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Abstract: The study sought to review the works of literature on agent-based modeling and the influ-
ence of climatic and environmental factors on disease outbreak, transmission, and surveillance. Thus,
drawing the influence of environmental variables such as vegetation index, households, mosquito
habitats, breeding sites, and climatic variables including precipitation or rainfall, temperature, wind
speed, and relative humidity on dengue disease modeling using the agent-based model in an African
context and globally was the aim of the study. A search strategy was developed and used to search for
relevant articles from four databases, namely, PubMed, Scopus, Research4Life, and Google Scholar.
Inclusion criteria were developed, and 20 articles met the criteria and have been included in the
review. From the reviewed works of literature, the study observed that climatic and environmental
factors may influence the arbovirus disease outbreak, transmission, and surveillance. Thus, there is a
call for further research on the area. To benefit from arbovirus modeling, it is crucial to consider the
influence of climatic and environmental factors, especially in Africa, where there are limited studies
exploring this phenomenon.

Keywords: dengue fever; arbovirus; climatic variables; environmental variables; agent-based model-
ing; temperature; precipitation; humidity

1. Introduction

Infectious diseases such as dengue, malaria, chikungunya, Zika, and yellow fever, to
mention a few, are emerging as a worldwide challenge in public health. They occur rapidly
and spread to large areas in a relatively short space of time, thus leading to an increase in
mortality rates globally as well as in Sub-Saharan Africa (SSA) [1–7].

In addition, globally, mosquito-related diseases which include dengue fever, malaria,
chikungunya, Zika, yellow fever, and others have turned out to be a major public health
concern, with estimates that half the approximated world population of 9 billion is in
danger of contracting an arbovirus infection by 2050 [7–9].

Arthropods are abundant in tropical and subtropical regions, resulting in the high
proportion of arboviruses in these regions [6]. The global distribution of viruses has caused
some arboviruses to be endemic in specific regions of the world. Global warming, defor-
estation, and urbanization have resulted in a dramatic increase in vector-borne diseases in
the world due to the rapid expansion of vector habitats [10]. The transportation of infected
mosquitos and their eggs to various new ecological niches is increased through interna-
tional travel, while shipping and industrialization can also facilitate virus-vector–human
host interactions, causing outbreaks owing to lower herd immunity. Herd immunity in a
community is acquired when a high percentage of the community is immune to disease
through vaccination or previous infection. Lack of enough approved dengue vaccination
strategies, different dengue strains, and lack of efficient and sustainable vector control
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strategies contribute to lower herd immunity. Furthermore, the active circulation of multi-
serotypes of dengue make it hyperendemic in many countries. It is posited that, decrease in
cross-immunity is among the contributory factor to large dengue outbreaks [11]. Outbreaks
happening in new areas for the first time mostly tend to involve immunologically naïve
populations resulting into high rates of attack [11]. Marchi, Trombetta, and Montomoli [10]
report that “the greatest health risk of arbovirus emergence comes from extensive tropi-
cal urbanization and colonization of this expanding habitat by the highly anthropophilic
mosquito, Aedes aegypti, together with the recent invasion into the Americas, Europe and
Africa of Aedes albopictus that could enhance transmission of these viruses in temperate
regions”. Figure 1 shows the distribution of dengue, chikungunya, yellow fever and Zika
infections in Africa [12].
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Dengue virus (DENV) has spread throughout the world and is regarded as the most
menacing arbovirus disease [6,7,13,14]. A study by Marchi, Trombetta, and Montomoli [10]
reports on the existence of high levels of dengue endemic transmission in Americas, the
western Pacific, and south-east Asia with around 4 billion people at risk of being infected.
Additionally, DENV has been identified in Europe since 2010 and in 2012 an outbreak
was recorded in Madeira. It has been stated that DENV’s four serotypes are spreading
across Africa, although the most frequently reported serotype is DENV-2 [15]. A study
by Mordecai et al. [16] reports the possible shift in the disease burden from malaria cases
to arboviruses such as dengue and chikungunya in SSA countries due to climate change
and urbanization. Climate change provides suitable environment that favors Ae. Aegypti
while providing unfavorable environments for Anopheles gambiae [16,17]. The shift into
vector-borne diseases burden is already witnessed in Sudan in which chikungunya, Rift
Valley fever and dengue cases have been reported in Red Sea state, Kassala state and Darfur
region [17]. It is alarming when this shift in disease burden is happening in Africa because
most of the communities are poor, the governments and health systems do not have control
program, health policies or local capacity for early detection and response to arboviral
diseases as soon as they emerge [17]. In Tanzania, DENV has also been reported since
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2010 [18] with a substantial rise in dengue fever cases in April and May of 2019 [19]. Dar es
Salaam was declared an epicenter of the dengue outbreak that occurred in 2019 and the
preceding outbreaks even though there have been occurrences in different regions [19].

Rweyemamu et al. [20] and Mahmood et al. [14] outline that, it is crucial to establish
good monitoring, investigation, and reporting systems for infectious disease incidences
which will play a major role in the management of existing diseases as well as contribute to
an adaptive and flexible response to new and emerging diseases. Every year, millions of
individuals are at risk of serious illness as a result of new infections. A lack of infrastructure
for timely collecting, reporting, and analyzing epidemic data has posed a significant threat
to public health security at the local, regional, and national levels [14,20]. In addition, it
has been noted that policymakers, epidemiologists, and other related stakeholders depend
highly on accurate and timely information to make informed decisions that will improve the
well-being of the nation as well as the national healthcare system [14,21,22]. Furthermore,
real-time data provide decision-makers with the knowledge required to respond effectively
to the population’s health necessities; as a result, the value of timely and accurate data can
be observed [23].

1.1. Background Concepts
1.1.1. Dengue Fever

Dengue fever is a serious disease that affects tropical and subtropical countries world-
wide [24,25]. The disease is a major public health concern with economic implications. Mah-
mood et al. [14] reported that 3.98 billion people in 128 countries are at risk of contracting
dengue [13,26,27]. An annual estimate of over 105 million dengue cases is reported [11,28].
A study by Cattarino et al. [28] further estimates that most dengue disease burden was
concentrated in South and Southeast Asia valued to about 58%, 26% occurring in SSA
mostly concentrated in Central and Eastern Africa, and Latin America had an estimation of
16% of the global burden. Although the information about the prevalence of viral diseases
is limited, it is noted that several studies have been carried out to determine the prevalence
and spread of dengue infections and outbreaks in Tanzania [29]. Conversely, the literal
roles of climatic, socio-environment and ecological variables in the spread of dengue have
not been extensively investigated [30].

The health system in SSA lacks the capacity for adequate disease reporting and timely
response due to unreliable data [22,31]. The untimeliness, incompleteness, inconsistency,
and inaccuracy of the data, among other things, contribute to data unreliability [22,31].

Ae. Aegypti is the main vector for dengue, chikungunya, yellow fever and Zika [32,33].
Aedes albopictus which is a secondary vector for dengue, chikungunya, yellow fever and
Zika is also present in some regions in Africa such as Cameroon, Gabon, Nigeria, Congo,
Côte d’Ivoire, Central African Republic, Sudan and South Africa [16,34,35]. Ae. Aegypti is
considered a domestic vector because it is dominant in urban areas, while Ae. Albopictus
is mostly found in rural, peri-urban settings and forest areas in tropical, subtropical and
temperate regions of the world [10,36–38]. The difference in distribution of these species is
related to their behavior based on host preference, blood feeding, preference for vegetation,
suitable conditions for resting and ovipositioning [35–37]. Ae. Albopictus can be quite
competitively dominating when it coexists with Ae. Aegypti [16].

