cities with strong hubs reported confirmed cases earlier and in greater num-
bers. Given that the distribution densities of railway and bus stations between cities were
comparable (Figure 3), both kinds of facilities had similar effects on epidemic transmission.
Table 5 shows the results of the Mann–Whitney U test.
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Table 5. Results of the Mann–Whitney U test.

Indicators Type Classification Median 25%
Quantile

75%
Quantile U-Value z-Value p-Value

v

Airport 1 11 10 12
1032.5 −7.6324 0.000 ***0 14 12 15

Railway station 1 12 11 14
6445 −6.1305 0.000 ***0 14 12 16

Bus station
1 12 10 13

4918.5 −5.4228 0.000 ***0 14 12 15

s

Airport 1 71 39 197
1673 −6.2875 0.000 ***0 17 7 42

Railway station 1 44 17 120
5906 −6.7931 0.000 ***0 14 6 34

Bus station
1 66 26 155

4067 −6.6629 0.000 ***0 15 7 38

Note: *** p < 0.01.

According to the test results, the strong hubs of all three transportation facilities
generally accelerated the epidemic’s emergence. The degree to which strong hubs of var-
ious transportation facilities influenced the epidemic transmission, varied. Cities with
strong airport hubs experienced initial cases 3 days earlier than those without them (me-
dian: 11 days/14 days; p < 0.01). Similarly, cities with strong railway and bus station hubs
experienced the emergence of the epidemic 2 days earlier (median: 12 days/14 days; p < 0.01).

Similarly, the presence of strong hubs could aggravate epidemic transmission. The
cumulative number of confirmed cases in cities with strong hubs of airports, railway
stations and bus stations were 4.2 times (median: 71/17; p < 0.01), 3.1 times (median: 44/14;
p < 0.01) and 4.4 times (median: 66/15; p < 0.01), respectively, higher than in other cities.

4.3. Influence of Transportation Modes on Epidemic Transmission

(1) Transmission speed

To analyze the factors influencing the time of the first confirmed case, we calculated the
quantile regression coefficients (Table 6). The magnitude and significance of the regression
coefficients differed between the quantiles, and these quantiles corresponded to 10, 12, 14,
and 17 days, respectively.

Table 6. Results of quantile regression.

Variables 0.05 (10 Days) 0.25 (12 Days) 0.55 (14 Days) 0.85 (17 Days)

Population 0.4547 −0.0849 0.0688 −0.6891
GDP −0.7139 ** −0.6634 *** −0.936 *** −1.9686 ***

Air transportation volume 0.0663 −0.0924 ** −0.2222 *** −0.0996
Railway transportation volume −0.0034 0.0039 0.0115 0.0051

Road transportation volume −0.0007 −0.0017 * −0.0023 ** −0.0028
Number of airports 0.0566 −0.0192 0.1001 −0.1466

Number of railway stations −0.0273 * −0.0224 −0.0106 −0.0132
Number of bus stations −0.0558 −0.0253 −0.0126 0.034

Longitude −0.033 −0.0393 ** −0.0547 ** −0.0688 *
Latitude 0.0833 ** 0.087 *** 0.0821 *** 0.0833 *

R2 0.1297 0.1558 0.1774 0.2390
Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

The three transportation modes had different effects on the epidemic transmission
speed. At the lower and middle quantiles (0.25 and 0.55), air and road transportation were
substantially and adversely correlated with the epidemic spread speed. Additionally, the
coefficients of air transportation were generally more significant than the coefficients of
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railway transportation. This indicated that the higher the volume of air and road transporta-
tion, the earlier the emergence of the epidemic in the cities, where the epidemic emerged
in about two weeks. The time of the first case appeared 0.1–0.2 days earlier for every 1%
increase in air transportation volume. However, the coefficients of railway transportation
were not significant. Compared to railway transportation, road transportation was the
primary factor of epidemic transmission in China.

