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Abstract: In the existing literature on the correlation between street centrality and land use intensity
(LUI), only a few studies have explored the disparity of this correlation for different types of LUI
and the differences across various locations. In response to the above shortcomings, in this study, the
main urban area of Jinan, China, was taken as an example, and the disparity and spatial heterogeneity
of the correlation between street centrality and LUI were explored for different categories of land
use. The multiple centrality assessment (MCA) model was used to calculate the closeness centrality,
betweenness centrality, and straightness centrality of the traffic network. Based on the floor area
ratio (FAR) of each parcel, the utilization intensities of the residential, industrial, commercial, and
public service land uses were measured. Employing the kernel density estimation (KDE) method, the
street centrality of the traffic network vis-à-vis the urban LUI was rasterized into the same spatial
analysis framework. The Pearson correlation coefficient and geographically weighted regression
(GWR) were used to measure the correlation between the two variables and the spatial heterogeneity
of the correlation, respectively. The results showed that traffic network street centrality strongly
correlated with the LUI of the residential, commercial, and public service land use types, but it had
a very weak association with the LUI of industrial land use. The GWR results also confirmed the
spatial heterogeneity of the correlation. The results of this research highlighted the important role of
traffic network street centrality in understanding the urban spatial structure. The study also helped
to explain the dynamic mechanism of the road network form and the topological structure of urban
spatial evolution.

Keywords: street centrality; land use intensity; kernel density estimation; disparity; spatial heterogeneity

1. Introduction

As important elements of urban systems, both traffic networks and land use affect the
evolution of the urban spatial structure [1]. With the continuous growth of urbanization [2],
changes in traffic networks have profoundly altered the patterns of human settlement, as
well as the flow of people, goods, and vehicles, which have, in turn, changed the spatial
layout and patterns of urban land use [3]. Furthermore, the reorganization of the spatial
layout of cities and the corresponding changes in urban land use have led to changes in
traffic demand, which have transformed the structure of traffic networks [4]. Therefore, the
reciprocal relationship between traffic networks and land use has established an interactive
system [5,6].

Correspondingly, analyzing the interaction and coordination between traffic networks
and land use patterns have always been the focus of research in geography, planning, and
urban economics. Research interests in this topic originated in the urban spatial structure
models—such as concentric zones [7], sectors [8], and the multiple nuclei theory [9]—coined
by the “Chicago School” [10] in the early 20th century. Nonetheless, since these seminal
studies used descriptive research methods, they were greatly restricted in explaining a com-
plex urban structure. Classical economic models and other related studies, for their part,
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have also emphasized the important role of the traffic network in the formation of urban
spatial structures. For example, Alonso formulated the Bid Rent theory [11]. Similarly, Mills
and Muth proposed the monocentric model [12,13]. Both propositions, however, rest upon
the over-simplification and abstraction of urban development processes [14]. Although the
economic model is indeed too limited when it comes to understanding complex real-world
issues, it does emphasize the important role of transportation costs, among other parame-
ters, in shaping urban spatial structures. In the field of urban geography and planning, the
complexity of urban spatial structures has also received increasing attention [15–19]. Re-
searchers have successively developed new models, such as the Garin-Lowry model [20,21]
and the Wang-Guldmann model [22], to explain the interaction between traffic networks
and urban land use.

In recent years, the development of network science (in particular, the spatial network)
has driven the study of traffic networks, providing a theoretical tool for the in-depth analysis
of the interaction between traffic systems and urban land use [23]. From this perspective, a
traffic network is conceptualized as a geometric structure composed of points and lines.
Over the past decades, many studies have employed this framework [24–29]. Currently,
there are two popular models for studying traffic networks: space syntax and multiple
centrality assessment (MCA) models. Space syntax was first proposed by Architecture
Professor Bill Hillier in the 1970s [30]. It constructs a topological road network based on
visibility and integration, measuring the street centrality of the traffic network through
integration and choice indicators. It not only accounts for local spatial accessibility but
also emphasizes overall spatial accessibility and relevance [31]. Space syntax is mostly
used to explore the relationship between the street centrality of a traffic network and urban
economic activities [32–35]. Building on the space syntax theory, Crucitti, Latora, & Porta
proposed a multiple centrality assessment model [36,37]. This model introduces the true
distance of a traffic network into the model to reflect the centrality of a node by measuring
the importance of the respective node in the whole network. Compared with space syntax,
the multiple centrality assessment model adopted the metric distance, which made the
calculation results more reliable and realistic [38–40]. With the advancement of computing
tools and software, the results of the multiple centrality assessment model in various
research fields have been continuously enriched. In the field of urban research, the main
focus is on the correlation between the street centrality of a road network and the retail
locations [41–45] and the spatial distribution of different types of economic activities [46],
employment density and the spatial distribution of the population [47], land use types [48],
and land use patterns [1,49].