Some studies provide information on dengue transmission and risk factors in African
countries such as Tanzania [29,34,39,40], Kenya [16,34], Uganda, Mozambique, [16] Su-
dan [17,35,41], Côte d’Ivoire, Cameroon, Gabon [16,34,42] Senegal, Nigeria, and Sierra
Leone [16,34]. There is a growing evidence that in SSA epidemic and endemic transmis-
sions of Aedes-transmitted arboviruses such as dengue, chikungunya and others have
regularly occurred but have been undiagnosed or misdiagnosed as malaria [16]. The in-
crease in climate suitability for Aedes-transmitted arboviruses pose an under-recognized
public health burden to the African countries [16]. Among the factors that contribute to
dengue infection transmission are climate change, urbanization, globalization of trade and
travel, increased population density, and the unavailability of effective prevention control
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methods [16,43]. Furthermore, Dumont et al. [44] identified risk factors for dengue fever
in which individual factors such as age, sex, and level of education were important in
determining the risk of contracting DENV. Dumont et al. [44] indicated that household
factors such as the number of people residing in a room as well as the size of the community
increased the chance of contracting dengue fever. Socioeconomic and demographic factors
included low income while living and traveling to endemic areas increased the chances
to contact DENV. The existence of anthropogenic breeding areas for Ae. Aegypti (such
as disposed of plastic containers and car tires that are not used), presence of vegetation
density (such as leaf axils, fallen leaves, flower brats, and tree holes), height above sea
level and existence of animals that are associated with dengue and chikungunya viruses’
transmission made up the environmental factors [7,44]. Thus, humidity, temperature,
human migration, wind speed and sanitation contribute to the epidemic conditions in areas
affected by dengue and chikungunya [6,44–46].

The World Health Organization (WHO) recommends integrated vector control strate-
gies to prevent and control dengue infections that can lead to outbreaks [13,23,43]. These
control strategies can be through environmental management control by eliminating the
potential breeding sites for mosquitoes, namely stagnant water sites as well as chemical
and biological controls. According to the literature, most of the control and prevention
strategies are based on mosquito vector density management [23,43], which is influenced
by different factors among them being climatic and environmental factors.

1.1.2. Agent-Based Modeling

Agent-based modeling (ABM) presents a useful approach for processing health data
and producing simulations that provide meaningful information for decision-makers
concerning different disease outbreaks, reporting, and containment. ABM describes the
underlying social/epidemiological system as well as provides a versatile and powerful
platform for modeling different healthcare interventions and answering a wide range of
policy-making questions [5]. As a result, ABM is regarded as a relatively new simula-
tion technique that is gaining popularity and supports many varied applications across
different fields.

ABM exhibits several benefits that make it suitable for modeling real-world systems,
including bounded rationality, emergent behavior, and the bottom-up approach in mod-
eling which results in a macro-system based on sub-system interactions. Other benefits
include the heterogeneity and discrete nature of agent-based models which make them
suitable for modeling heterogeneous populations; networked interactions among agents, as
well as the completeness of the agent-based models since they are well detailed as they pro-
vide both individual and aggregate level detail simultaneously. Furthermore, agent-based
models are very flexible and allow the incorporation of randomness into the models with
agents’ decisions being based on probability rather than being strictly deterministic [47–50].

ABM follows a bottom-up approach which makes it a flexible and powerful tool
for modeling complicated systems that have many interacting components [51,52]. In
epidemiology, due to the increased complexity of the systems that need to be analyzed and
modeled based on their interdependencies, ABMs complement statistical and mathematical
models making them more accurate and suitable for predictions [53–55]. Complex systems
and complexity lead to the rise of unpredictable patterns or global structures as a direct
outcome of local-level procedures [52]. Furthermore, the organization of data into databases
at finer levels of granularity and the advancement in computation power makes ABM
more favorable than system dynamics, spatial interaction, and diffusion models which
cannot handle the heterogeneity of data although they have successfully predicted macro-
level behavioral patterns. Furthermore, ABM is capable of simulating individuals, their
interactions, and the resulting consequences [47,49,53].

Several studies have modeled different aspects of dengue epidemics. Jacintho et al. [56]
observed the behavioral spread of dengue fever based on how the simulation agents interact
with their environment. Jindal and Rao modeled mosquito-borne diseases including
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malaria, dengue, and chikungunya by considering the human mobility patterns as a major
source of the spatial movement of infections [5]. Mahmood et al. [14] modeled the dynamics
of the population together with how both humans and mosquitoes interact intending to
assist epidemiologists to explore and predict infectious disease transmission and spread.
In this study, the benefit of using ABM over the compartmental model has been explored
and SEIR model is utilized through a proprietary AnyLogic framework. A network type
based on distance is used in which messages are passed to accomplish the interaction of
host and vector agents. The whole population of the host is initialized in a susceptible
state rather than distributing the population with different initial states which can enhance
realistic model configurations. Pathogen’s structure and behavior is restricted to serotype
initialization that is DENV1, DENV2, DENV3 or DENV4 and the key parameters such as
survivability, infectivity, incubation period plus transmissibility. The framework has not
considered the cross immunity of the serotypes. The framework does not support a large
population of a million or more agents and lacks a mobility layer that can incorporate the
movements of both host and vector layers.

A study by Stiner and Chellamuthu [57] used ABM to model the complex agent
mosquito with its spatial-temporal attributes; the life cycle of a mosquito is modeled to
show the effect of temperature on the different stages of mosquito development depending
on the different types of mosquitoes. Then, different control strategies are advised for the
different diseases caused by the mosquitoes.

A study by Mniszewski et al. [58] used agent-based modeling to simulate the spread
of infectious diseases through the population using EpiSims software. EpiSims uses three
sets of information (population, location and movement of individuals between locations)
to simulate a disease spread in a geographical area. The study leveraged the usefulness of
various models by suggesting a hybrid network patch model to provide insights into the
effect of variable probabilities in the infection model on agent-based modeling. However,
this study does not capture the host–vector interactions [5].

Other studies have modeled how temperature, rainfall, and humidity affect the spread
of arboviruses [59]. An increase in temperature favors the virus’ replication and a shorter
extrinsic incubation period, which results in increased density of infected vectors [59,60].
Extreme heat threatens adult mosquito survival rates and more quickly dries out breeding
grounds, reducing mosquito numbers. Increased breeding sites and decreased mosquito
mortality are also observed with an increase in precipitation and humidity levels [60],
while higher precipitation may minimize mosquito numbers by washing out the imma-
ture stages [61].

It is thus important to include climatic and environmental factors in disease modeling
because these factors have a great influence on infectious disease outbreaks, spread, and
surveillance. This paper presents a review of the involvement of climatic and environmental
factors in modeling arbovirus diseases globally and in the African context.

2. Materials and Methods

A search strategy was developed and used to search for articles in various databases
resulting in 2334 published articles on infectious disease modeling being collected. The
studies included 1875 journal articles, 131 published books, 89 book chapters, 86 conference
articles, 93 dissertations, 15 conference abstracts, 9 book reviews, 8 systematic reviews,
11 government publications, 10 theses, 3 guidelines, and 4 case reports. All these articles
were obtained from searches conducted in four databases, namely, Rsearch4Life, PubMed,
Scopus, and Google Scholar.

2.1. PubMed Search

A PubMed database search conducted on 1 April 2022 yielded 108 results which
fulfilled the designated search query. The search query was created using MESH by the
criteria that are presented in Appendix A.
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2.2. SCOPUS Search

A SCOPUS database search conducted on 2 April 2022 yielded 1023 results which
fulfilled the designated search query as given in Appendix B.

