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Abstract: (1) Background: Population aging has been accelerating in China since the 1990s, and the 

number of people over 65 reached 190 million in 2020. However, the spatial distribution of the aged 

is not homogeneous; in rural areas, the aged population accounted for 17.72% of the total 

population, whereas in urban areas, it accounted for 11.11%, which is 6.61 p.p. less. Therefore, this 

study aims to examine the spatial heterogeneity and influencing factors of population aging in rural 

China from 2000 to 2020. (2) Methods: First, Getis–Ord Gi* was used to analyze the spatial clustering 

of the aged population in rural China. Then, standard deviational ellipse was used to characterize 

the temporal trend of the spatial clustering of population aging in rural China. Finally, potential 

influencing factors that could have contributed to the spatial–temporal patterns were analyzed 

using a novel spatial statistical package “Geographical Detector”. (3) Results: (a). Aging in rural 

populations increased and occurred throughout China from 2000 to 2020. (b). The spatial patterns 

of aging in China are roughly divided by the Hu Line, which is the population density boundary of 

China. (c). The mean center of the aged population tended to orient around a northeast-to-southwest 

major axis over the past 20 years, contrary to the internal migration pattern that flows from north to 

south. (d). The population age structure, longevity rate, and fertility rate were the predominant 

factors of aging in rural areas. (4) Conclusions: As the aged population is rapidly increasing in rural 

areas in China in a spatially heterogeneous fashion, governments and private sectors need to 

collaborate to alleviate the problem. 
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1. Introduction 

Population aging is becoming one of the most crucial social transformations of the 

21st century and is being given close attention and more importance worldwide. As noted 

by the World Population Prospects 2019, one in six people in the world will be over the 

age of 65 by 2050 (16%), up from one in eleven in 2019 (9%) [1]. The world population is 

growing older, while the growth varies greatly across regions [2]. Take China as an 

example. The number of the aged population increased from 88.21 to 102.4 million from 

2000 to 2020. By the end of 2020, China had a population of just over 1.41 billion, of which 

0.191 billion were over 65 years old, accounting for 13.5% of the total population [3]. 

China’s population is projected to peak at about 1.35 to 1.46 billion in 2035 and will then 

continue to decline until 2050, but the trend of population aging will continue. 

In particular, the aged population is distributed at different levels in rural and urban 

areas in China. In rural areas, population aging is more severe than that in urban areas, 

and the problem is aggravated by generally less developed infrastructures and fewer 

healthcare facilities in rural areas. In pursuit of economic profit and personal 

development, many people in rural areas migrate to “big cities”, leaving the old (as well 

as the young) in their rural homes, creating the so-called “empty hearted village” and 

“empty nester family” phenomenon. Due to the limitation of urban–rural dualism, 

migrant workers do not have the same welfare, healthcare protection, or education 

opportunities for their children as their urban counterparts. As a result, population aging 
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in China has a different pattern in rural and urban areas. Social, economic, and health 

problems associated with the left-behind elderly in rural China need to be dealt with 

scientifically and sustainably to improve the well-being of all. 

Over the past 40 years, the studies on China’s population aging have always been a 

focus for the scientific community and governmental organizations. Traditionally, studies 

on population aging in China mostly focus on analyzing the current situation and 

development trends of China’s population aging and point out that China’s population 

aging presents significant characteristics such as a large-scale elderly population, fast 

growth rate, uneven distribution of aging, and “getting old before getting rich” [4]. Due 

to the vigorous development of geographic information technology in the 1990s, the 

spatial analysis method is widely applied to the study of the aging population, such as 

Global Moran’s I and kernel density analysis, and considerable literature has grown up 

around the theme of the spatial and temporal characteristics of the aging population 

distribution in recent decades [5,6]. In addition, the research to date has fully described 

the influencing factors of population aging, including the impact of aging on society, 

economy, urbanization, and rural development, as well as the natural environmental 

factors [7,8]. However, existing research mainly focuses on qualitative studies on the 

overall pattern of aging, the general policy on population aging, and the differences 

between rural and urban areas in China; the combined research on the spatiotemporal 

pattern, especially the differences in aging between rural and urban areas and its potential 

influencing factors are still in their early stages. Moreover, most research pays less 

attention to rural areas. Considering the importance of how continued population aging 

in the coming decades influences the sustainability of rural regions and positive aging 

welfare, it is necessary to analyze the spatial patterns of rural aging in China with the 

newest population census data in 2020. 

This study set out to examine the spatial heterogeneity and influencing factors of 

population aging in rural China from 2000 to 2020 using county-level panel data. Based 

on a large spatial scale and time span, we comprehensively used GIS analysis tools to 

study the spatial and temporal distribution law and influencing factors of China’s rural 

population aging. The aims of this study were to reveal the comprehensive deepening law 

of rural population aging and provide a scientific basis for active aging development and 

population policy adjustment in China. 

2. Materials 

In this part, we define the study area, and the indicators for evaluating the degree of 

aging of the rural population are described. Then, a system of variables influencing the 

aging of rural population is shared, and the reasons for selecting these variables are 

explained. Finally, the data sources used are described. 

2.1. Study Area 

Administrative divisions are areas that are divided hierarchically to facilitate 

administration by the country. According to the Constitution of the People’s Republic of 

China, the administrative regions are divided into four levels: provincial, prefecture, 

county, and township. Currently, there are 34 provincial-level administrative regions 

(including 23 provinces, 5 autonomous regions, 4 municipalities directly under the central 

Government, and 2 special administrative regions), 333 prefecture-level administrative 

regions, 2846 county-level administrative regions, and 38,755 township-level 

administrative regions in China. Among them, townships, i.e., rural areas, are the most 

basic administrative units [9]. Furthermore, to reflect the social and economic 

development of various zones, administrative units on mainland China are divided into 

seven areas with similar economic development levels, and relatively uniform geographic 

locations. These are Central China, Eastern China, Northern China, Northeast China, 

Northwest China, Southern China, and Southwest China [10] (Figure 1). As the statistical 

data of township administrative districts is insufficient and difficult to obtain, this paper 
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studies the rural population aging in China based on the county-level administrative units 

(2846 in total). In addition, as there is no data for Hong Kong, Macau, and Taiwan, they 

are excluded from this study. 

