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Abstract: Prediction of groundwater quality is an essential step for sustainable utilization of water
resources. Most of the related research in the study area focuses on water distribution and rational
utilization of resources but lacks results on groundwater quality prediction. Therefore, this paper
introduces a prediction model of groundwater quality based on a long short-term memory (LSTM)
neural network. Based on groundwater monitoring data from October 2000 to October 2014, five
indicators were screened as research objects: TDS, fluoride, nitrate, phosphate, and metasilicate.
Considering the seasonality of water quality time series data, the LSTM neural network model was
used to predict the groundwater index concentrations in the dry and rainy periods. The results
suggest the model has high accuracy and can be used to predict groundwater quality. The mean
absolute errors (MAEs) of these parameters are, respectively, 0.21, 0.20, 0.17, 0.17, and 0.20. The
root mean square errors (RMSEs) are 0.31, 0.29, 0.28, 0.27, and 0.31, respectively. People can be
given early warnings and take measures according to the forecast situation. It provides a reference
for groundwater management and sustainable utilization in the study area in the future and also
provides a new idea for coastal cities with similar hydrogeological conditions.

Keywords: groundwater quality; deep learning; predictive modeling; LSTM

1. Introduction

Urbanization and population growth have increased the consumption of water re-
sources [1]. Water resources are more important for water-scarce areas. With the economic
development in recent years, the problems of groundwater pollution and over-exploitation
have become more significant. As an important component of water resources, ground-
water plays an irreplaceable role in social development, especially in arid and semi-arid
regions [2]. The quality of groundwater directly affects the living standard of residents
and agricultural development [3]. Many scholars have evaluated the groundwater quality
in Nordic and Baltic countries, Korea, and Beijing [4–6]. Scholars assessed the quality,
groundwater chemical characteristics, and quantity of groundwater by different methods.
Affected by geology, pollution indicators, and human factors, the states of groundwater are
different. Groundwater resources should be developed and utilized sustainably, avoiding
pollution and overuse as much as possible [7].

The long short-term memory (LSTM) neural network is a recurrent neural network
(RNN). LSTM is designed to solve the dependency problem of the general neural net-
work [8]. This neural network is widely used in processing the sequence data, such as
monitoring data. The regular prediction method are deterministic model, based on the
relationship between influencing factors and groundwater quality [9]. Groundwater quality
prediction can provide the basis for environmental protection and sustainable development.
Different from the traditional prediction methods, this paper combines LSTM to predict the
concentration of groundwater indicators.
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This paper, based on rainfall and indicator concentration monitoring data, established
the LSTM to predict groundwater quality. By collecting monitoring data and monthly
rainfall data from October 2000 to October 2014 of Wendeng, the subdistrict of Weihai, the
characteristic of groundwater was analyzed. According to the characteristics and ground-
water utilization, total dissolved solids (TDS), fluoride, nitrate, phosphate, and metasilicate
were screened as characteristic factors. LSTM is established, and the five indicators’ con-
centrations can be predicted for the dry and rainy periods. Considering the effect of the
five indicators on groundwater quality comprehensively, the coastal groundwater quality
and changing trend can be assessed and predicted.

The major contributions of this paper are expressed as follows: (1) According to
the characteristics of coastal areas, the LSTM established in this paper is used to predict
groundwater quality. The basic data used to establish LSTM are previous long-term
monitoring data, which overcomes reliance on real-time monitoring data. (2) Combined
with prediction data, the changing trend of quality is realized, and protection measures can
be taken in advance. (3) The conclusions of this paper can be applied to coastal cities with
similar hydrogeological conditions. It provides a basis for the rational use of groundwater
resources and the realization of sustainable development.