There was no correlation between the number of airports and bus stations and the
transmission speed of the virus. Moreover, the number of railway stations was significant
at the 0.05 quantile (10 days), suggesting that cities with more than two railway stations
were likely to experience the epidemic earlier.

GDP and latitude coordinates were significantly correlated with the time of the first
case at all quantiles, mostly at the 0.01 level. GDP was significantly and negatively corre-
lated with transmission speed, while the latitude coordinate was strongly and positively
linked with transmission speed. In addition, the longitude coordinate demonstrated a sig-
nificant negative correlation at the 0.25, 0.55, and 0.85 quantiles, probably due to Wuhan’s
closer ties with the eastern region.

The regression coefficients of different variables for the quantiles are depicted in
Figure 5. The solid line in the graph shows the change in the quantile coefficient, and
the shaded area is the 95% confidence interval. The figure illustrates that the coefficient
of air transportation volume declined first, then gradually climbed after the 0.5 quantile,
while the coefficient of road transportation volume gradually decreased. As the number
of days increased, the negative impact of road transportation on the transmission speed
increased, whereas the influence of air transportation reduced. The coefficients of longitude
and latitude remained stable between the quantiles. Additionally, the GDP coefficient
demonstrated a large decline at the high quantile (0.7), suggesting that as the number of
days increased, the transmission speed of the virus in developed cities became faster.
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(2) Transmission severity

Table 7 displays the negative binomial regression results for the cumulative number of
confirmed cases on January 31 and February 29, respectively, with the regression results on
January 31 serving as the robustness test.

Table 7. Results of negative binomial regression.

Variables
s220 s131

αi OR Value αi OR Value

Population 0.2064 (1.6001) 1.2293 0.1935 (1.4179) 1.2135
GDP 0.4684 *** (4.0841) 1.5975 0.5187 *** (4.3070) 1.6798

Air transportation volume 0.0210 (0.6920) 1.0212 0.0194 (0.6303) 1.0196
Railway transportation volume 0.0105 *** (3.3774) 1.0106 0.0113 *** (3.5985) 1.0113

Road transportation volume 0.0065 *** (17.8622) 1.0065 0.0050 *** (13.5560) 1.005
Number of airports 0.0643 (0.6083) 1.0664 0.0311 (0.2793) 1.0316

Number of railway stations −0.0085 (−1.2351) 0.9915 −0.0081 (−1.1043) 0.9919
Number of bus stations −0.0111 (−0.7008) 0.9889 −0.0085 (−0.5214) 0.9915

Longitude 0.0331 *** (3.8528) 1.0337 0.0254 *** (2.7176) 1.0257
Latitude −0.0275 *** (2.6051) 0.9729 −0.0465 *** (4.1733) 0.9546

Note: *** p < 0.01.

The transmission severity of the epidemic was strongly correlated with railway and
road transportation. The cumulative number of confirmed cases rose by 0.011% and
0.0065% for every 1% increase in coach and railway travel, respectively. Although road
transportation played a major role in the epidemic transmission, railway transportation was
more relevant to transmission severity. Air transportation was not related to transmission
severity. Due to the low number of domestic flights from Wuhan, the number of cases
infected by air transportation in other cities was small. The total number of confirmed cases
was not significantly impacted by the number of airports, railway stations and bus stations,
which was in line with the factors affecting the transmission speed.

The relationship between the cumulative number of confirmed cases and GDP was
positive, suggesting that the epidemic spread more quickly in provincial capital cities or
prosperous cities. Both the latitude and longitude of cities showed significant correlations.
It has been confirmed that the epidemic is more likely to spread in cities with high tem-
peratures [30]. There was no significant correlation between urban population and the
cumulative number of confirmed cases.