2.3. Research4Life Search

A search using the Research4Life database was conducted on 2 April 2022 and yielded
230 results which were sorted by relevance. The selected language was English, and the
results included items from outside the Research4Life library as well to be able to capture
other literature that satisfies the search query. The following search query was used.

(Dengue OR “Dengue Fever” OR “Viral Disease*” OR “Viral Infection*” OR “Hemor-
rhagic Fever” OR “Aedes Aegypti” OR “Aedes Albopictus” OR “Dengue Virus” OR DENV)
AND Climat* OR Temperature OR Rainfall OR Humidity OR “Relative Humidity” OR
Weather) OR (Environment* OR Vegetation OR Forest* OR “Forested Area*” OR Woodland*
OR Forestland* OR Wetland OR Swamp* OR “Environmental Factor*”)) AND (“Agent-
Based Model*” OR “Agent-Based Model*” OR “Modeling Agent-Based” OR “Multi-Agent
Systems” OR “Individual-Based Systems”).

2.4. Google Scholar Search

A search via Google Scholar was conducted on 2 April 2022 and yielded 1050 results
using the anytime field option and sorting by relevance. Of the 1050 results, only 973 were
retained for further analysis. The following search query was used.

(Agent-based Model OR Multi-Agent-Based Model OR Individual-Based Model)
AND (Dengue* OR DENV OR Aedes*) AND (environment* OR climat* OR weather OR
spatiotemporal OR rainfall OR temperature OR precipitation OR humidity) AND (Africa
OR Sub-Saharan Africa).

All the search results were exported to RAYYAN for screening and duplicate detection,
during which 902 exact duplicates were identified and one article had four exact duplicates.
There were 409 duplicates that were automatically resolved, while 493 duplicates had
to be manually resolved as the RAYYAN software did not identify 100% similarity in
the articles. After duplicate removal, title and abstract screening were performed and
136 articles qualified for full-text screening.

2.5. Inclusion Criteria

Only studies that met the following criteria were included:

i. Those that investigated the effects of climatic factors or environmental factors (for
example rainfall, temperature, humidity, landscape type, mosquito habitats) on the
incidence, transmission, and modeling of infectious diseases.

ii. Those related to arboviruses, especially in Africa.
iii. Those that involved modeling of arbovirus disease.
iv. Studies that were published in any year.
v. Articles that were published in English.

3. Results

As shown in Figure 2, which represents the PRISMA flow diagram, 20 articles have
been included in this review. These articles contained information on either climatic
variables and environmental variables with their relation to arbovirus diseases in Africa
or globally or infectious disease modeling using ABM or other techniques. The articles
are summarized in Table A1 in Appendix C. This review aimed to determine the influence
of environmental variables such as vegetation index, households, mosquito habitats, and
breeding sites, and climatic variables including precipitation or rainfall, temperature, and
relative humidity on dengue disease modeling using an agent-based model in an African
context and globally. Due to the limited availability of literature, the scope of the review
had to be expanded to include all literature obtained from the search which met the stated
inclusion criteria. Most studies on dengue modeling and ABM have been conducted in
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other countries rather than African countries. From Table A1, six studies were conducted
in an African context, while twelve studies were from other continents, one study covered
a global context, and one study was carried out in a virtual environment. Six studies
have either modeled malaria using ABM or have incorporated climatic or environmental
factors when modeling malaria [59,62–68]. Studies included in the review have satisfied
the stated inclusion criteria and have either used ABM or included the component of
climatic or environmental variables and their influence on infectious disease transmission.
Three studies modeled Ae. Aegypti or Ae. Albopictus mosquitoes which apart from being
dengue vectors, are responsible for spreading other pathogens such as Zika, yellow fever,
chikungunya, and others [24,32,62,69–72]. Ten studies modeled dengue disease using either
ABM or other modeling techniques as represented in Table A1 in Appendix C [14,25,26,73–78].
Eighteen studies have considered climatic factors in modeling the diseases, thirteen studies
have involved environmental factors in modeling the diseases, out of which, eleven studies
have included both climatic and environmental factors. Furthermore, eleven studies have
modeled diseases using ABM, four studies used machine learning, one study used time
series, and four studies used mathematical modeling.
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3.1. Temperature

Various temperature metrics have been used in different studies to establish their rela-
tionship with arbovirus incidences [59,60]. Metrics such as mean temperature, minimum
temperature, maximum temperature, air temperature, and water temperature have been
identified to influence mosquito development, especially during their aquatic stages that
is egg, larvae, and pupae stages [14,24,25,32,68,75,76,78,79]. The range of Ae. Aegypti is
tremendously constrained by yearly minimum low temperatures below which its eggs are
inviable [69], while on the other hand, Ae. Aegypti abundance could increase or decrease
depending on the rate of warming as well as the magnitude of temperature increase [6,7,69].
The optimal temperature range suitable for adult Aedes mosquitoes is established in dif-
ferent studies to be between 15 ◦C and 30 ◦C which is within the range of 10 ◦C to 35 ◦C.
Deza-Cruz [70] when citing Goindin et al. [80] reported a study in the Caribbean islands
modeling dengue disease and chikungunya disease using machine learning algorithms in
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which it was found that half the Ae. Aegypti female mosquitoes in an experiment survived
for more than 38 days when the temperature was 27 ◦C, while the other half lived for fewer
than 25 days when the temperature was 24 ◦C or 30 ◦C [70,80]. The number of days a female
Ae. Aegypti can transmit the dengue disease is strongly influenced by the temperature;
at the optimal temperature of 27 ◦C infectious days can be as high as 21 days, while this
decreases when the temperature is 20 ◦C and is around 20 days when the temperature
is 30 ◦C [70,80].

The study by Talaga et al. [24], when modeling Ae. Aegypti using an inference approach,
showed that urban areas which were dominated by warmer and dry surroundings leading
to less vegetation cover were associated with lower productivity rates, survival rates, and
dispersal compared to the rural surroundings but due to the effect of warmer temperature
on reducing the immature development time, more offspring could be produced resulting
in the production of more adult mosquitoes per year [24]. In slightly urbanized sites, the
relative importance of temperature was high, and it positively influenced the abundance of
Ae. Aegypti immatures [24].

Higher temperatures speed up the growth of larvae into adult vectors, accelerate
the rate at which they bite, and shorten the time needed for extrinsic incubation. As
a result, vectors become infectious earlier and bite more frequently resulting into an
increase transmission of diseases [73,81]. However, to counteract the beneficial effect of
vector abundance, higher temperatures may shorten the vector survival time. At 20 ◦C
the extrinsic period is estimated to be 29.6 days, while at 30 ◦C, the extrinsic period is
5.2 days [70,82].

On the other hand, a study by Kapwata et al. [64] which explored rural hospital
admissions for diarrheal disease, pneumonia, malaria, and asthma with climatic factors
using wavelet transform analysis found a positive correlation between high temperatures
with an increase in malaria transmission as mosquitoes develop faster as temperature
increases and they can feed at shorter intervals because blood meals are more rapidly
digested thus increasing the risk of malaria transmission [64].

Additionally, a study in South Sudan by Mukhtar et al. [66] when modeling malaria
assessed the impact of temperature on the dynamics of the mosquito population using
a compartmental mathematical model. Mukhtar et al. [66] reported that temperatures
of 10 ◦C–35 ◦C are most favorable for mosquitoes breeding and breeding rates decrease
with temperatures outside of this range. The study points out that because mosquitoes
are heterothermic organisms and therefore unable to regulate their body temperatures
on their own, their body temperature is mostly influenced by the environment in which
they are found [66]. This study found a correlation between mosquitoes’ abundance
and a mean monthly temperature range of 25 ◦C–30 ◦C, when temperatures were consis-
tently above 10 ◦C mosquitoes were active but they were sedentary when temperatures
reached 35 ◦C. A daily temperature range of 20 ◦C–35 ◦C was found to be ideal for the
progression of mosquitoes and the spread of malaria and thus concluding that tempera-
ture ranges of 25 ◦C–30 ◦C were more suitable for mosquito progression at all stages in
their life cycle. Immature mosquitoes were more sensitive to temperatures at 25 ◦C than
mature mosquitoes [66].