2. Related Works

In arid areas, rainfall is sparse and evaporation rates are high, so groundwater is an
important local source of drinking water, for agricultural, industrial, and domestic pur-
poses [10]. Groundwater has less evapotranspiration and is less sensitive to contamination.
The challenges to global groundwater supply over the past decade have been enormous.
On the one hand, the quantity of groundwater is decreasing [11]. Population growth,
urbanization, and excessive extraction of groundwater lead to the water level declining
severely [12]. Irrigation using groundwater also decreases the available quantity [13]. On
the other hand, the quality of groundwater is worse and worse. Human activities affect
groundwater quality [14]. Due to the imperfect sewage treatment facilities, wastewater
would pollute the surrounding surface water systems and soil [15,16]. The discharge of
domestic wastewater and the excessive use of chemical fertilizers aggravate the pollution
of groundwater.

In order to evaluate the pollution degree of the environment, the concentration of
factors that caused pollution must be identified [17–19]. The groundwater quality index
(GWQI) and irrigation water quality index (IWQI) can evaluate groundwater quality for
drinking and irrigation purposes [20]. To consider the geographical elements, seepage of
surface water pollutants, and other influencing factors, the geographical information system
(GIS)-based analytic hierarchy process (AHP) model is applied to predict groundwater
quality [21,22].

With the application of computing techniques, different neural network models were
developed to evaluate the quantity and quality of groundwater [23,24]. Artificial intel-
ligence (AI) models take advantage of processing nonlinearity data, such as river water
quality [25]. Machine learning (ML) models including quantile regression forest (QRF), ran-
dom forest (RF), radial support vector machine (SVM), stochastic gradient boosting (GBM),
and gradient boosting machines are applied to predict water quality (WQ) [26]. Based on
the small-scale catchment of Klang River, the novel H2O deep learning (DL) and RF models
prediction of river WQI classification is better [27]. Combined with neural network models,
the groundwater quality and changing trend would be predicted in advance [28,29]. In
particular, artificial neural network (ANN) models have been applied widely in water
quality [30].

In the study area, the residents rely on groundwater for subsistence and agricultural
needs [31]. However, due to excessive groundwater extraction and agricultural pollution,
groundwater quality is under severe pressure [32]. The state and changing trend of ground-
water quality would be revealed in advance so that protection measures will be taken. The
ion concentration of groundwater is continuous and stable, and LSTM takes advantage
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of processing sequence data. The ion concentrations can be predicted based on LSTM,
providing reference basics for groundwater management.

3. Materials and Methods
3.1. Study Area

Wendeng District is bordered by land on the north, west, and east, and by the sea
on the south. It is located on the Pacific plate subduction front. The regional tectonic
plate is in the SuLu orogenic belt, which is located at the southern end of the Jiaonan-
Weihai uplift and Weihai-Rongcheng uplift. From the perspective of stratigraphy, this area
belongs to the Ludong stratigraphic division of North China. According to the rainfall and
temperature information of the study area, it has a coastline of 156 km with an average
annual temperature of 11.5 °C and an average annual precipitation of 762.2 mm. The
latitude of the study area ranges from 36 degrees to 37 degrees in the northern hemisphere,
with a temperate continental monsoon climate. The precipitation is unevenly distributed in
the study area, with summer precipitation accounting for about 70% of that annually. The
data studied in this paper are based on groundwater monitoring data from three wells. The
locations of the study area, the indicator concentrations of well locations, and the borehole
histograms are shown in Figure 1.

Figure 1. The basic information of study area and three wells.
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3.2. Index Selection

Due to the shortage of freshwater resources in the study area, the population and
industrial and agricultural production are more dependent on groundwater sources. In
order to screen indicators on behalf of aspects influencing the quality of groundwater, this
paper identifies the beneficial indicators and harmful indicators of water quality.