 

Figure 1. Agglomeration of provincial level administrative units. 

2.2. Evaluation Index of Rural Population Aging 

There are various measures of population aging, including the ratio of the elderly 

population, the ratio of the elderly to the young, the dependency ratio of the elderly 

population, and the median age of the population, among which the proportion of the 

elderly population in total is the most used measure. According to the aging standard of 

the United Nations in 1956, when the ratio of old people to total is greater than or equal 

to 7%, it is considered to be entering an aging society; if it is greater than 14%, it is 

considered as a hyper-aged society [11]. Therefore, this paper defines the proportion of 

the population aged 65 and over in the total population as an index to measure the degree 

of rural population aging (RPA) in each county. 

In order to better compare the degree of aging in different regions, this paper refers 

to the international standards and divides RPA into three different aging classes. If the 

RPA is less than or equal to 7%, it is considered a young type of rural; if the RPA is greater 

than or less than 14%, it is named an aged type of rural; if the RPA is greater than 14%, it 

is called a hyper-aged type of rural. 

2.3. Construction of the Indicator System 

Aging is essentially a special population age structure, and the age change in the 

population plays a decisive role in its development and evolution. In addition, aging is 

also affected by the local population base, changes in population mechanical growth, 

economic development status, healthcare accessibility, and education background. Due 

to the complex and diverse topography, climate, and hydrological conditions in China, 

there are large differences in population and economic development between the east and 

the west. Therefore, this paper constructs an influential factor system of rural aging 

through the four levels of population, socioeconomics, healthcare, and education to 
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explore the influencing factors affecting the spatiotemporal pattern of rural population 

aging in China. Table 1 shows the selection and description of the variables of each system. 

Table 1. Description of influencing variables on RPA. 

Variable Systems Variables (Abbreviation) Descriptions 

Natural and mechanical demographic 

characteristics 

Total population (TPOP) The total population in each county 

The proportion of 55 to 64 years old 

(P55-64) ten years ago 

P55-64 represents the base of aged 

people 

Fertility rate (FER) 
The proportion of births in the total 

population 

Longevity rate (LGV) 
The proportion of the population aged 

80 and above in the total population 

Migration rate (MIG) 

Hukou1-registered population in other 

places/Hukou-registered population in 

local places 

Socioeconomic characteristics 

Per capita GDP (PGDP) The per capita GDP of each county 

Urbanization rate (UBZ) 
The proportion of nonagricultural 

Hukou in total population 

Healthcare accessibility characteristics 
Number of hospitals (HOS) 

The number of hospitals in each 

county 

Number of beds (BED) The number of beds in each county 

Educational characteristics 

Per capita years of education (PEDU) 

Refers to the average years of 

education of the population aged 6 and 

over. A college degree or above is 

calculated as 16 years, 12 years for high 

school, 9 years for junior high school, 6 

years for primary school, and 0 years 

for illiteracy 

Illiteracy rate (ILT) 

The proportion of illiterate people 

aged 15 and over in the total 

population 

Hukou1 means the household registration system in China, which includes nonagricultural Hukou 

and agricultural Hukou. 

In terms of the demographic characteristics, we selected the total population (TPOP) 

of each county, proportion of the population aged 55–64 (P55-64) ten years ago, fertility 

rate (FER), longevity rate (LGV), and migration rate (MIG) to characterize the natural and 

mechanical population change. The TPOP reflects the population size of an area. The P55-

64 in each county in 1990, 2000, and 2010 refers to the population base of the elderly. The 

higher the P55-64, the greater the impact on population aging changes after 10 years [12]. 

The FER refers to the proportion of the new generation population, which is considered 

one of the mechanisms underlying demographic change [13]. The trend of low fertility 

rates and a reduction in the size of the birth population will further exacerbate population 

aging. The LGV is the proportion of people aged 80 and over in the total, as people over 

80 are regarded as having longevity, referring to the classification of the World Health 

Organization of the United Nations [14]. One of the best achievements of modern 

civilization has been the enormous reduction in human mortality [15], and the significant 

prolongation in life expectancy has had a significant impact on aging. 

The urbanization rate (UBZ) refers to the proportion of the nonagricultural registered 

population in the total population, and the per capita GDP (PGDP) reflects the economic 

development of a region. Both the UBZ and PGDP have an impact on migration patterns. 

China implements a dual household registration system; nonagricultural-registered 
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residents enjoy better medical, education, employment, and housing conditions, whereas 

rural residents do not receive the same benefits [16]. This system promotes the migration 

of young laborers from rural to urban areas and accelerates urbanization to a great extent 

[17]. People often leave the countryside to pursue better economic benefits and go to cities 

with more developed economies and better infrastructure for employment and life. 

Generally, immigrant parents have relatively low mobility and do not tend to move with 

their children, which has led to issues with “empty-hearted villages” and “empty nest 

household” in rural China. 

As for the healthcare variables, the number of hospitals (HOS) and beds (BED) 

reflects the status of the healthcare infrastructure. The improvement of medical and health 

conditions can prolong life expectancy, thus indirectly affecting the population aging. 

The per capita years of education (PEDU) and illiteracy rate (ILT) are two indicators 

that reflect the educational status from different perspectives. The PEDU is an intensity 

indicator that reflects the overall level of education, whereas the ILT is a structural 

indicator that indicates the popularization of education. With the improvement in 

education levels in China, the return on investment in education has increased, which 

causes families to pay more attention to the quality of education rather than birth. 