Mulyani et al. [76] developed an ABM using NetLogo to simulate the spreading of
dengue fever by observing related parameters and interactions, agents’ behaviors and
interactions, and environmental factors. The model was calibrated with meteorological
data from the Dramaga region in Bogor in 2015. Mosquitoes were inactive for a temperature
range between 0 ◦C and 10 ◦C and temperatures above 39 ◦C. The random flying behavior
of mosquitoes was observed at temperature ranges greater than 10 ◦C and less than 20 ◦C.
Between 20 ◦C and 39 ◦C mosquitoes could fly randomly and exhibit bite behavior, while
reproduction was possible at temperatures between 25 ◦C and 27 ◦C. Mosquitoes die at
temperatures less than 0 ◦C and greater than 41 ◦C. The model showed the sensitivity of
temperature on the behavior of modeled agents and their interactions with the environment.
The human infection in the model showed a 16% decrease in infection in the first period
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January–June compared with the second period July–December 2015, which correlated
with the human infection at Dramaga sub-district which decreased by 56% in the two
categorized 6-month periods [76].

A study by Mahmood et al. [14] modeled dengue infection in Pakistan using an ABM
and observed a similar trend in dengue cases prevalence between the actual values and
the simulated results confirming dependency of dengue transmission on temperature
and increased biting rate of Ae. Aegypti with temperature increase thus giving rise to
dengue cases [14].

A study by Rodríguez [78], developed an ABM, which integrated a geographic infor-
mation system to simulate the spread of dengue fever disease in the Central Valley of Costa
Rica. Individual interactions in a geospatial context were analyzed with different variables
such as precipitation, temperature, socio-economic and demographic variables to identify
the factors that affected the rates of dengue fever in the targeted urban environments of
Costa Rica. The temperature ranges in which mosquitoes fed and bred was 20 ◦C–39 ◦C
with an optimal survival temperature of approximately 27 ◦C–31 ◦C. Ae. Aegypti was
inactive below 10 ◦C and above 39 ◦C. Meanwhile, temperatures below 0 ◦C and above
41 ◦C would result in the death of the mosquito. In this study, an increase in dengue cases
during winter seasonal months of May to November was observed, while the number of
cases decreased in the summer months of December to April. Therefore, high temperatures
and high precipitation patterns greatly affected the highest proportion of reported dengue
fever cases in the region [78].

3.2. Precipitation

The reviewed studies indicated a higher transmission of arboviral diseases during the
rainy periods with higher temperatures and lower diseases transmission during the dry
season [24,67]. The abundance of Ae. Aegypti immatures in moderate and highly urbanized
sites was found to be positively influenced by the size of the aquatic habitat and the amount
of precipitation. Increased rainfall was determined as a risk factor for arbovirus outbreak
during the study period by Rumisha et al. [67] when modeling malaria using Bayesian
regression models and machine learning models. Low-lying regions and wetlands created
suitable habitats for mosquitoes and increased the risk of disease transmission [69,72].

Flooding can be disadvantageous to vector populations, causing a reduction in the
mosquito population by destroying breeding sites and aquatic stages of mosquitoes [66].
Consequently, an inverse relationship can exist between precipitation and mosquito popu-
lations where breeding sites have been washed away with flooding water [70].

Lack of rainfall and drought are also associated with lower disease incidence, be-
cause drought usually results in a reduction in mosquito populations [67]. A study in
Rufiji recorded low transmission of malaria during the dry season of the year and higher
transmission during rainy periods with higher temperatures [67].

Ae. Aegypti breed in containers with clean water which are mostly located in human
residences. Thus, changes in precipitation could affect the availability of these vector
breeding sites depending on their location either indoors or outdoors rain filled objects and
as a result influence the vector abundance [73]. A study by Anders [73] modeling dengue
disease using a mathematical model in south Vietnam reported that prominent seasonal
peaks which coincided with the rainy season were exhibited by dengue disease and every
year it was found to lead to tens of thousands of hospitalizations [73,83,84].

A study by Deza-Cruz [70] citing Alto and Juliano [85] reported that higher tem-
peratures with no drying conditions increased the number of adults produced whereas
higher temperatures with drying conditions decreased the number of adults produced.
Aedes mosquito abundance increased with rain but decreased with more rain as moderate
rain could help in the creation of breeding sites but prolonged or very heavy rain might
have destroyed the sites and wiped away the immatures or kill mosquitoes [70,81,85].
An increase in Aedes mosquito abundance positively associates with increased dengue
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and chikungunya transmissions, while its decrease is associated with low dengue and
chikungunya incidences [70].

A study in Mali and Burkina Faso that modeled malaria using an impact model found
that a one-month rainfall threshold of 80 mm followed by two monthly rainfall thresholds
of at least 60 mm would result in a malaria epidemic [65]. Low or excessive levels of
rainfall negatively affected the survival probability of immature mosquitoes [66] because
the mosquito birth rate decreased towards zero when rainfall was minimal and increased
with an increase in rainfall but excessive rainfall might lead to washout of the immatures
and thus affect the mosquito birth rate. However, mean monthly rainfall range of 20–30 mm
influenced the mosquito abundance [66]. A daily rainfall range of 17–20 mm of rainfall was
found to be ideal for mosquito progression and malaria spread [66].

Dommar et al. [71] modeled the chikungunya outbreak on Reunion Island between
May 2005 and February 2006 using an ABM investigating the outbreak of the disease on
the network with precipitation. The model revealed that the spread of chikungunya was
dominated by precipitation patterns in which a quick spread of the disease was observed
following the initial rainfall period, while the negligible spread was as well observed during
the dry season [71].

3.3. Humidity

Humidity (relative or absolute) was used as an indicator in several studies and most of
these studies found a positive association with arbovirus disease
incidences [14,24,25,32,63,65,69,70,73,76]. Refs. [12,23,24,30,64,65,68,71] studies reviewed
dengue, chikungunya, and Zika modeling using different ABM, statistical and mathemati-
cal models. Ingabire and Kimura [58] modeled malaria using Susceptible-Infected/Susceptible-
Infected-Recovery model and Tourre et al. [60] modeled the climate impact on malaria in
Burkina Fasso using Atlantic Multi-decadal Oscillation (AMO) and logistical regression
using Arpege System 3 model.

A study from Rwanda on malaria by Ingabire and Kimura [63] showed that a decrease
in humidity caused the number of malaria patients to decrease, while an increase in
humidity led to an increase in the number of patients showing a correlation between
humidity and infection rates of Anopheles gambiae. When the model was simulated using
real climate data, humidity change caused the number of mosquitoes and the number
of patients to change exponentially suggesting that humidity had a large impact on the
mosquito increase and malaria patient increase [63]. A 60% monthly value of relative
humidity provided suitable conditions for malaria diffusion [65].

Since humidity is governed by a combination of temperature and rainfall, it is potential
for virus transmission because it influences the lifespan of the mosquito. Some studies have
indicated that annual average water vapor pressure is a crucial climatic predictor of global
dengue occurrence [73]. Humidity positively affected the number of female Ae. Aegypti
captured until an optimal of 80% was reached [70,75,76]. In slightly urbanized sites, the
relative humidity was found to positively influenced Ae. Aegypti immatures [24].