This paper screened the following indicators to predict and analyze: TDS, fluoride,
nitrate, phosphate, and metasilicate. Firstly, dental fluorosis is endemic in around volcanic
areas, due to the high fluoride content in daily drinking water. Scholars have analyzed
the correlative relationship between dental fluorosis and high fluoride [33]. Secondly, the
TDS is screened owing to the agricultural purpose of groundwater in the study area. The
study area is coastal, the groundwater depth is shallow, with strong evaporation, TDS will
accumulate in the topsoil causing soil salinization [34]. Thirdly, nitrate pollution is caused
by the overuse of agricultural nitrogen fertilizers, leaching from municipal landfills, and
leakage from industrial wastewater pipelines [35]. According to the International Agency
for Cancer Research (IARC), nitrate and nitrite are probable carcinogens [36]. Fourth,
according to the news related to the study area, pollution of farmland with superphosphate
has occurred. Nitrate and phosphate can assess the impact of urban development and
fertilizer use on groundwater quality. Finally, metasilicate is the only positive factor for
groundwater quality. According to relevant regulations, when the content of metasilicate
is not less than 25 mg/L, it is metasilicate-rich mineral water. As a natural nutritional
supplement, metasilicate can help soften blood vessels and promote bone development [37].

3.3. Data Sources and Monitoring Methods

In order to demonstrate the seasonal distribution pattern of rainfall and the distribution
pattern of dry and rainy periods, the four seasons were used as the time dimension to count
the proportion of rainfall in each season to the annual rainfall from 2000 to 2014, and then
to account for the proportion of rainfall during the dry and rainy periods. The seasonal
and annual variation patterns of precipitation directly determine whether an accurate
ion concentration prediction model can be built. Precipitation data are obtained from the
long-term monitoring well clusters. Groundwater sampling was carried out once a month
according to the operation specification in the Technical Specification for Groundwater
Environmental Monitoring (HJ/T164-2004). After determining the groundwater level,
washing the well, and stabilizing the parameters, a 500 mL polyethylene sampling bottle
was cleaned 2–3 times using the collected water samples and sealed. The ion concentration
detection method and standard are shown in Table 1.

Table 1. Ion concentration detection methods and standards.

No. Indicators Standards Measurement Method

1 TDS
”Standard examination methods for
drinking water—Organoleptic and
physical parameters”(GB/T5750.4-2006)

Gravimetric
method

2 Fluoride
”Water Quality-Determination of
Fluoride-Ion Selective Elec-trode
Method”(GB7484-87)

Ion selective
electrode method

3 Nitrate
”Water quality—Determination of
nitrate-nitrogen—Ultraviolet
spectrophotometry” (HJ/T346-2007)

Ultraviolet spectro-
photometry

4 Phosphate
”Standard examination methods
for drinking water—Nonmental
parameters” (GB/T 5750.5-2006)

Molybdenum blue
spectrophotometric
method

5 Metasilicate ”Drinking natural mineral
water test method” (GB8538-2016)

Molybdosilicate blue
photometry
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3.4. Data Preparation

The data are normalized to eliminate the effect of dimensionality between different
metrics. Normalized data make the prediction model training results converge to the
optimal solution more quickly. Kolmogorov–Smirnov (KS test) and Shapiro–Wilk (SW test)
tests are performed by SPSS software. The results are shown in Table 2, the data are less
than 0.05, indicating that the data are not a normal distribution. A more suitable normal-
ization method is the min-max normalization. Min-max normalization is characterized by
compressing the data interval between [0,1] without changing the characteristics of the data
distribution. It is applicable to data sets determined by maximum and minimum values.
The calculation formula is as follows:

x′ =
x− xmin

xmax − xmin
(1)

where x is the data to be normalized, x′ is the data from normalized, xmin are the minimum
value of data, xmax is the maximum value of data.

Table 2. KS test and SW test results of P values.

Methods TDS Fluoride Nitrate Phosphate Metasilicate

Kolmogorov–Sminov (KS test) 0.030 0.000 0.000 0.000 0.013

Shapiro–Wilk (SW test) 0.000 0.000 0.000 0.000 0.039

A total of 501 data sets were used in this study, taking into account that water quality
time series data are generally seasonal, non-linear, and fuzzy, the water quality time series
data are divided into rainy period and dry period data. During May to October of each year
is the rainy period, and During November to April of the following year is the dry period.