Women’s intentions to have children are indirectly influenced by the PEDU and ILT, and 

the proportion of older people increases as the number of births declines. 

2.4. Data Sources and Arrangement 

The RPA, TPOP, and P55-64 data are from the fifth to seventh China population 

censuses in 2000, 2010, and 2020, respectively [18–20]. As some of the counties have not 

publish the seventh national census data yet, we used the prefecture-level data instead. A 

population census in China is conducted every ten years. The relevant departments in all 

regions conduct a comprehensive survey and registration of the existing population of the 

country on a general, household-by-person basis in strict accordance with the instructions 

and laws. The focus of the census is to master, analyze, and predict the development and 

changes of the existing population in various places, mainly to understand the sex ratio, 

sex ratio at birth, single and married populations, elderly population, etc. The annual data 

of the fertility rate (FER), longevity rate (LGV), migration rate (MIG), urbanization rate 

(UBZ), per capita GDP (PGDP), per capita education (PEDU), illiteracy rate (ILT), and the 

number of hospitals (HOS) and beds (BED) can be collected in the Statistic Yearbook 

published by the National Bureau of Statistics of China [3]. 

3. Methods 

In this study, we focused on examining the spatial distribution and evolution 

patterns and revealing the influential factors of RPA. First, we utilized the Getis–Ord Gi* 

method to analyze the spatial distribution patterns of rural population aging. Then, from 

a dynamic perspective, the standard deviational ellipse method was applied to analyze 

the change in the distribution range and the trajectory of gravity. Finally, we analyzed the 

potential driving factors of the spatial patterns from demographic, socioeconomic, 

healthcare, and educational perspectives using the Geographical Detector method. 

3.1. Getis–Ord Gi* 

The Getis–Ord Gi* (pronounced G-i-star) method, originally developed by Getis and 

Ord [21], is used to identify a tendency for positive spatial clustering and can distinguish 

high and low spatial associations between the locations [22]. In this study, Getis–Ord Gi* 

was used to detect the high and low value clustering areas of RPA. A simple form of Gi* 

statistics is: 

𝐺𝑖
∗ =

∑ 𝑊𝑖𝑗𝑥𝑗
𝑛
𝑗=1

∑ 𝑥𝑗
𝑛
𝑗

 (2) 
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where the Gi* statistic describes the spatial dependency of incident 𝑖 over all 𝑛 events, 

𝑊𝑖𝑗 is the spatial weight between feature 𝑖 and 𝑗, 𝑥𝑗 is the attribute value of feature 𝑗, 

𝑛 is the total number of features, and 𝑋̅ is calculated as: 

𝑋̅ =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
 (3) 

The 𝐺𝑖
∗ statistic is expressed in the form of a statistically significant z-score. When 

the z-score is high, the clustering of the high value will be intense. The resultant z-score 

indicates whether features with high or low values cluster geographically. A z-score near 

zero indicates no apparent spatial clustering. This tool works by examining each feature 

within the context of neighboring features. Getis–Ord Gi* identifies significant spatial 

clusters of high (hot spots) and low values (cold spots). 

3.2. Standard Deviational Ellipse 

The standard deviational ellipse (SDE), introduced by sociologist Welty Lefever in 

1926 [23], is one of the most classical and popular methods to analyze the directional 

characteristics of spatial distribution [24]. This model creates ellipses or ellipsoids to 

summarize the spatial characteristics of geographic features, including central tendency, 

dispersion, and directional trends. It is convinced that an ellipse can geographically 

represent spatial data in a highly effective way [25]. The spatial–temporal evolution of 

seasonal tornado activity [26], the spread of the COVID-19 epidemic [27], population 

distribution [28], and other topics are investigated using the SDE method. The calculation 

of the SDE includes the center coordinates, azimuth 𝜃, long axis, and short axis. Among 

them, the center coordinates represent the center of gravity of the space elements. The 

azimuth 𝜃 , which can be defined as the direction of the long axis, determines the 

orientation of an ellipse [25], whereas the long and short axes determine the shape, 

indicating the distribution density of a set of geographical units in one- and two-

dimensional spaces, respectively [29]. 

To create the SDE, the initial step is to take the mean of the x and y coordinates of all 

of the 𝑛 units studied to calculate the center coordinates [24]. Then, calculate the azimuth 

𝜃. Finally, referring to the calculation formulas of various parameters mentioned in the 

literature of Lefever, Gong, Yuill, and Xia [23–25,29], the formulas are as follows: 

Step 1: Calculation of center coordinate of the ellipse: 

𝑆𝐷𝐸𝑥 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛
, 𝑆𝐷𝐸𝑦 = √

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

𝑛
 (4) 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

, 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 (5) 

where {(𝑥𝑖 , 𝑦𝑖); 𝑖 = 1,2, … … , 𝑛} are the coordinates of the geographical units studied. 𝑆𝐷𝐸𝑥  

and 𝑆𝐷𝐸𝑦 are the x, y coordinates of the mean center. The mean center coordinates, as the 

center of the geographical elements, reflect the relative position of rural population aging 

in a two-dimensional space in this study. 

Step 2: Calculate the direction (azimuth θ) of the ellipse: 

𝑡𝑎𝑛𝜃 =
(∑ 𝑥̿𝑖

2𝑛
𝑖=1 − ∑ 𝑦̿𝑖

2𝑛
𝑖=1 ) + √(∑ 𝑥̿𝑖

2𝑛
𝑖=1 − ∑ 𝑦̿𝑖

2𝑛
𝑖=1 )2 + 4(∑ 𝑥̿𝑖

𝑛
𝑖=1 𝑦̿𝑖)

2

2 ∑ 𝑥̿𝑖
𝑛
𝑖=1 𝑦̿𝑖

 
(6) 

where 𝑥̿𝑖 and 𝑦̿𝑖 are the deviations between the coordinates of the 𝑖 point element and 

average center coordinates. 