A study by Mulyani et al. [76] observed the influence of humidity on mosquito
behavior on dengue spreading in which a humidity of greater than 70% was observed
to favor reproduction, random flying, and biting behavior. Mosquitoes could only fly
randomly at the humidity range of 60–70% and at less than 60% humidity the mosquitoes
died. An ABM was used to demonstrate the humidity influence on temperature [76].

3.4. Environmental Factors

Ae. Aegypti immatures are more abundant in artificial and large water containers, in a
study by Talaga et al. [24], the container type and size were found to influence Ae. Aegypti
immature abundance. Water-filled tires were found to be the most favorable habitat for Ae.
Aegypti [24]. In an experiment in Brisbane, Ae. Aegypti was found to survive in buckets and
rainwater tanks that were exposed to the coldest water temperatures which were thought
to be influenced by the high specific heat capacity and thermal mass of water. This led to
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the conclusion that permanent water storage containers presented ideal larval habitat for
the re-establishment and persistence of Ae. Aegypti in Queensland, Australia [32].

Maneerat and Daudé [75] investigated the effects of various factors such as human
density, breeding site density, and topology on Ae. Aegypti mosquito behavior using
an ABM in India in which the results revealed a significant relationship between urban
topology, human densities, and adult mosquito flight [75]. Model of Mosquito Aedes
(MOMA) aimed to produce statistical data on mosquito behaviors and population dynamics
in different geographical and climatic conditions in India. Adult mosquitoes were simulated
as agents which interacted with their local environment then resources were provided
for their biological development which could also constrain their flight or egg-laying
behaviors [75]. The breeding sites’ behaviors were assumed to relate to temperature,
precipitation, and land-use category of its spatial object [75].

The vegetation index which was an indicator of the amount of green vegetation in
an area was closely related to rainfall incidences. Vegetation created suitable habitats
for mosquito breeding which as a result led to an increase in mosquito density [69,72].
The growth of vegetation is in some extent regulated by temperature and rainfall. It is
associated with warmer temperatures and increased rainfall, as a result an increase in
vegetation indices is related to an increased number of eggs laid by mosquitoes. Vegetation
cover provides suitable breeding sites which directly increases the vector abundance and
the disease transmission rate [37,38,86]. Thus, vegetation index has a positive relationship
to egg prediction as well as oviposition activities leading to increased vector activity due to
increases in habitat for mosquitoes [38]. Normalized difference vegetation index (NDVI)
and normalized difference water index (NDWI) are the two variable that have been used
to determine the vegetation cover and their influence on larval survival, breeding sites,
oviposition activity, vector activity, and vector population growth [34,36,38,87].

4. Discussion

This review has analyzed the literature on arbovirus modeling from the global per-
spective with emphasis on studying the techniques used in modeling the outbreaks, trans-
missions, and surveillance of dengue in Africa, especially SSA which modeled dengue
disease. The reviewed literatures have considered climatic and environmental factors that
are believed to influence the dengue disease outbreaks, transmission, and surveillance. It
has come to our attention that in Africa, accurate identification of arboviral infections in
resource-limited settings is difficult, and most cases are misdiagnosed as malaria [12,88].
The continued transmission of DENV on a local level, the recurring episodes of DENV as
well as the wide spread of Ae. Aegypti and Ae. Albopictus in different areas of the world calls
for a need of vector control and surveillance in the areas that are likely to be introduced with
the DENV [10,89]. Ward and others [15] recommended that dengue should be included
in the regular disease surveillance and control programs despite its scarcity of data in the
African region. There is evidence on the influence of climate change on dengue epidemics
and possible expansion of Ae. Aegypti and Ae. Albopictus species into the areas where the
environmental conditions were not suitable for their breeding, but due to changes in climate
these areas/regions are now becoming suitable for these species [16,88,90]. Since ABM is
the most natural way to describe the underlying social/epidemiological system as well
as a versatile and powerful platform for modeling different healthcare interventions and
answering a wide range of policy making questions [5] it is crucial to utilize its benefit in
the African context. Globally, disease modeling using ABM has been widely implemented,
but in the African context it is still in its primary stages. Owing to the benefits of ABM,
more studies need be carried out in Africa to model diseases using ABM technology. Based
on the search strategies and criteria used, most of the literature obtained demonstrated the
following key issues.
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(i) Through the review, it has been identified that ABM in Africa is mostly implemented
for other diseases such as malaria, Ebola, rift valley fever, west Nile virus, tuberculosis,
human immunodeficiency virus, and other dominant diseases rather than dengue
disease [62–68]. This shows that there is a lack of sufficient literature on ABM for
dengue disease in Africa and thus points to a need for further research on dengue and
ABM and simulation in the African context.

(ii) Dengue modeling in ABM is extensively conducted in non-African countries, and
although extensively researched in these non-African countries, few studies have con-
sidered the influence of climatic and environmental factors. The context of non-African
countries into which climatic and environmental conditions have been incorporated
into dengue disease modeling is different from the African context.

(iii) Agent-based model frameworks that have been implemented in the reviewed studies
included NetLogo, Repast, AnyLogic, EMOD, MESA, MASON, Mlab, Swarm, Star-
Logo, and Spark. Other recent and more capable ABM tools such as JADE, GAMA,
WALK, MARS, and Vigueras were not found in the reviewed works of literature.
Advances in technology and computing power have made emerging new tools such
as MARS offer a promising output in ABM and simulation. The MARS framework
developed for multi-agent research and simulations can simulate a large number
of agents’ interactions using a local machine or a cloud-native environment [91–93].
The MARS framework allows the implementation of layered architecture and allows
spatio-temporal data integration in which raster- and vector-based data can efficiently
be handled. A study by Glake et al. [92] identifies that it is important to evaluate the
spatio-temporal data model of the MARS framework with real-world cases.

(iv) To the authors’ knowledge, there are no available reviews that have specifically
studied and modeled dengue disease and the influence of climatic and environmental
factors using the MARS framework for ABM in the SSA context. Therefore, this review
is crucial to enlighten a need for more studies on dengue modeling in Tanzania’s
context and explore the effects of climatic, environmental, and spatio-temporal factors
on dengue disease outbreaks, transmission, and surveillance.

Integrated vector management (IVM) is a crucial component in the eradication of
vector-borne diseases [94,95]. It incorporates decision making based on human and insti-
tutional resources and engage communities so as to ensure sustainability of the control
strategies. Since IVM relies on an understanding of how environmental factors affect
the distribution and densities of different species of vectors and how effectively control
measures reduce vector–human contact, vector survival and overall intensity of pathogen
transmission [94–96]. Owing to the numerous benefits of ABM in modeling real world
systems-such as the bounded rationality, ability to capture emergent behavior, its bottom-up
approach in modeling macro-systems from micro-level components, heterogeneity and dis-
crete nature of ABMs, networked interactions among agents, completeness and flexibility
of the models [47,50]. All these benefits facilitate modeling of the complicated human-
vector-pathogens relationship helping to bridge the gap between what epidemiologists
can deliver and what public health policy makers require [5]. Thus, it enables spatial and
temporal components to be tracked, which impose challenges on surveillance of infectious
diseases. Figure 3 presents a proposed ABM that incorporates necessary components that
can aid in the development of descriptive and predictive models for population dynamics
and transmission potential of vector-borne diseases.
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5. Conclusions

Studies have been conducted that consider the influence of climatic factors such as
temperature, precipitation, and humidity on infectious disease transmission with recent
emphasis backed up with the rising concerns about climate change and the potential
expansion of the geographical range of infectious diseases such as malaria, chikungunya,
Zika and dengue [7,62]. In the reviewed studies, many have been demonstrated to explore
the effect of temperature on arboviruses disease transmission; minimal exploration of the
influence of other factors such as precipitation and humidity has been carried out. It is
further observed that rainfall has been a bit more thoroughly explored in its relation to
disease transmission than humidity’s influence on disease transmission. In the African
context, to our knowledge, almost no works of literature have been fully identified during
the review process to incorporate the climatic factors, environmental factors, and their
influence on dengue transmission using ABM and simulation. This provides room for
further investigations and simulations on ABM in the African context on dengue and the
influence of climatic and environmental factors. As stated in a study by Anders [73] that
temperature, rainfall, wind speed and humidity are indicated as crucial determinants of the
geographic limits within which dengue transmission could probably be persistent [6,7,73],
then it is important to consider these factors when modeling dengue in the African context
using ABM.