All this notwithstanding, there are still some areas for improvement in the scholarship
on the relationship between traffic network street centrality and land use. First, existing
research has mainly focused on the impact of the street centrality of a traffic network on
mixed land uses [46,48]. However, the effect of traffic network street centrality on single
land use categories (such as residential, commercial, or industrial land uses) is yet to
be studied. Second, researchers have mainly used Points of Interest (POI) density [44],
economic activity density [46], employment and population density [47] as indicators
characterizing the land use intensity (LUI). Undoubtedly, such indicators can characterize
the LUI to a certain extent. However, their results could be more convincing if they had used
land use data. Third, researchers have mostly chosen Pearson’s correlation coefficient in
their exploration of the relationship between the street centrality of a traffic network and the
LUI [44,46,47,49]. The Pearson correlation coefficient reflects a linear relationship between
two sets of variables, which is constant in space. However, due to the unbalanced spatial
distribution of the street centrality of a traffic network and the LUI, the correlation between
the two varies in different locations; that is, the correlation is spatially heterogeneous.
Exploring the characteristics and influencing factors of spatial heterogeneity is crucial for
formulating effective urban transportation planning and land use planning practices.

Therefore, this study takes into account the significance of the above two aspects in the
process of analyzing the correlation between the street centrality of a traffic network and the
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LUI. First, four categories of urban land use, including residential, industrial, commercial,
and public service land uses, were selected. Among the four types of land use, public
service land use mainly included sites and structures with such functions as administrative,
cultural, educational, sports, health, and other institutions and facilities. The floor area
ratios (FAR) for all the plots within each type of land use were obtained from the urban and
rural construction land monitoring database of Jinan City, which is maintained by the Jinan
Housing and Urban-Rural Development Bureau. The floor area ratio is the ratio of the total
usable area of a building to the total area of the plot in which the building is located. The
FAR, which includes the base area, height, and the number of building floors, is an effective
indicator of the LUI of built-up land. The higher the rate of floor area ratio was, the greater
the utilization intensity of the built-up land was. Therefore, the FAR more truly reflects
the LUI. Secondly, in this study, the geographically weighted regression (GWR) model
was used to detect the spatial heterogeneity of the correlation between the traffic network
street centrality and the LUI. The GWR model is a useful tool that considers the effect
of local characteristics [50]. For instance, the GWR coefficient varies in correspondence
with the spatial position. As such, it serves as an effective framework for detecting spatial
instability. The wide application of the GWR model in social, ecological, and land-use
research demonstrates this point [51,52]. The overview of the research methodology of this
study is illustrated in Figure 1.

Figure 1. Flow chart of the current study.

The rest of this paper is structured as follows. Part 2 introduces the study area and the
source of the data used. Part 3 is an introduction to the quantitative methods and models.
Part 4 and Part 5 include descriptions and discussions of the model calculation results. Part
6 summarizes the main points of this study.
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2. Study Area and Date
2.1. Study Area

Located on the southeastern edge of the North China Plain, Jinan is the capital of
Shandong Province (Figure 2). With a long history and rich cultural heritage, Jinan is the
political, economic, cultural, technological, and educational center of Shandong Province.
It is also an important transportation hub. Due to China’s reform and opening-up policy,
Jinan has undergone rapid development since the 1980s. In 2021, the regional GDP of Jinan
amounted to 163 billion USD, the permanent population was 9.3 million people, and the
urbanization rate reached 74.2%. Affected by the topography, the main urban area of Jinan
has an east-west belt shape (Figure 2), with the employment centers and residential areas
clustered near the central business district (CBD). In tandem with the spatial expansion of
the city, high-tech industrial zones, commercial complexes, and large-scale transportation
hubs have gradually emerged around Jinan. In this context, the transportation network
that connects the CBD with the surrounding agglomeration centers carries a huge volume
of traffic and plays an important role in developing the Jinan metro region.