5. Evaluation of Different Prevention Strategies

According to the previous analysis, it was the transportation volume that influenced
whether the epidemic would spread, rather than the presence of airports, railway stations,
or bus stations in a city. Additionally, the impact of different transportation modes on
epidemic transmission was variable. The prevention strategies of China have proven that
cutting off the transportation connections to cities with infections promptly and completely,
is the most efficient way to contain the epidemic. During the severe outbreak, such
measures were undoubtedly necessary. However, cutting off the transportation links of
the city during a stable period would be economically disastrous. Developing a more
precise and differentiated prevention strategy can help address this issue. Therefore,
we propose the following prevention strategies: a strategy that takes the differences in
transportation modes into account (Strategy A), and another strategy considering the level
of transportation facilities based on Strategy A (Strategy B). We propose control efficiency
indicators to compare the effects of the complete blocking strategy (Strategy C) with the
prevention outcomes of the above strategies.

(1) Strategy A

The preceding study showed a significant correlation between railway and road
transportation and the cumulative number of confirmed cases, while the relationship was
not close for air transportation. We suggest keeping air transportation as essential, but



Int. J. Environ. Res. Public Health 2022, 19, 15705 17 of 22

canceling the necessary railway and road transportation. In Strategy A, equal amounts of
railway and road transportation are canceled, and the level of cancellation is classified as
medium (50% trips) or high (80% trips). Air transportation is cut in half. Figure 6 displays
the fitted epidemic transmission at various time intervals (7 days, 14 days, and 21 days).
Table 8 lists the number of infected cities, as well as the number of confirmed cases for
various intervals of infection under different prevention levels.
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Table 8. Control effects of Strategy A.

Infection
Level

Prevention
Level

Number of
Infected Cities
before Control

Number of
Infected Cities
after Control

Cumulative
Number of Cases

before Control

Cumulative
Number of Cases

after Control

Decline
Percentage

0–100
High

265
245

6287
4959 21.12%

Medium 254 5337 15.11%

100–300
High

26
26

4276
3113 27.20%

Medium 26 3549 17.00%

300–500
High

5
5

1977
1119 43.40%

Medium 5 1440 27.16%

500–1000
High

8
7

5950
3132 47.36%

Medium 8 4164 30.02%

1000–4000
High

6
6

11706
6947 40.65%

Medium 6 8732 25.41%
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Taking the high prevention level as an example, the change in the number of infected
cities showed that the low infection level (0–100) decreased most significantly, proving that
cutting off the connection with infected cities could contain the epidemic more quickly
for these cities. There was an overall decrease of approximately 36% in the number of
confirmed cases across the 310 cities. As can be seen from Table 6, the proportional decrease
in the middle and high infection levels was nearly 20% higher than in the low infection
levels, indicating that the control effect was more pronounced in the more severe cities.
This was particularly significant for cities within Hubei Province. For example, Jingzhou
showed a drop of more than 80% in the number of confirmed cases when a suspension
of road transportation was adopted. The number of confirmed cases also decreased by
roughly one-fifth in Wenzhou and Chongqing, the cities outside Hubei Province with the
worst extraterritorial infections.

(2) Strategy B

According to the study mentioned above, cities with strong hubs were significantly
associated with the epidemic spread. Therefore, we considered the level of transportation
facilities, based on Strategy A. In Strategy B, we adopted Strategy A’s cancellation ratio for
cities with strong hubs, while cities without strong hubs were reduced to half. Figure 6
shows the fitted epidemic transmission at various time intervals (7 days, 14 days, and 21
days). Similarly, Table 9 demonstrates the number of infected cities, as well as the number
of confirmed cases for various intervals of infection under different prevention levels.

Table 9. Control effects of Strategy B.