Step 3: Calculate the long and short axes of the ellipse: 



Int. J. Environ. Res. Public Health 2022, 19, 15631 7 of 18 
 

 

𝛼𝑥 = √
2 ∑ (𝑥̿𝑖 cos 𝜃 − 𝑦̿𝑖 sin 𝜃)2𝑛

𝑖=1

𝑛
, 𝛼𝑦 = √

2 ∑ (𝑥̿𝑖 sin 𝜃 + 𝑦̿𝑖 cos 𝜃)2𝑛
𝑖=1

𝑛
 (7) 

In this research, the SDE method was employed to reveal the dynamic changes and 

spatial evolution of rural aging in China. We used the SDE tool provided by ArcGIS 

software (Version 10.3, Redlands, CA, USA) to conduct the analysis on the spatial–

temporal analysis of population aging in China. The center coordinates reflect the center 

of gravity of the population aging in counties as well as in rural areas in China. The long 

axis reflects the main trend of rural aging in one- and two-dimensional space. The short 

axis, vertical to the long axis, represents the distribution range of rural population aging. 

The larger the difference between the values of the long and short axes, the more obvious 

the direction of rural aging. The shorter the short axis is, the stronger the centripetal force 

is. The azimuth is the rotation angle between the long axis and the north direction 

clockwise and indicates the distribution direction of each county in China. 

3.3. Geographical Detector: Influence Factor Analysis of Rural Population Aging 

In this research, we used the model to detect the spatial stratified heterogeneity, 

which is one basic characteristic of geographic phenomena. To explore the determinant 

power and interactive impact of related factors on rural population aging, the 

Geographical Detector (Geodetector, GD) model was employed in this study. 

The GD model, originally proposed by Wang and Hu, serves as an effective spatial 

statistics method based on the spatial variation analysis of the geographical strata of 

variables [30,31]. The GD model has been extensively used to identify the driving factors 

in a variety of fields, such as public health, environmental pollution, land use, urban 

livability, and population distribution [32–35]. The GD model includes four detector 

modules: factor, interaction, ecological, and risk. The mathematical expressions are as 

follows: 

(1) The factor detector quantifies the influences of factors on the q-statistics. In this study, 

the factor detector identifies which factors are responsible for the RPA. Its formula 

is: 

𝑞 = 1 −  
∑ 𝑁ℎ

𝐿
ℎ=1 𝜎ℎ

2

𝑁𝜎
2 = 1 −  

𝑆𝑆𝑊

𝑆𝑆𝑇
 (8) 

where 𝑞  is the explanatory power of the determinants associated with the RPA. 

{ ℎ = 1, … , 𝐿} are the stratification of 𝑦 or factor 𝑥, i.e., classification or partition; 𝑁ℎ 

and 𝑁 represent the number of units in ℎ and the whole region, respectively. 𝜎ℎ
2 

and 𝜎2 are the variance of units in ℎ and the global variance of 𝑦 over the whole 

region, respectively. 𝑆𝑆𝑊 indicates the sum of squares, whereas 𝑆𝑆𝑇 represents the 

total sum of squares. The q-statistics range from 0 to 1; the larger the q-statistics are, 

the stronger the influence of factor is. 

(2) The interaction detector examines whether two independent variables, when taken 

together, weaken or enhance each another or whether they are independent in 

developing dependent variables [36]. In this study, the interaction detector examines 

whether the factors (𝑥1  and 𝑥2 ) have an interactive effect on RPA. First, the q-

statistics of factors 𝑥1 and 𝑥2, in respect of the RPA, were calculated and marked as 

𝑞(𝑥1)  and 𝑞(𝑥2) . Then, the interactive q-statistics of factors 𝑥1  and 𝑥2  were 

calculated and marked as 𝑞(𝑥1 ∩ 𝑥2). The interactive relationship can be classified 

into five types by comparing the interactive q-statistics of the two factors and the q-

statistics of each of the two factors [37]. The five types are described in Table 2. 
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Table 2. The interaction types of two factors and the interactive relationship. 

Title 1 Description 

Weakened, nonlinear 𝑞(𝑥1 ∩ 𝑥2)  < 𝑀𝑖𝑛 (𝑞(𝑥1), 𝑞(𝑥2)) 

Weakened, univariate 𝑀𝑖𝑛 (𝑞(𝑥1), 𝑞(𝑥2))  <  𝑞(𝑥1 ∩ 𝑥2)  <  𝑀𝑎𝑥 (𝑞(𝑥1), 𝑞(𝑥2)) 

Enhanced, nonlinear 𝑞(𝑥1 ∩ 𝑥2)  >  𝑞(𝑥1) +  𝑞(𝑥2)  

Enhanced, bivariate 𝑞(𝑥1 ∩ 𝑥2)  < 𝑀𝑎𝑥 (𝑞(𝑥1), 𝑞(𝑥2)) 

Independent  𝑞(𝑥1 ∩ 𝑥2) =  𝑞(𝑥1) + 𝑞(𝑥2) 

(3) The ecological detector, which is determined by the F-statistics, is used to compare 

whether the impacts of the two factors (𝑥1 and 𝑥2) on the dependent variable have 

a significant difference [38]: 

𝐹 =  
𝑁𝑥1

(𝑁𝑥2
− 1)𝑆𝑆𝑊𝑥1

𝑁𝑥2
(𝑁𝑥1

− 1)𝑆𝑆𝑊𝑥2

 (9) 

𝑆𝑆𝑊𝑥1
=  ∑ 𝑁ℎ𝜎ℎ

2
𝐿1

ℎ=1
, 𝑆𝑆𝑊𝑥2

=  ∑ 𝑁ℎ𝜎ℎ
2

𝐿2

ℎ=2
 (10) 

where 𝑁𝑥1
 and 𝑁𝑥2

 mean the sample number of factors 𝑥1  and 𝑥2 , respectively. 