Considering the impact of water quality by this low value, the prediction of the
future dry 6 months of the indicator concentration should be based on the past 12 months
of monitoring data. In addition, the impact of water quality by rainfall should also be
based on the same month of the previous year or years of water quality monitoring data
for prediction, so this selection is for the same month for the data of the past two years.
Therefore, the input layer of the model is selected for the 12 months before the prediction
month and the same months of the previous two years of water quality monitoring data,
the output is the water quality data for a month in the dry or rainy season. The monthly
data on water quality include five dimensions: TDS, fluoride, nitrate, phosphate, and
metasilicate. Therefore, a single sample in the data set is composed of 5-dimensional water
quality data for the corresponding 14 months, labeled as the 5-dimensional water quality
data of the predicted month.

According to the monitoring data, the three wells are close and the changing trend of
indicator concentrations is similar. Therefore, the training set and the test set are established
based on the three wells’ monitoring data. After preprocessing the rainfall and monitoring
data, 80% of the monitoring data set is randomly screened as the training set and the other
20% as the test set.

3.5. Long Short-Term Memory Neural Network

The LSTM model is a gated neural network, and the existence of a “gate” can realize
selective memory of information. It is composed of a Sigmoid neural network layer and
dot multiplication operation. When the output is 0, no information is passed at this time. If
the output is 1, all the information can pass. LSTM model is shown in Figure 2.

ft = σ
(

W f [ht−1, xt] + b f

)
(2)

it = σ(Wi[ht−1, xt] + bi) (3)
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C′t = tanh(Wc[ht−1, xt] + bc) (4)

Ct = ft ∗ Ct−1 + it ∗ C′t (5)

Ot = σ(Wo[ht−1, xt] + bo) (6)

ht = Ot ∗ tanh(Ct) (7)

The operating mechanism of LSTM is that with the continuous replacement of data, the
model remembers the effective information, forgets the invalid information, and constantly
updates the weight status. Each hidden layer of the LSTM model contains three gates
(forgetting gate, input gate, and output gate) and a corresponding cell state (C). Firstly,
forgetting information is realized by the forgetting gate (F). When the new data xt and
the output data ht−1 of the last moment enter the model, the forgetting gate processes the
data with the help of the Sigmoid function controls the degree of data forgetting and then
updates the weight of forgetting gate. The next step is to reach the input gate (I), as shown
in Equation (3), the information is processed again with the aim of control that can be stored
in the cell state. The degree to which the current calculated state is updated to the cell state
can be seen. The cell state at the last moment is multiplied by ft to represent the part to be
forgotten, and the new candidate value is represented by it ∗ Ct

′, C′t to create a new vector
of alternative values for a tanh shaped network layer, as in Equation (4). The updated cell
state Ct is shown in Equation (5). The output gate (O) is then reached, which is used to
determine the output content, as shown in Equation (6). The Sigmoid function determines
the cell state information to be output, and then the tanh function is used to specify the
value between −1 and 1. The tanh adjusted value is then multiplied by the output value
as in Equation (7) so that the output value is determined by the model. W f , Wi, Wc, and
Wo, represent the corresponding weights, b represents the corresponding offset term, σ
represents the Sigmoid function, and Tanh represents the hyperbolic tangent activation
function.

Figure 2. LSTM model structure.

The LSTM model needs to go through two stages before it is put into use: the training
stage and the testing stage. The core goal of the training phase is to find the optimal weight.
Assuming that there is a certain time sequence data, the data at this time are taken as the
target value, the continuous data before this time is used to train the model, and each
weight is constantly updated. The training phase ends when the target value is met. In the
test phase, the target value is not set, and the error between the output data at the next
moment and the real value is checked under the condition of the optimal weight in the
current stage. If the error is small, the test phase is over, and the model in this state can be
used for this data prediction.

As shown in the training section of Figure 2, the water quality data of TDS, fluoride,
nitrate, phosphate, and metasilicate for 14 months are applied in the model used in this
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paper, and the corresponding month’s (t_15) output water quality data are used to train
model. The input of the LSTM model is set to 14 × 5, which corresponds to the five-
dimension water quality data received in 14 months. The output is set to 5, which is
responsible for the output of the predicted value of five water quality data.