In addition, to strengthen vector control components for vector borne diseases, it is
crucial to incorporate all the necessary components of IVM so as to be able to eliminate
dengue fever and other related mosquito borne diseases. Strengthening components of the
vector control program such as vector surveillance, disease detection, control activities and
emergence preparedness is crucial. Thus, the IVM approach will continue to be an effective
and efficient strategy with great promise for disease control in Africa.
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Appendix A

(((Dengue[mesh] OR “Breakbone Fever” OR “Fever Breakbone” OR “Classical Dengue
Fever” OR “Classical Dengue Fevers” OR “Dengue Fever Classical” OR “Break-Bone Fever”
OR “Break Bone Fever” OR “Fever Break-Bone” OR “Dengue Fever” OR “Fever Dengue”
OR “Classical Dengue” OR “Classical Dengues” OR “Dengue Classical” OR “Disease
Virus” OR “Diseases Virus” OR “Virus Disease” OR “Virus Infections” OR “Infection
Virus” OR “Infections Virus” OR “Virus Infection” OR “Viral Diseases” OR “Disease Vi-
ral” OR “Diseases Viral” OR “Viral Disease” OR “Viral Infections” OR “Infection Viral”
OR “Infections Viral” OR “Viral Infection” OR “Vector Borne Disease” OR “Vector-Borne
Diseases” OR “Vector-Borne Disease” OR “Vectorborne Diseases” OR “Vectorborne Dis-
ease” OR “Mosquito-Borne Diseases” OR “Mosquito-Borne Disease” OR “Mosquito Borne
Diseases” OR “Mosquito Borne Disease” OR “Hemorrhagic Fever” OR “Mosquito Related
Diseases” OR “ Aegypti” OR “Aedes Albopictus” OR “Dengue Virus” OR DENV) AND
((“Climatic processes” [mesh] OR “Processes Climatic” OR “Climatic Process” OR “Pro-
cess Climatic” OR Temperature OR Rainfall OR Humidity OR “Relative Humidity” OR
Weather OR “Spatial Epidemiology” OR “Climate Change” OR “Climatic Factors”) OR
(Environment [mesh] OR Environments OR “Impacts Environmental” OR “Environmental
Impacts” OR “Impact Environmental” OR “Environmental Impact” OR Vegetation OR
Forest OR “Forested Areas” OR “Area Forested” OR “Areas Forested” OR “Forested Area”
OR Woodland OR Woodlands OR Forestlands OR Forestland OR Plants OR Trees OR leaves
OR Wetland OR “Mangrove Swamps” OR “Mangrove Swamp” OR “Swamp Mangrove”
OR “Swamps Mangrove” OR “Mangrove Forests” OR “Forest Mangrove” OR “Forests
Mangrove” OR “Mangrove Forest” OR Swamps OR Swamp OR Bogs OR Bog OR Marshes
OR Marsh OR River OR Rivers OR “Fresh Water” OR “Burrow Pits” OR “Discarded Plastic
Containers” OR “Unused Car Tires” OR “Environmental Factors”))) AND (“Agent based
modeling” [mesh] OR “Analyses Systems” OR “Systems Analyses” OR “Systems Oriented
Approach” OR “Approach Systems Oriented” OR “Approachs Systems Oriented” OR
“Systems Oriented Approachs” OR “System Dynamics Analysis” OR “Analyses System Dy-
namics” OR “Analysis System Dynamics” OR “Dynamics Analyses System” OR “Dynamics
Analysis System” OR “System Dynamics Analyses” OR “Analysis Systems” OR “Systems
Approach” OR “Approach Systems” OR “Approachs Systems” OR “Systems Approachs”
OR “Systems Thinking” OR “Systems Thinkings” OR “Thinking Systems” OR “Thinkings
Systems” OR “Systems Medicine” OR “Medicine Systems” OR “Medicines Systems” OR
“Systems Medicines” OR “Complexity Analysis” OR “Analyses Complexity” OR “Analysis
Complexity” OR “Complexity Analyses” OR “Agent-Based Modeling” OR “Agent Based
Modeling” OR “Agent-Based Modelings” OR “Modeling Agent-Based” OR “Modelings
Agent-Based”)) AND (Africa[mesh] OR “Africa South of the Sahara” OR “Sub-Saharan
Africa” OR “Africa Central” OR “Central Africa” OR Cameroon OR “Central African
Republic” OR Chad OR Congo OR “Democratic Republic of the Congo” OR “Equatorial
Guinea” OR Gabon OR “Sao Tome and Principe” OR “Africa Eastern” OR “East Africa”
OR Burundi OR Djibouti OR Eritrea OR Ethiopia OR Kenya OR Rwanda OR Somalia OR
“South Sudan” OR Sudan OR Tanzania OR Uganda OR “Africa Southern” OR Angola OR
Botswana OR Eswatini OR Lesotho OR Malawi OR Mozambique OR Namibia OR “South



Int. J. Environ. Res. Public Health 2022, 19, 15578 15 of 24

Africa” OR Zambia OR Zimbabwe OR “Africa Western” OR Benin OR “Burkina Faso” OR
“Cabo Verde” OR “Cote d’Ivoire” OR Gambia OR Ghana OR Guinea OR “Guinea-Bissau”
OR Liberia OR Mali OR Mauritania OR Niger OR Nigeria OR Senegal OR “Sierra Leone”
OR Togo).

Appendix B

(ALL (Dengue OR “Classical Dengue Fever” OR “Break Bone Fever” OR “Dengue
Fever” OR “Disease Virus” OR “Virus Disease” OR “Virus Infections” OR “Infection Virus”
OR “Virus Infection” OR “Viral Diseases” OR “Disease Viral” OR “Viral Disease” OR “Viral
Infections” OR “Viral Infection” OR “Vector Borne Disease” OR “Vector-Borne Diseases”
OR “Vector-Borne Disease” OR “Mosquito-Borne Diseases” OR “Mosquito-Borne Disease”
OR “Mosquito Borne Diseases” OR “Mosquito Borne Disease” OR “Hemorrhagic Fever” OR
“Mosquito Related Diseases” OR “Aedes Aegypti” OR “Aedes Albopictus” OR “Dengue
Virus” OR denv) AND ALL ((“Climatic processes” OR temperature OR rainfall OR humidity
OR “Relative Humidity” OR weather OR “Spatial Epidemiology” OR “Climate Change” OR
“Climatic Factors”) OR (environment* OR “Environmental Impacts” OR “Environmental
Impact” OR vegetation OR forest* OR “Forested Areas” OR “Forested Area” OR woodland*
OR forestland* OR plants OR trees OR wetland OR “Mangrove Swamps” OR “Mangrove
Forests” OR “Mangrove Forest” OR swamp* OR marsh* OR river* OR “Burrow Pits” OR
“Discarded Plastic Containers” OR “Unused Car Tires” OR “Environmental Factors”)) AND
ALL (“Agent Based model” OR “Analyses Systems” OR “Systems Oriented Approach” OR
“System Dynamics Analysis” OR “Analysis System Dynamics” OR “Dynamics Analysis
System” OR “System Dynamics Analyses” OR “Analysis Systems” OR “Thinking Systems”
OR “Complexity Analysis” OR “Analysis Complexity” OR “Complexity Analyses” OR
“Agent-Based Modeling” OR “Agent Based Modeling” OR “Modeling Agent-Based” OR
“Multi-Agent Systems” OR “Individual-Based Systems”) AND ALL (africa OR “Sub-Saharan
Africa” OR “Central Africa” OR cameroon OR congo OR “Equatorial Guinea” OR “East
Africa” OR eritrea OR ethiopia OR kenya OR rwanda OR sudan OR tanzania OR uganda OR
“Africa Southern” OR angola OR botswana OR malawi OR namibia OR “South Africa” OR
zimbabwe OR “Western Africa” OR benin OR “Burkina Faso” OR ghana OR “GuineaBissau”
OR mali OR mauritania OR niger* OR senegal OR “Sierra Leone”.
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Appendix C