𝑆𝑆𝑊𝑥1
 and 𝑆𝑆𝑊𝑥2

, respectively, denote the sum of the within-strata variances 

formed by 𝑥1 and 𝑥2. 𝐿1 and 𝐿2 represent the number of stratifications of factors 

𝑥1 and 𝑥2, respectively. If the null hypothesis 𝐻0: 𝑆𝑆𝑊𝑥1
=  𝑆𝑆𝑊𝑥2

 is rejected at the 

confidence level 𝛼  (usually 5%), the influences of 𝑥1  and 𝑥2  on the dependent 

variable are statistically significant. That is to say, the effect of factor 𝑥1 on RPA is 

significantly different from that of factor 𝑥2 [39]. 

(4) The risk detector is used to detect whether the spatial–temporal pattern of RPA is 

remarkably different, whereas the area studied is stratified by a variety of factors. If 

the result of the two factors is “Y”, it means there are significant differences between 

the two factors that influence RPA, whereas if the result of the two factors is “N”, it 

means there is no significant difference. The risk detection is examined using t-

statistics: 

𝑡 =  
𝑌̅ℎ=1 − 𝑌̅ℎ=2

[
𝑉𝑎𝑟(𝑌ℎ=1)

𝑛ℎ = 1
+ 

𝑉𝑎𝑟(𝑌ℎ=2)
𝑛ℎ = 2

]

1
2⁄

 
(11) 

where 𝑌̅ℎ denotes the average of 𝑌 in the subregion ℎ, 𝑛ℎ represents the size of 

samples in the subregion ℎ, and 𝑉𝑎𝑟 is variance. 

4. Results 

4.1. Spatial Distributions of Rural Aging in China 

As mentioned in Section 2.2, the RPA (the percentage of rural population aged 65 

and over) was utilized in this study as a measure of rural population aging. To better 

compare the differences in RPA across regions in China, RPA was divided into three 

classes: young type if the RPA is below 7%, aged type if the RPA is between 7% and 14%, 

and hyper-aged type if the RPA is above 14%. Referring to this classification, a map of the 

spatial distribution profiles of China’s rural population aging ratio from 2000 to 2020 was 

drawn (see Figure 2a–c). 
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Figure 2. Spatial distribution profiles of China’s rural population aging ratio in 2000 (a), 2010 (b), 

and 2020 (c). 

In 2000, the rural population aging in China was dominated by the young and aged 

types. Notably, 53.2% of the units were of the young type and were widely distributed 

across 31 provinces in China. Except for Tibet, Xinjiang, and Ningxia, 46.62% of the units 

in 28 provinces were of the aged type. In addition, more than 50% of units were the aged 

type in 14 provinces, including Zhejiang, Jiangsu, Anhui, Chongqing, Shandong, Beijing, 

Shanghai, Liaoning, Guangxi, Hunan, Guangdong, Tianjin, Sichuan, and Hubei Province. 

Furthermore, there were 0.18% of the hyper-aged type units located in Shanghai, Tianjin, 

and Liaoning Province. 

In 2010, 79.4% of the units belonged to the aged type, covering 31 provinces, almost 

the entire of China. Among them, the aged type units in 27 provinces, except for Xinjiang, 
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Tibet, and Qinghai, had reached more than 50%. There were 1% of units in Inner 

Mongolia, Shanghai, Jiangsu, Zhejiang, Shandong, Liaoning, Heilongjiang, Chongqing, 

and Sichuan Province that were the hyper-aged type. 

In 2020, the aged and hyper-aged types were the predominant age structure types in 

China. The units of the aged type declined to 47.8%, whereas the hyper-aged type 

increased to 46.9%. The majority of the places in the northwest, northern, southern, and 

Yunnan and Guizhou Provinces in the southwest of China were the aged type. The 

northeast, eastern, central, and Chongqing and Sichuan in the southwest were mainly the 

hyper-aged type. Among them, more than 90% of the units in the northeast Heilongjiang, 

Jilin, and Liaoning Provinces were the hyper-aged type. The eastern rural areas were more 

advanced in their aging than the western rural areas. The units of young type declined to 

5.3% and mainly concentrated in Tibet, Qinghai. This type was also sporadically 

distributed in southern Guangdong, eastern Fujian, central Ningxia, and western Sichuan. 

Overall, rural population aging increased annually, and the regional disparity was 

significant. In comparison with 2000, the transition from the young type to the aged type 

was the most significant indication of how the RPA had risen to varied degrees and the 

age structure of the population had switched to the type with a higher aging rate. 

Furthermore, the range of the hyper-aged type of areas had been expanded. 

4.2. Hot Spots Analysis of Rural Population Aging 

The hot and cold spot analysis was performed to delineate the spatial cluster of rural 

population aging in China based on Getis–Ord Gi* statistics. The resultant z-score 

identified the states with high or low values of clustering spatially, as depicted in Figure 

3a–c. 

In 2000, significant hot spots (high cluster) of RPA were spread around the Shandong, 

Zhejiang, Shanghai, and Jiangsu Provinces in the eastern area, and there were small hot 

spots in: Fujian in the eastern area; Guangdong, Guangxi, and Hainan in the southern 

area; Henan and Hubei in the central area; and Sichuan and Chongqing in Southwest 

China. Significant cold spots (low cluster) were mostly spread across Gansu, Xinjiang, and 

Qinghai in the northeast area, Inner Mongolia in the northern area, Tibet in the southwest, 

and the Pearl River Delta agglomeration of southern Guangdong in Southern China. 