The purpose of LSTM model training is to find a set of optimal model parameters that
minimize errors. The water quality prediction model in this paper should be evaluated
from the overall performance, hoping that the overall forecast data will be more accurate.
Therefore, mean square error (MSE) is selected as the loss function of training. MSE reflects
the degree of prediction error through the average sum of the squares of the difference
between the predicted data y′ and the real measured data y. Compared with the first-
order error loss function MAE, the result is closer to the real situation, which is more
sensitive to abnormal outliers and has higher requirements for the overall performance of
the model. Finally, the test set is applied to the trained model to get the prediction result of
the final model.

MSE =
1
n ∑n

t=1(y− y′)2 (8)

where y is the measured value, y′ are output values.
Taking into account the difference in groundwater quality between the rainy and dry

periods, groundwater quality in the rainy and dry periods was predicted with the help of
long short-term memory networks based on the time series of water sample data in the
study area.

Applying the model to groundwater concentration indicators in the study area requires
determining the step size, the number of implied layers, and the number of data dimensions.
The concentration of groundwater indicators in the study area is influenced by the amount
of rainfall. The annual variation trend is stable. In addition, the variation trends are similar
in the dry and rainy periods. Combined with the monitoring data in the study area, the
step size of the prediction model is 14.

The prediction accuracy of the model is low, when the number of hidden layers is
too small, while the number of hidden layers is too large, it will overfit. After repeated
debugging, the final number of hidden layers is one. Combined with the groundwater state
of the study area, this paper screened five indicators for prediction, from the perspective
of health (TDS and fluoride), agricultural pollution (nitrate and phosphate), and positive
index (metasilicate). The number of dimensions of the prediction model is five.

4. Results and Discussion
4.1. Rainfall Data

The climate type of the study area is a temperate continental monsoon climate. The
southeast monsoon blowing from the tropical ocean brings abundant rainfall, there is
more rainfall in summer and autumn, while there is less rainfall in winter and spring.
The proportion of dry and rainy periods to the total annual rainfall is about 20% and
80%, respectively. The rainfall data are presented in Table 3. Precipitation alternates
significantly between rainy and dry periods, with stable water distribution and similar
annual distribution. From 2000 to 2014, the proportion of rainfall in rainy and dry periods
is essentially constant every year. The stability of seasonal and annual variation is the basis
for the concentration prediction model.
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Table 3. The proportion of rainfall in each wet and dry period from 2000 to 2014.

Year
1# 2# 3#

Dry Period Wet Period Dry Period Wet Period Dry Period Wet Period

2000 0.20 0.80 0.21 0.79 0.20 0.80
2001 0.24 0.96 0.20 0.80 0.24 0.76
2002 0.16 0.84 0.17 0.83 0.17 0.84
2003 0.21 0.79 0.19 0.81 0.22 0.79
2004 0.15 0.84 0.15 0.85 0.15 0.84
2005 0.16 0.84 0.22 0.78 0.16 0.84
2006 0.14 0.86 0.10 0.89 0.13 0.86
2007 0.05 0.95 0.07 0.93 0.05 0.95
2008 0.29 0.72 0.27 0.73 0.28 0.72
2009 0.21 0.79 0.18 0.82 0.21 0.79
2010 0.08 0.92 0.11 0.89 0.07 0.92
2011 0.27 0.73 0.28 0.72 0.27 0.73
2012 0.20 0.80 0.21 0.78 0.20 0.80
2013 0.25 0.75 0.30 0.70 0.25 0.75
2014 0.26 0.74 0.30 0.71 0.26 0.74

Average 0.19 0.82 0.20 0.80 0.19 0.81

4.2. Monitoring Results of Groundwater

Affected by surface water infiltrating, the concentrations of groundwater indicators
are changing during both rainy and dry periods. The statistics of groundwater indicator
concentrations and the longitude and latitude of wells in rainy period are shown in Table 4
and those in dry period are shown in Table 5.

Table 4. Statistics of groundwater indicators concentration in the rainy period.