Table A1. Summary of reviewed articles.

Serial # Author, Article Type,
Diseases Studied

Climatic Factor Temperature,
Rainfall/Precipitation,
Humidity/Relative Humidity)

Environmental Factors

The Modeling Approach Used
(Agent-Based, Compartmental
Models, Machine Learning,
Time Series, etc.)

Research Settings (Africa,
Global, Country-Specific, etc.) Study Objective and Results

1. Wearing et al. [69], Review
paper, Dengue and chikungunya.

Effects of humidity,
temperature, and rainfall on
egg diapause and
adult survival.

Vector density/ population
dynamics, urbanization,
availability of man-made
containers, vegetation index.

Review of different models:
process-based models,
statistical models,
mathematical models.

Global

The study observed that when a suitable
mosquito vector (Ae. Albopictus/Aegypti)
coupled with suitable conditions for their
survival and transmission was required for
the occurrence of a mosquito-borne virus in a
population. The study also revealed that the
virus was introduced from external sources
and conditions amenable to its transmission.

2. Talaga et al. [24], Experimental.
Paper, Ae. Aegypti.

Daily precipitation, air
temperature, wind, and
relative humidity.

Artificial water containers
(such as CDC ovitraps, and car
tires), natural water containers
(such as native tank bromeliads,
dry stamps of bamboo), size of
aquatic habitat, and an
abundance of
Ae. Aegypti immatures.

Multi-model
inference approach.

French Guiana (Kourou which
is a small Neotropical), October
2013–October 2014.

The relative influence of biotic and abiotic
parameters on the immature population of Ae.
Aegypti was explored using four different
types of water containers and three urbanized
sites. The study found that artificial water
containers, size of aquatic habitat, amount of
precipitation, temperature, and relative
humidity positively influenced the number of
Ae. Aegypti immatures. The study presented
co-existence of Ae. Aegypti with predators and
competitors on the abundance of immatures.

3. Center [72], Annual Meeting
Report, Female and male
Ae. Aegypti, Malaria parasites.

Temperature (low 19 ◦C and
high 30 ◦C).

288 Vegetation zones, 93 urban
zones, breeding spots,
50 households.

ABM
Key West, Florida with an area
of approximately 30,000 m2

with around 50 households.

An ABM coupled with a geographic
information system for identifying zones
with resources necessary for the survival of
both male and female Ae. Aegypti and
modeling possible breeding site locations.
Results showed that the spatial distribution
of the vegetation zones, urban zones, and
breeding spots together with the temperature,
constrained the population of Ae. Aegypti to a
mean high of around 2000 during the fall
season and around 600 in the late winter
season.

Tropical climate, weather. Demographics data. ABM (EMOD framework). SSA

EMOD is a proprietary epidemiological
modeling software package that is used to
determine the best combination of
interventions that will eventually eradicate
the disease. EMOD is a human, mosquito,
and parasite modeling program that takes
mosquito, weather, demographic, and
parasite parameters as input.
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4.
Ingabire and Kimura [63],
Journal Article, Malaria
(Anopheles gambaie).

Temperature (minimum 10 ◦C
and maximum 29 ◦C),
humidity (30–97%), rainfall.

N/A Mathematical SIR/IR model. Rwanda meteorology data for
2017 was used.

The research focused on climate effects on the
sensitivity of a reproduction rate, death rate,
and infection rate, focusing on the life cycle of
mosquitoes based on the change in
temperature and humidity. Mosquito
reproduction increased when humidity was
more than 80%. Thus, the high birth rate
during hot and high humidity season could
accelerate the increase in mosquitoes and
enhance the spread of infection. Simulation
with real data showed that the number of
mosquitoes and the number of patients
changed exponentially was mainly caused by
humidity change.

5. Anders [73,83,84], Ph.D. Thesis,
Journal articles, Dengue.

Temperature, rainfall,
humidity.

Breeding sites, mosquito
density, human population
density, water storage needs,
and practices.

Mathematical modeling.

Clinically diagnosed dengue
cases that were admitted
between 1996 and 2009 in three
hospitals in Ho Chi Minh City,
Southern Vietnam.

The study sought to characterizethe
distribution of dengue fever as well as the
factors that influence individual and
population-level infection risk and disease
outcome. Heterogeneity in dengue incidence
in space and time is studied. Dengue is found
to be sensitive to climatic conditions, which
influence virus replication, development, and
vector survival. Non-climatic variables such
as environmental changes, population
growth and human movement, work hand in
hand with the climatic variables.

6. Liu [25,97,98], Ph.D. Thesis,
Journal articles Dengue, Zika.

Temperature (daily, min, max,
average), precipitation,
relative humidity.

N/A

Multivariate Exponentially
Weighted Moving Average
(MEWMA) model with a
forward feature selection (FFS)
algorithm (MEWMA-FFS)
framework, machine learning.

Detection of large dengue
outbreaks in San Juan-Puerto
Rico 2004–2017, Iquitos-Peru
2004–2013, Mexico country
2004–2013.

The study focused on two aspects of
emerging and re-emerging infectious disease
surveillance systems, with the goal of
developing a method for detecting emerging
and re-emerging outbreaks as early and
accurately as possible, and the study has
assessed the tradeoff between the complexity
of the model and prediction reliability. The
results showed that in Mexico, a subset of the
climate-relevance time series model was the
best option for early detection of large
dengue outbreaks, as was the case in San
Juan, where the climate system’s performance
was more robust across cross-validation and
out-of-sample testing periods. In Iquitos Peru,
due to its location, experienced a tropical
rainforest climate that lacks a distinct dry
season demonstrating that climate was not a
good predictor for large dengue outbreaks.
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7. Deza-Cruz [70], Ph.D. Thesis,
Dengue, chikungunya, Zika.

Humidity, temperature, rainfall,
wind speed.

Household (water supply,
air-conditioning, intact
mosquito screens, construction
materials, number of residents
in the house, number of rooms
in the house), mosquito larval
habitat (Trash collection, Pools
water, Storage water, Debris
around house, Plant pots).

Machine learning.
University students at St. Kitts
and Nevis between September
2014–May and 2015.

The study found that arbovirus transmission
was associated with climatic variables
connected to seasonality, which are
temperature and rainfall. Humidity and
temperature had a positive influence on
disease transmission, rainfall had a dual
effect (much rain caused a flushing effect, and
moderate rain had a positive effect). At the
mean temperature of 26 ◦C and 29 ◦C large
number of mosquitoes were captured, while
the number declined at 31 ◦C.