The map for 2010 showed cold spots in Tibet, Xinjiang, Qinghai, Inner Mongolia, and 

the Pearl River Delta agglomeration in Southern Guangdong. Compared with 2000, cold 

spots in Tibet apparently expanded on a southern direction. Most of the hot spots were 

found in Chongqing and east of Sichuan in the southwest area, and Shandong, Jiangsu, 

Zhejiang in the eastern area, and Hunan in Central China. Some hot spots were also 

portrayed on the northeast of Inner Mongolia and Heilongjiang. 

In 2020, the cold and hot spots were clearly divided into two sides, and the cold spots 

were biased toward the west, whereas the hot spots were biased toward the east of China. 

Notably, the cold spots in Inner Mongolia transitioned to hot spots, and the hot spots in 

Liaoning were enhanced. There was a slight decrease in the hot spots of RPA in Southern 

and Eastern China. The RPA distribution formed a significant low cluster pattern in Tibet, 

the west of Sichuan, and Qinghai meaning that it showed a low value. The low value is 

due to the harsh natural conditions and the complex and diverse climate terrain, making 

it a low value area for population density in China. 

During the study period, the result of the analysis in China showed clear spatial 

patterns of RPA that the cold spots had significantly changed, mainly shown in the 

transition from being dispersed around the northwest to concentrated in Tibet and 

Qinghai. In addition, the RPA distribution formed hot spots that were increased in 

Chongqing and Sichuan in the southwest, Inner Mongolia, and Liaoning in the northeast 

of China. 
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Figure 3. Spatial clustering (hot and cold spots) analysis of China’s rural population aging in 2000 

(a), 2010 (b), and 2020 (c). 

4.3. Analysis of Directional Evolution of the RPA 

In this section, the SDE (standard deviational ellipse) was utilized to analyze changes 

in the spatial evolution of RPA in China from 2000 to 2020. The SDE spatial evolution 

distribution of RPA is shown in Figure 4, and the variation of parameters is listed in Table 

3. We also cited the Hu Line to analyze the changing characteristics of the center of gravity 

of the RPA. The Hu Line, starting at Heihe city in Heilongjiang province and ending with 

Tengchong city in Yunnan province, was consistent with the law of population 

distribution in China. The Hu Line is a line of comparison, proposed by the Chinese 

geographer Hu Huanyong in 1935, to divide China’s population density. In Hu’s opinion, 

on the southeast side of the Hu Line, 36% of the land area supports 96% of the population, 
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whereas on the northwest side of the Hu Line, 64% of the land area accounts for about 4% 

of the population. 

The area of the SDEs represents the concentration of RPA. During the study period, 

five-sixths of the ellipse area is to the southeast of the Hu Line because 96% of China’s 

population is in the southeast half of the Hu Line. The ellipse accounted for about one-

third of China’s total land area, covering 26 provinces except Xinjiang, Tibet, Heilongjiang, 

Jilin, and Hainan, indicating that rural population aging was widely distributed (or 

dispersed) in China over time. 

 

Figure 4. Directional distribution of rural population aging from 2000 to 2020. 

The mean centers of the SDEs captured the annual shifts in RPA. The mean centers 

formed in Henan Province, Central China, as they developed from the southeast to the 

northeast. However, this did not indicate that the rural population in Henan Province was 

the most severe. This was due to the fact that, in 2000, the RPA in the southern and eastern 

provinces such as Guangdong, Guangxi, Hunan, Jiangsu, and Shanghai was higher than 

other areas. However, in 2020, the RPA in Heilongjiang, Jilin, and Liaoning in Northeast 

China showed a high cluster, with more than 90% of the county administrative units being 

hyper-aged. 

The azimuth (𝑡𝑎𝑛𝜃/°) represents the orientation of the long axis of the SDEs, about 

which RPA concentrates. The azimuth varied between 32 and 34° from 2000 to 2020, 

although not significantly, indicating that RPA tends to orient around a northeast-to-

southwest major axis. The short axis decreased, whereas the long axis increased, implying 

the aging population’s more pronounced directional characteristics. 

Combined, these changes illustrate that rural population aging is increasing and 

becoming more concentrated toward the southwest and northeast of China, particularly 

to Chongqing and Sichuan in the southwest, and Heilongjiang, Jilin, and Liaoning in the 

northeast. This is contrary to the internal migration pattern that flows from north to south, 

indicating that although a multitude of workers from rural areas migrated from north to 

south, their parents (as well as their children) were still left behind in their hometowns, 

creating the so-called “empty hearted village” phenomenon. 
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Table 3. Variation in parameters of the SDE of RPA in China from 2000 to 2020. 

Year Center X Center Y 𝒕𝒂𝒏𝜽/° Long Axis (𝜶𝒙)/km Short Axis (𝜶𝒚)/km 

2000 32.91°N 112.71°E 69.5° 12,776.79 8439.85 

2010 33.12°N 112.61°E 68.8° 12,962.98 8589.18 

2020 33.59°E 113.19°E 63.6° 12,839.65 8140.22 

4.4. The Driving Forces of RPA on Geographical Detector 

There is significant regional variability in the population aging in rural China, 

according to the analysis of the hot spots and the directional distribution of RPA. This 

section discusses the findings of the GD (Geographical Detector) model in order to 

identify the main influencing factors of spatial and temporal differences in population 

aging in rural China. 

4.4.1. The Analysis of Factor Detector on RPA 

To clarify the similarities and differences among the aging mechanisms in different 

regions of China, the factor detector calculated the q-values to represent the relative 

importance of potential factors in RPA (Table 4). 