Infection
Level

Prevention
Level

Number of
Infected Cities
before Control

Number of
Infected Cities
after Control

Cumulative
Number of Cases

before Control

Cumulative
Number of Cases

after Control

Decline
Percentage

0–100
High

265
253

6287
5248 16.53%

Medium 256 5474 12.93%

100–300
High

26
26

4276
3317 22.43%

Medium 26 3607 15.65%

300–500
High

5
5

1977
1248 36.87%

Medium 5 1519 23.17%

500–1000
High

8
8

5950
4295 27.82%

Medium 8 4761 19.98%

1000–4000
High

6
6

11706
7181 38.66%

Medium 6 8878 24.16%

Taking the high prevention level as an example, the number of infected cities in the
low infection level (0–100) declined the most. A large base of infected people makes it
difficult to clear the epidemic quickly in cities with middle and high infection levels. Over
the 310 cities, there was an overall decrease in confirmed cases of approximately 28%.
Table 9 shows that the infection level that had a greater decrease under this strategy was
the medium infection level (300–500). The cities under the medium infection level were
Beijing, Shanghai, Shenzhen, and other megacities with multiple types of hubs. Thus, the
control effect of the strategy considering transportation facilities was more apparent.

(3) Comparison of control effects

We proposed control efficiency indicators in combination with the intensity of trans-
portation connections and the number of confirmed cases [17], as shown in Equation (12).
Among the indicators was the cost of containing the epidemic in terms of a decrease in the
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intensity of transportation links; a lower value of this indicator denoted a more expensive
and ineffective means of controlling the epidemic.

E =
(sb − sa)/sa

Ta + Tt + Tr
(12)

where sb, sa denotes the cumulative number of confirmed cases before and after control,
respectively; and Ta, Tt and Tr denote the proportion of control for the three transportation
modes, respectively.

The calculated results for the three strategies are shown in Table 10. The percentage
drop in the total number of confirmed cases was largest for Strategy C, smallest for Strategy
B, and median for Strategy A. This proves that completely cutting off transportation links
is the most effective way to contain epidemic spread, but is also achieved at the greatest
cost. According to the calculations for control efficiency, Strategy B had the highest control
efficiency while Strategy C had the lowest. This illustrates that the prevention strategy that
takes the level of transportation facilities into account is the least costly. Strategy B used
the least amount of transportation control to reduce the cumulative number of confirmed
cases by the same percentage. In comparison to Strategies A and C, the percentage of
transportation control elimination was 6% and 8%, respectively. In this way, transportation
links among some of the cities with weak hubs can remain.

Table 10. Comparison of control effects.

Prevention
Strategies

Prevention
Level

Cumulative
Number of

Cases before
Control

Cumulative
Number of
Cases after

Control

Decline
Percentage

Control
Efficiency

A
High

30,196

19,271 36.18% 0.181
Medium 23,223 23.09% 0.184

B
High 21,288 29.50% 0.236

Medium 24,239 19.73% 0.235

C High 19,156 36.56% 0.152

6. Discussion

To explore the roles of different transportation modes in the transmission of COVID-19,
this paper used transmission speed and severity to characterize COVID-19 and focused-
assessed the impact of transportation-related elements on it.

6.1. Impact of Transportation Hubs on the Epidemic Transmission

According to the above results, there was variability in the influence of different levels
of transportation hubs on the epidemic transmission.

• Transmission speed

Generally, the presence of a strong airport hub had a more pronounced impact on the
epidemic transmission speed. Most cities with airports are megacities, which are more
conducive to the movement of people. Although the distribution density of airports was
substantially lower than the others (Figure 3), their presence may have accelerated the
emergence of the epidemic.

• Transmission severity

Among the three types of transportation facilities, strong bus station hubs had a
greater influence than the other two categories of facilities. Combined with the transmission
characteristics of road transportation, the number of trips undertaken from strong bus
station hubs had greater influence, thus, accelerating the epidemic transmission.
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6.2. The Role of Transportation Modes in the Epidemic Transmission

The quantile regression results indicated that air and road transportation were strongly
linked with the transmission speed. This confirmed that the epidemic was primarily
transmitted by airports to cities with medium and long distances from the epicenter. Most
people returning from Wuhan during the Spring Festival chose long-distance bus travel
due to the low cost and high frequency of bus services. Therefore, the main transportation
mode that caused the epidemic to spread from Wuhan to Zhejiang, Guangdong, and other
provinces, was by road transportation.