Names
of Wells

Geographical
Location

Statistical
Indicators

TDS
(mg/L)

Fluoride
(mg/L)

Nitrate
(mg/L)

Phosphate
(mg/L)

Metasilicate
(mg/L)

1 121.831 °E
/36.985 °N

Avg
Std.
CV (%)

421.44
81.02
19.22

93.64
51.05
54.52

0.17
0.12
73.40

0.04
0.03
64.75

30.86
5.11
16.55

2 121.882 °E
/37.063 °N

Avg
Std.
CV (%)

918.52
351.12
38.23

139.60
126.21
90.41

0.18
0.11
63.05

0.09
0.08
94.91

23.75
6.83
28.74

3 121.886 °E
/37.093 °N

Avg
Std.
CV (%)

698.09
196.32
28.12

100.42
60.81
60.55

0.25
0.09
34.51

0.30
0.19
62.23

21.53
7.37
34.23

Abbreviations used in this table include: Avg: average; Std. = standard deviation: CV: coefficient of variation (%).

Due to the three wells being close, the changing trends of the indicators are similar.
According to Tables 4 and 5, the average indicator concentration in the dry period is higher
than that in the rainy period. Standard deviation and coefficient of variation would measure
the statistical dispersion of data, the data in the dry period are higher than that in the rainy
period, indicating that the indicator concentrations are more similar in the rainy period.
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Table 5. Statistics of groundwater indicators in the dry period.

Names
of Wells

Longitute/
Latitude

Statistical
Indicators

TDS
(mg/L)

Fluoride
(mg/L)

Nitrate
(mg/L)

Phosphate
(mg/L)

Metasilicate
(mg/L)

1 121.831 °E
/36.985 °N

Avg
Std.
CV (%)

516.90
195.35
37.79

132.22
101.35
76.65

0.25
0.11
44.30

0.04
0.01
40.54

34.84
2.41
6.91

2 121.882 °E
/37.063 °N

Avg
Std.
CV (%)

934.70
359.17
38.43

186.93
135.35
72.41

0.14
0.14
100.56

0.18
0.09
47.17

26.68
4.29
16.08

3 121.886 °E
/37.093 °N

Avg
Std.
CV (%)

764.94
81.64
10.67

138.57
38.90
28.07

0.28
0.21
77.26

0.28
0.14
48.46

26.68
4.71
17.67

Abbreviations used in this table include: Avg: average; Std.: standard deviation; CV: coefficient of variation (%).

4.3. Modeling Result

In order to train and validate the proposed LSTM model, this paper applied Tensor-
Flow 2.6 and Python 3.8 to implement the experiments, Tensorflow is one of the most
popular machine learning frameworks available today, it can flexibly create complex topo-
logical networks and execute the environment for debugging. The training epoch was set to
50 to achieve a convergent model. Considering that large training epochs can cause unde-
sirable overfitting, this paper employed a model with 200 epochs, as shown in Figure 3. The
historical graph of the loss function shows that in the rainy and dry periods, the training
set rapidly declines and then slowly converges, while the validation set rapidly declines
and then remains stable, and the model converges without overfitting. The models were
trained on the two-core Intel(R) Xeon(R) Silver 4210R CPU and NVIDIA GeForce RTX3090
GPU server.

The predicted values of TDS, fluoride, nitrate, phosphate, and metasilicate in the rainy
season are shown in Figure 4. The predicted values of TDS, fluoride, nitrate, phosphate,
and metasilicate in the dry period are shown in Figure 5. In the experiment of this paper,
MAE is used to measure the error between the real value and the predicted value of the
two models. MAE reflects the degree of prediction deviation through the absolute value of
the difference between the predicted data and the measured data. This result can reflect the
real deviation of five water quality metrics and has realistic evaluation significance. The
errors are shown in Table 6.

MAE =
1
n

n

∑
t=1

∣∣y− y′
∣∣ (9)

Table 6. MAE of prediction results based on LSTM.