8. Trewin [32,33,99], Ph.D. Thesis,
Journal Articles, Ae. Aegypti.

Temperature, rainfall, the
humidity of the water in the
rainwater tanks and
the buckets.

Rainwater tanks, buckets. ABM (Repast Simphony 2.4.0)

Datasets from Brisbane city
council 2012, Queensland
government 2017 and
Australian Bureau of
Statistics 2011.

The model aimed at understanding the
implications of mosquito spread between
rainwater tanks and identifying risk areas in
Brisbane. The number of rainwater tanks in
the landscape was principally responsible for
the risk.

9. Tourre et al. [65], Journal article,
Malaria.

Temperature (minimum,
maximum), rainfall,
relative humidity.

N/A
Impact model to evaluate the
influence of climate conditions
on malaria risk.

Nouna region in northern
Burkina Faso. Rainfall,
temperature, and relative
humidity data for the period of
1983–2011 were used.

Climate impact model for malaria risk. Total
rainfall for three months was found to be a
confounding factor for the malaria vector
density. It was discovered that there is a
substantial relationship between risk for
malaria and low-frequency rainfall variability
related to the Atlantic Multi-decadal
Oscillation (AMO).

10.
Borges et al. [74], Conference
paper, Dengue (Ae. Aegypti
pupal productivity).

N/A Type of container. ABM using NetLogo. The model is simulated 1500
times each simulated 100 days.

ABM for evaluating the Pupal Productivity of
Ae. Aegypti in containers. The model took into
account the pupae production capability of
each container in which the mosquitoes laid
eggs. The model results were compared to
the simulation’s average percentage of pupae
per container and the percentage of container
productivity defined in Brito-Arduino 2014.

11.
Mukhtar et al. [66], Journal
Article, Malaria
(Anopheles gambiae).

Temperature, rainfall. N/A Mathematical models. Two regions in South Sudan.

Climate-driven dynamics model was used to
evaluate the impact of rainfall and
temperature on the dynamics of the mosquito
population in a specific region of South
Sudan. Daily temperatures ranged 20 ◦C to
35◦C and rainfall ranged 17 mm to 20 mm
were ideal for mosquito progression which
facilitated malaria spread. Thus, the warmer
temperature might lead to disease
intensification.
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12.

Rumisha et al. [67], Journal
Article, Malaria (Anopheles
funestus, Anopheles gambiae,
Anopheles arabiensis).

Rainfall, temperature. N/A

Bayesian spatio-temporal
binomial and zero-inflated
negative binomial regression
models, Machine
learning model.

Data are collected for three
years by Demographic
Surveillance System (DSS) in
Rufiji Tanzania.

The study aimed to assess spatial-temporal
variation and heterogeneity of malaria
transmission in the Rufiji DSS site using a
large geo-referenced biweekly entomological
dataset collected over three years (October
2001–September 2004) and rigorous Bayesian
geostatistical models. Results depicted
temporal and seasonal variation in
entomological inoculation rate along the
study period and study area.

13. Kang and Aldstadt [26], Journal
Article, Dengue. N/A

Mosquito habitats, the spatial
configuration of buildings
(model environment had 4
schools, 20 workplaces and
895 houses).

ABM using AnyLogic.

A portion of Kamphaeng Phet
Province (KPP), Thailand. Parts
of a registered residents dataset
of KPP in 2009 were used.

The study sought to shed light on the
significance of specifying building spatial
configurations and mosquito habitats. The
experiments’ findings revealed a significant
influence on human residential and mosquito
population patterns.

14.
Maneerat and Daudé [75],
Journal Article, Dengue
(Ae. Aegypti female mosquito).

Daily time, hourly temperature
and daily rainfall. Urban landscape. ABM-Model of Mosquito

Aedes (MOMA).

Hauz Rani is a neighborhood in
south Delhi (India).
Meteorological data of June
2008 is used for performing the
simulations.

A behavioral model MOMA of the Ae.
Aegypti mosquito aimed to study the effects of
factors such as breeding site density, human
density, and topology at a neighborhood level
on the dynamics of mosquito population.
MOMA investigated mosquito population
dynamics in a variety of urban settings. The
findings revealed a link between human
density, urban topology, and adult
mosquito flight.

15. Dommar et al. [71], Journal
Article, Chikungunya. Precipitation. N/A ABM

An agent-based model, 2 years
(28 March 2005–12 February
2006) daily precipitation data
for La Réunion.

The researchers created an ABM to
investigate the spatiotemporal heterogeneity
of an infectious vector-borne disease
outbreak. The impact of
precipitation-dependent vector populations
and the structure of the underlying network
topology on epidemiological dynamics was
investigated using a model. Results indicated
that precipitation was the dominant factor
influencing the spatio-temporal transmission.
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16. Mulyani et al. [76], Journal
Article, Dengue. Temperature, humidity. N/A ABM-NetLogo.

Data and information from the
national meteorology,
climatology and geophysics
agency were used. Community
health data of Bogor, a region in
Dramaga for two periods,
January–June 2015 and
July–December 2015 were used.

The paper has focused on the simulation
behavior of the agent, agent interactions, and
agent-environment interactions. Temperature
and humidity variables have been used.
Results showed that with optimal parameters
of temperature and humidity the percentage
of infected humans increased as well as
mosquito count increased. With low
parameters, the percentage of infected
humans was steady or did not happen, while
the number of mosquitoes decreased.
Meanwhile, with fluctuated parameter
values, the infection of humans and
mosquitoes also fluctuated.

17. Deng et al. [77], Conference
Paper, Dengue. Wind direction Landscape roughness,

population, and land use type. ABM developed with VB6.0 Virtual environment.
The spreading mechanism of dengue is
explained through agent-agent and
agent-environment interactions.

18. Mahmood et al. [14], Book
Chapter, Dengue.

Temperature, rainfall,
humidity.

Water bodies,
Mosquito density.

ABM using AnyLogic
university edition.

Dengue outbreak data from
Islamabad city in
Pakistan, 2013.

Results showed that dengue transmission
was dependent on temperature, when
temperature increased, the biting rate of Ae.
Aegypti increased which resulted in increased
dengue cases.

19. Rodríguez [78], Ph.D. Thesis,
Dengue. Temperature, precipitation. Socio-economic,

demographic variables.

Dengue Fever ABM (DFABM)
was developed using the Java
programming language and
open-source MASON simulator,
a multi-threaded agent-based
simulation platform.

Datasets on monthly reported
dengue cases, weather
predictors (temperature and
precipitation), socio-economic
and demographics measures of
the population of Central
Valley of Costa Rica from 1993
to 2008.

The spread of dengue fever in ABM was
simulated using GIS in an urban setting while
also taking into account individual
interactions in a geospatial context. The
variables of temperature, precipitation,
socioeconomic status, and demographics
were examined.
The results showed that high temperatures
with heavy precipitation affected the greatest
proportion of reported dengue cases. In
general, high temperatures, poor housing
conditions, and male predominance during
warm seasonal rainy periods created ideal
conditions for mosquito outbreaks and, as a
result, occurrences and rates of dengue cases.

20. Colón-González et al. [68],
Journal Article, Malaria. Air temperature, rainfall. Urbanization, rural districts,

socioeconomic indicators.
Time series cross-validation
algorithm.

Malaria incidences in Rwanda
and Uganda from 2002 to 2011.

The study looked at the short-term effects of
rainfall, air temperature, and socioeconomic
indicators on malaria incidence. It
emphasized the importance of using climatic
information in the analysis of malaria
surveillance data and demonstrated the
potential for the development of
climate-informed malaria early
warning systems.
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