Figure 2. Study area.
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2.2. Street Network and Urban Land Use

High-quality urban traffic network data plays a significant role in measuring street
centrality. The traffic network data for the main urban area of Jinan used in this research
came from the National Platform for Common Geospatial Information Service, an inte-
grated geographic information sharing and service portal constructed by the National Basic
Geographic Information Center of China. This platform combines the geographic data
on public service resources from the survey and geographic information systems depart-
ments at the national, provincial, and municipal (county) levels, as well as the relevant
government departments, enterprises and institutions, social organizations, and the public.
It provides authoritative, standardized, and comprehensive unified online geographic
information services to various users. The traffic network data for the Jinan urban area
was collected on 21 October 2021. As shown in Figure 3a, the processed traffic network
consisted of 5268 nodes and 7176 edges. The road segments varied in length, ranging from
0.7 m to 2889 m, with an average length of 231.3 m. The density of the road network in
the main urban area of Jinan was 2.67 km/km2. Roads less than 200 m in length were
concentrated in the urban kernel areas within the Inner Ring Road, while roads longer
than 800 m were mainly distributed on the urban fringe outside the Second Ring Road
(Figures 2 and 3a).

Figure 3. Distribution of street network (a) and land use (b) in the study area.

The urban land use data came from the urban and rural construction land monitoring
database of Jinan City. The database is maintained by the Jinan Housing and Urban-Rural
Development Bureau. Researchers and research departments with scientific needs can
obtain construction land data by submitting applications to the Bureau. After accessing the
database, information on all types of land use was extracted. Then the proportion of various
land areas was calculated. The top four were residential land (30.47%), industrial land
(17.55%), commercial land (13.02%), and public service land (12.27%). The area of these
four types of land accounts for 73.31% of the construction land area in the central urban
area of Jinan. Based on this, these four types of land were selected as the research objects of
this paper (Figure 3b). The parcel data for each land use type included information such as
the building density, floor area ratio, land use size, and building base area.

3. Research Methods
3.1. Street Centrality Measures

Based on the Multiple Centrality Assessment (MCA) model, in this study, ArcGIS
software was used as the platform, and the Urban Network Analysis Tools were used to
measure the street centrality of the traffic network in the main urban area of Jinan. Per
the MCA model, urban road lines were used as the edges of the network, and the road
intersections or endpoints were used as nodes connecting the edges [53]. Then, the distances
between the nodes along the actual network path were calculated, and, in the end, the street
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centrality of the traffic network was measured. Three indicators of centrality—closeness,
betweenness, and straightness—were selected to measure the street centrality of the road
network and reflect the accessibility, choice, and traffic efficiency of the traffic network.

(1) The closeness centrality (CC) indicated the closeness of a node to all other nodes in
the traffic network, as well as the accessibility of the node in the network. It was
measured using the shortest road network distance and size from a given node to all
nodes. The calculation formula for the closeness centrality of node i was

CC
i =

N − 1

∑N
j=1;j 6=i dij

(1)

where N is the number of traffic network nodes, and dij is the shortest distance
between nodes i and j. In short, the closeness centrality was the reciprocal of the
average distance from a node to all other nodes. The smaller the average distance
was, the stronger the closeness centrality was.

(2) The betweenness centrality (CB) described the importance of node i in the traffic net-
work by calculating the number of times the shortest path between node pairs passed
through node i. The betweenness centrality reflected the transfer and connection
functions of the nodes in the traffic network. The greater the number of shortest paths
passed through a node, the stronger the betweenness centrality was, which meant
that the node played the role of a bridge or a hub transfer in the entire traffic network.
The calculation of the betweenness centrality of node i was

CB
i =

1
(N − 1)(N − 2) ∑N

j=1;k=1;j 6=k 6=1

njk(i)
njk

(2)

where N is the number of traffic network nodes, nik is the number of shortest paths
between nodes j and k, and njk(i) is the number of shortest paths passing through
node i in the shortest paths between nodes j and k. Unlike the closeness centrality,
the betweenness centrality could capture the special attributes of the node position;
that is, it was not used as the starting point or destination of travel but rather as a
necessary intermediate transition point. The betweenness centrality was an important
indicator for measuring the traffic flow of the network nodes.

(3) The straightness centrality (CS) was used to calculate the importance of a node by
calculating the average ratio of the shortest path distance over the straight-line dis-
tance between node i and the other nodes. The basic principle was that when the
network path distance between two nodes was close to their Euclidean distance,
the communication between the two nodes was easier. The straightness centrality
calculation formula of node i was

CS
i =

1
N − 1 ∑N

j=1;j 6=i

dEucl
ij

dij
(3)

where N is the number of traffic network nodes, dEucl
ij is the Euclidean distance

between nodes i and j, and dij is the shortest distance between nodes i and j. As
an important indicator for measuring the efficiency of traffic networks, straightness
centrality is of great significance in spatial network research.