The proportion of people aged 55 to 64 (P55-64) and the longevity rate (LGV) were 

high q-statistics, indicating these two factors were the most important factors affecting 

rural aging in China. The initial aging level was the most important factor controlling the 

aging of the rural population in China, and the longevity of the elderly critically impacts 

rural aging. However, some aspects of healthcare and socioeconomics, such as the number 

of hospitals (HOS), number of beds (BED), and the per capita GDP (PGDP), showed low 

q-statistics. This was due to the fact that HOS and BED cannot reflect the medical staff’s 

diagnosis, treatment skills, and service attitudes towards patients. In addition, with the 

background of increasing aging in China, except for some of the most developed areas, 

particularly the Pearl River Delta agglomeration in the southern Guangdong Province, the 

PGDP plays a relatively unimportant role in rural population aging. 

For different areas, the decisive factors were different. In Central, Eastern, Northeast, 

and Northwest China, the fertility rate (FER) showed a relatively strong determinant. One 

of the major demographic factors contributing to population aging is declining fertility. 

In Northeast China, the urbanization rate (UBZ), per capita years of education (PEDU), 

fertility rate (FER), longevity rate (LGV), and migration rate (MIG) were strong driving 

factors. Since the industrialization of the northeast began early, most of the agricultural 

population has shifted to the industrialized urban population. The higher the education 

level, the stronger the awareness of healthcare and the stronger the ability to be healthy. 

The northeast region is a historically multiethnic and culturally integrated region. 

Immigrant waves such as the “Rush to the Northeast” have greatly enriched the 

population gene pool of the northeast region and further increased the heterogeneity of 

the health status of the elderly population in the region. Rural areas in Northwest and 

Northern China are aging primarily as the result of demographic changes. In Southern 

China, the total population (TPOP) played a more significant role. As the most populous 

province, Guangdong has plenty of young and middle-aged migrant workers, making the 

problem of population aging less severe. Furthermore, the not-aged population moving 

into the city has a “diluting effect” on the aging of the population, and the aggregation 

and diffusion effects caused by different stages of city development are important for both 

aging migration. 
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Table 4. The q-statistics of the factor detector in various regions. 

Factors Central Eastern Northern Northeast Northwest Southern Southwest 

TPOP 0.057 0.467 0.125 0.516 0.087 0.01 0.113 

P55-64 0.052 0.672 0.273 0.722 0.138 0.066 0.023 

FER 0.082 0.516 0.104 0.629 0.09 0.131 0.177 

LGV 0.383 0.427 0.619 0.814 0.369 0.081 0.707 

MIG 0.175 0.651 0.364 0.486 0.118 0.048 0.159 

PGDP 0.165 0.711 0.065 0.644 0.157 0.078 0.127 

UBZ 0.323 0.893 0.372 0.798 0.153 0.104 0.351 

HOS 0.055 0.039 0.104 0.123 0.025 0.141 0.435 

BED 0.015 0.054 0.088 0.229 0.117 0.146 0.368 

PEDU 0.04 0.065 0.167 0.621 0.105 0.125 0.458 

ILT 0.028 0.124 0.205 0.242 0.094 0.089 0.388 

4.4.2. The Analysis of Interaction Detector on RPA 

In total, 55 pairs of interactions were calculated between 11 variables using the 

interaction detector. Table 5 shows that the interaction relationships among all the 

demographic, socioeconomic, healthcare, and educational factors. The q statistics in the 

table represent the explanatory power of the two factors acting together on the RPA. The 

synergistic effects between each pair of driving factors were manifested as bivariate- 

enhanced or nonlinear-enhanced influences on RPA in this study. This indicates that the 

interaction between the two driving factors had a stronger influence than each individual 

factor on the RPA. Among the interactions of all factors, the longevity rate (LGV), 

intersected with the other indicators, yielded the strongest value, with all reaching 0.72 or 

more, indicating that the longevity rate (LGV) was the most predominant factor affecting 

the RPA. The 𝑞 (LGV ∩ 𝑃55~64) was the maximum (0.82), indicating that the interaction 

between longevity rate and P55-64 was the strongest. In addition, among the interactions 

of the socioeconomic factors, 𝑞 (𝑇𝑃𝑂𝑃 ∩ 𝑃55~64) was the maximum (0.61). 

4.4.3. Statistical Significance of Differences among Driving Factors 

The significance of varying influence among the 11 factors was examined via the 

ecological detector and risk detector. Table 5 shows that upward of half were statistically 

significant, whereas statistically significant differences existed between the urbanization 

rate (UBZ) and the fertility rate (FER), the numbers of beds (BED) and the total population 

(TPOP), the per capita years of education (PEDU) and total population (TPOP), and the 

numbers of bed (BED) and per capita years of education (PEDU). Combining the results 

of the factor detector, it can be concluded that the fertility rate (FER) had a greater impact 

on RPA compared to urbanization (UBZ); and the influence of per capita years of 

education (PEDU) on RPA was significantly stronger than that of the number of beds 

(BED). 
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Table 5. The interaction detector analysis and statistically significant differences of the driving 

factors on RPA. 