Additionally, we found that the number of airports and bus stations did not correlate
with the transmission speed. This was mostly due to the wide disparity in the level of
urban development in China. Despite the fact that many midwestern cities have developed
transportation hubs such as bus stations and airports, the actual size of population mobility
is small because of the sparse population and inadequate transportation capacity. This was
the fundamental motivation that inspired this paper to categorize transportation facilities
according to transportation volume, population, and GDP.

However, the number of railway stations did correlate with the transmission speed.
This was mainly due to the fact that most of the cities located in the central-eastern part of
China have two railway stations. The first cases in these cities generally emerged earlier.

In addition to transportation-related factors, we found that GDP was negatively cor-
related with transmission speed. This suggests that the first case will appear earlier in
developed cities. The latitude coordinate was positively linked with the transmission
speed, implying that initial cases will occur earlier in warmer cities. The longitude coor-
dinate exhibited a significant negative correlation at most quantile points. According to
Ni [33], approximately 170,000 people from Wenzhou work in Wuhan. On the eve of the
Spring Festival, a sizable number of people returned to Wenzhou, causing the epidemic to
spread quickly.

The negative binomial regression results showed that railway and road transportation
were closely related to transmission severity. Despite the fact that air transportation could
exacerbate the epidemic transmission, railway transportation remained the major factor
affecting the transmission severity. During the Spring Festival, the railway schedule is
intensive, and the passenger volume is higher than by air transportation.

Additionally, the population did not demonstrate a strong correlation with transmis-
sion severity. Therefore, a larger population does not necessarily mean more infections.
The most crucial factor was dependent on the transportation connections between Wuhan
and that city.

6.3. Suggestions Regarding Prevention Strategies

This paper proposes two prevention strategies: the first takes into account the dif-
ferences in transportation modes (Strategy A) and the second considers the levels of
transportation facilities based on Strategy A (Strategy B).

Comparing the two strategies with the complete blocking strategy, we discovered that
epidemic transmission can be promptly cut off by a complete blockade in the early phase
of the epidemic. By focusing on regulating air and road transportation, the epidemic trans-
mission speed can be slowed down. Differentiated prevention strategy can be established
according to the level of transportation facilities when the epidemic reaches a stable period.
In key cities, road and railway transportation should be controlled first, followed by air
transportation. Since railway transportation has a weaker influence on the epidemic spread
than road transportation, relaxing restrictions can be given priority once the epidemic is
under control.

7. Conclusions

In this paper, we examined the role of the level of transportation facilities in epidemic
transmission. Although cities with strong hubs tended to experience the first infection
earlier, there was no significant correlation between the number of airports and bus stations,
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and epidemic spread. People in cities with more than two railway stations were more likely
to be infected, thus, prevention efforts should be concentrated there.

The role of three transportation modes, i.e., air, railway, and road, on the transmission
speed and severity of the epidemic, was also studied. Railway and road transportation
were strongly related to the cumulative number of confirmed cases, while air and road
transportation were significantly associated with the time of the first confirmed case.
Additionally, latitude and longitude, as well as GDP, had a more substantial impact on the
epidemic transmission pattern.

Two types of prevention strategies were proposed and evaluated, which considered
the level of transportation facilities and the differences in various transportation modes.
Approximately 5% difference was found between the two types of prevention strategies. When
the epidemic enters a lull, implementation of the second kind of strategy can lessen the adverse
effects of prevention efforts on other facets such as the economy and city transportation.

Our study has several limitations. Firstly, it is mainly related to the scale and quality
of the dataset. There may exist improvement in the model accuracy, as more precise data
cannot be made public by relevant authorities. Secondly, we investigated the mechanisms of
the epidemic transmission via different transportation modes during the external imported
phase. We still need to explore, in depth, the mechanism by which the epidemic spreads
within the city after its initial arrival, in order to develop an intra-city prevention strategy.
In addition, it is also essential to integrate with external control measures of the city to
minimize the impact of the epidemic on residents’ lives. Finally, future research should
improve the model by taking into account the features of various people and the infectious
disease dynamics model.
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