Indicators (mg/L) MAE (Rainy Period) MAE (Dry Period)

TDS 89.45 76.35
Fluoride 0.09 0.06
Nitrate 10.32 5.47

Phosphate 0.23 0.17
Metasilicate 4.21 2.78
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(a) (b)
Figure 3. LSTM model training results: (a) rainy period; (b) dry period.

Figure 4. Prediction values and true values for the five indicator concentrations in the rainy period.
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Figure 5. Prediction values and true values for the five indicator concentrations in the dry period.

According to Table 5, the fitting degree of the five indicators is good, the training of
the model for the rainy and dry period has been completed, and the output value of the
model can predict the actual concentration. As shown in Figures 4 and 5, the predicted
values have similar trends to the true values. In the study area, the true values of the five
indicator concentrations changed stably, the concentration in the dry period is higher than
that in the wet season. The prediction can reflect the law of change. If the prediction values
of TDS are high, it is necessary to pay attention to whether there is a demand for farmland
irrigation in the future. Corresponding measures should be taken in time to avoid soil
caking caused by slightly saline or saline water, which affects crop yields. If nitrate and
phosphate concentrations are predicted to be high, an early warning should be made to
note whether the local farming season is approaching and proper planning should be made
to avoid excessive use of agricultural fertilizer. When the concentration of metasilicate
increases at a certain stable water source point, as a reference, the water source point can be
considered as the drinking water source for optimal utilization of the water source.

The model established in this paper can predict groundwater indicator concentration.
Compared with traditional methods, such as the MODFLOW, this model does not rely on
geological data, and it is simple to carry out. When the indicator concentration data for one
consecutive month are available, the model can predict the concentration of the next six
months using input data, and the model can continuously output data by circulating input
data. The protection measures can be taken in advance, and the predicted values are set
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as a reference for groundwater protection. Therefore, the model can guide practical work
effectively and contribute to the predictability of groundwater quality changes.

4.4. Application of the Concentration Prediction

In this paper, the LSTM neural network model is established and applied to predict
the concentrations of five indicators in three specialized observation wells. The predic-
tion values are based on the changing principles of previous indicators’ concentrations,
indicating that the model could predict the indicators’ concentrations for the next period.
The predicted changing trends of five indicators are shown in Figure 6. From November
to February, the concentrations of TDS, nitrate, and metasilicate would fluctuate, and the
maximum occurred in February. Due to the quantity of groundwater decreasing, there
is less rainwater supply, leading to the concentration increase. The concentration would
increase by various degrees from March to April. Compared with TDS and nitrate, the
concentration of metasilicate is more stable. The concentrations of fluoride and phosphate
would increase from November to March, and decrease from March to April.

Figure 6. The predicted concentration values of five indicators during the next period.

5. Conclusions

Groundwater, as a main water source, is important for residents’ life. The quality of
groundwater plays an irreplaceable role in social development. Groundwater sampling is
difficult, causing the monitoring data to not to reflect the current state. Quality prediction
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results could provide a reference to the administrative department. In this paper, Wendeng
District was selected as a study area, and the five indicators were screened, including TDS,
fluoride, nitrate, phosphate, and metasilicate. This paper proposed a prediction model
based on LSTM, combined with the characteristics of the study area. Based on three wells’
monitoring data over fifteen years, groundwater quality could be predicted. Affected by
surface water infiltrating, the concentrations of groundwater indicators change during dry
and rainy periods.

In this paper, prediction models of dry and rainy periods were established. MAE is
used to measure the errors between the true values and the predicted values. According to
the results of LSTM, MAE is low, indicating that the accuracy of the prediction model was
high. This model could reflect the groundwater quality changes accurately. Applying the
dry period prediction model, the concentration of five indicators was predicted. Prewarning
system could be established based on prediction data, abnormal changes will be forecasted.
Considering the present and prediction stats of groundwater quality comprehensively,
protection measures could be taken in advance.

In future works, more indicators could be taken into consideration, in order to assess
groundwater quality more comprehensively. Moreover, the indicators’ concentrations are
visible by Arcgis.
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