Variables 
Demographic Socioeconomic Healthcare Educational 

TPOP P55-64 FER LGV MIG PGDP UBZ HOS BED PEDU ILT 

TPOP            

P55-64 0.61 (EB, Y)           

FER 0.25 (EB, Y) 0.61 (EB, Y)          

LGV 0.74 (EB, Y) 0.82 (EB, Y) 0.74 (EB, Y)         

MIG 0.20 (EB, Y) 0.61 (EB, Y) 0.18 (EN, Y) 0.74 (EB, Y)        

PGDP 0.19 (EN, Y) 0.62 (EB, Y) 0.14 (EB, Y) 0.73 (EB, Y) 0.11 (EN, Y)       

UBZ 0.24 (EB, Y) 0.62 (EB, Y) 0.20 (EB, N) 0.73 (EB, Y) 0.15 (EN, Y) 0.14 (EN, Y)      

HOS 0.25 (EB, Y) 0.62 (EB, Y) 0.30 (EN, Y) 0.72 (EB, Y) 0.24 (EB, Y) 0.24 (EN, Y) 0.26 (EB, Y)     

BED 0.20 (EB, N) 0.61 (EB, Y) 0.26 (EB, Y) 0.73 (EB, Y) 0.21 (EB, Y) 0.21 (EN, Y) 0.26 (EB, Y) 0.25 (EB, Y)    

PEDU 0.24 (EB, N) 0.64 (EB, Y) 0.26 (EB, Y) 0.74 (EB, Y) 0.20 (EB, Y) 0.2 (EN, Y) 0.22 (EB, Y) 0.28 (EB, Y) 0.25 (EB, N)   

ILT 0.22 (EB, Y) 0.64 (EB, Y) 0.22 (EB, Y) 0.74 (EB, Y) 0.19 (EN, Y) 0.19 (EN, Y) 0.23 (EB, Y) 0.27 (EB, Y) 0.24 (EB, Y) 0.20 (EB, Y)  

Note: (EN) represents the nonlinear enhancement of two factors, and (EB) represents the binary 

enhancing of two factors (see Table 2); Y represents the risk difference between the two factors is 

significant with confidence of 95%, and N represents no significant difference. 

5. Discussions 

In this paper, we focused on analyzing the spatial temporal patterns and potential 

influence factors of rural population aging in China from 2000 to 2020. The results 

revealed that the population aging in rural China is characterized by significant spatial 

heterogeneity. First, we analyzed the hot (high cluster) and cold spots of rural population 

aging by Getis-Ord Gi*. The analysis found that three major hot spots were formed in the 

northeast (northeast of Inner Mongolia and Liaoning), eastern (Zhejiang and Jiangsu), and 

southwest area (Chongqing and Sichuan), whereas cold spot clusters were formed in 

Tibet, Qinghai, the southern Guangdong, and the western Sichuan Province. Second, the 

standard deviational ellipse was utilized to analyze the spatial directional evolution of 

rural population aging. It was discovered that the aging of rural population tends to orient 

around a northeast-to-southwest major axis, implying that the southwest and northeast 

face more challenges regarding aging. Finally, the potential influence factors of rural 

population aging in China were detected. The longevity rate, fertility rate, and proportion 

of aged 55 to 64 years old are predominant factors of rural population aging in China. 

The results of this study need to be considered in combination with those from other 

recent studies that provide spatiality and the driving forces of population aging in China 

[5,6,8,40]. Our results preliminarily summarized the characteristics of different types of 

aging and highlighted changes in the spatiality of rural population aging, generally 

presenting a southwest-to-northeast evolution pattern. In addition, we concluded that the 

predominant influence factors of rural population aging in China are mainly caused by 

the natural changes in population age structure, and socioeconomic factors are the 

important reasons for the differences in rural population aging in different regions. The 

findings indicate that population aging is not only a spatial–temporal process but also a 

natural population structure change process. 

There are some deficiencies in this study to be discussed. First, the county-level 

analysis units are rather large to measure accurately the population aging in towns and 

villages. Although the county-level panel data used in this study reflected the spatial–

temporal distribution and evolutionary patterns of China’s rural population aging from a 

macroscopic perspective, the distribution of older populations in a county from a 

microscopic perspective cannot easily be reflected. Even so, due to the availability of data, 

2846 counties in 31 provinces on mainland China were still used as the unit of analysis. 

Second, the selection and discussion of variables influencing the spatial and temporal 

patterns are insufficiently exhaustive. Noneconomic factors such as natural 

environmental conditions, diet structures, and personalities should be further discussed. 

Third, there is also limited demonstration regarding how the aging of the rural population 
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differs in different regions. Take Shenzhen and Dongguan cities in Guangdong Province, 

for example. Due to the highly developed socioeconomics, relatively open household 

registration system, and many employment opportunities, young laborers continuously 

immigrate and earn a living there, making them two of the youngest cities in Guangdong 

Province and even in China. Therefore, future research should concentrate on the 

heterogeneous factors influencing rural population aging at a local level to provide a 

reference for the development of more specific solutions to the rural aging problem. 

6. Conclusions 

The study results revealed the spatial-temporal distribution and predominant factors 

of population aging in rural China from 2000 to 2020, and found obvious differences in 

the aging patterns within each regions. Consequently, it is necessary for the Chinese 

Government to make scientific and precise policy decisions with full consideration of the 

spatial variation. First, retirement resources and preferential policies should be 

appropriately tilted. For example, according to the needs of rural areas, a number of 

nursing homes should be planned and built in places close to township health centers to 

provide centralized care for the disabled and elderly. Moreover, well-being for migrant 

workers in rural areas needs to be elevated to ensure that they have the same level of social 

welfare as urban residents. Health-related infrastructures, such as hospitals, care centers, 

and nursery centers need to be constructed, especially in the less developed northern areas 

of China, to improve the accessibility of the aged to healthcare. As the number of rural 

nuclear families and empty nesters living alone increases, the ability of families to age in 

place diminishes, causing the tradition of relying on children to age in place to change 

[41]. Therefore, in the future, there will be an urgent need to introduce social capital, i.e., 

government and enterprise cooperation in providing social elderly care services, to solve 

part of the rural elderly care problem. Government subsidies and tax breaks can be used 

to encourage social forces to set up private institutions for the elderly. In addition, the 

private sector should provide services that enrich learning, recreation, and leisure 

activities for the rural elderly. Furthermore, private senior care institutions should also 

focus on strengthening their branding and determining a business model that fits their 

needs, taking into account the elderly consumer, relevant government policies and 

measures, and their own business philosophy to adopt a series of suitable business 

methods. 
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