The calculation of the centrality index was, to a large degree, affected by the search
radius. Because the relationship between the street centrality of the traffic network in the
entire main urban area of Jinan and the urban LUI was studied, the search radius was set
to infinite, and all of the nodes in the traffic network were covered during the calculation.
Finally, an index reflecting the street centrality of the traffic network in the entire main
urban area was obtained.
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3.2. Kernel Density Estimation (KDE)

To analyze the correlation between the street centrality of the traffic network and
the spatial distribution of the urban LUI, it was necessary to use spatial smoothing or
interpolation methods to rasterize these parameters and incorporate them into the same
spatial analysis framework. In this research, the kernel density estimation (KDE) method
that was integrated with the ArcGIS platform was selected to smooth the data of the street
centrality of the traffic network and the urban LUI and to obtain a continuous spatial
distribution map.

The KDE method was used to calculate the density of discrete points within a certain
window range, which was used as the center value of the window [54–57]. The kernel
density at the center of the grid was the sum of the density within the window range [58]

f̂ (x) =
1

nhd ∑n
i=1 K

(
x− xi

h

)
(4)

where K() is the kernel density equation, h is the threshold, n is the number of points within
the threshold, and d is the dimension of the data. For example, when d = 2, a common
kernel density equation could be defined as

f̂ (x) =
1

nh2π ∑n
i=1

[
1− (x− xi)

2 − (y− yi)
2

h2

]2

(5)

First, in this research, the Kernel Density Tool in ArcGIS 10.8 was used to calculate
the street centrality of the traffic network and the LUI for different bandwidths (default
bandwidth, 1 km, 2 km, and 3 km). Then the ArcGIS band set statistics tool was used
to quickly calculate the correlation between the results. The results showed that there
was a high correlation between pairs. Therefore, in the correlation analysis, the choice of
bandwidth had no significant impact on the calculation results. After comprehensively
considering the degree of smoothness and the level of detail, in this research, the bandwidth
of 1000 m was selected, and the spatial resolution of the output kernel density result map
was 100 m.

3.3. Bivariate Moran’s I

This study uses the bivariate Moran’s I proposed by Anselin to explore the spatial
correlation and dependence characteristics of street centrality and land use intensity. The
calculation method of bivariate global Moran’s I [59] is

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
yj − y

)
S2 ∑n

i=1 ∑n
j=1 Wij

(6)

where I is the bivariate global spatial autocorrelation index, that is, the correlation between
the spatial distribution of spatial variables x and y in general; n is the total number of space
units; Wij is the spatial weight matrix established by the K adjacency method; xi and yj are
the observed values of the independent variable and dependent variable in spatial unit i
and j, respectively; S2 is the variance of all samples.

Bivariate local Moran’s I [59] is calculated by

Ii = zi ∑n
j=1 Wijzj (7)

where Ii is the local correlation between the independent variable of area i and the de-
pendent variable of area j. zi and zj are the normalized values of the variances of the
observations of spatial units i and j. Four spatial patterns can be formed based on Ii: High-
High cluster(H-H), that is, the independent variable of spatial unit i and the dependent
variable of adjacent unit j are both large; Low-Low cluster(L-L), that is, the independent
variable of spatial unit i and the dependent variable of adjacent unit j are both small;
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Low-Hight outlier(L-H), that is, the independent variable value of spatial unit i is small
and the dependent variable value of adjacent unit j is large; High-Low outlier(H-L), that
is, the independent variable value of spatial unit i is large while the dependent variable
value of adjacent unit j is small. H-H and L-L indicate that the independent variable value
of region i is positively correlated with the dependent variable of region j, while H-L and
L-H indicate that the independent variable value of region i is negatively correlated with
the dependent variable of region j, and its significance indicates whether the positive or
negative spatial correlation is obvious.

3.4. Geographically Weighted Regression (GWR)

Unlike the global model, which maintains the homogeneity of the relationship between
variables, the GWR model is a typical local model that interprets spatial data as non-
stationary. As a spatial location changes, the regression coefficients of the influencing
factors also change; that is, the explanatory power of influencing factors varies from
location to location [50]. Therefore, the results obtained with the GWR model are more
realistic. In this research, the GWR model was used to analyze the spatial heterogeneity of
the influence of the street centrality of the traffic network on the LUI. The expression of the
GWR model was

yi = β0(ui, vi) + ∑k βk(ui, vi)xik + εi (8)

where (ui,vi) represents the geographic location coordinates of the i-th spatial cell, β0 is a
constant term, βk is the regression parameter of the i-th spatial cell and the k-th independent
variable, and εi is the random error term of the i-th spatial cell, which satisfied the basic
assumptions of zero mean and mutual independence for homoscedasticity.

The estimated value of the regression parameter β of the research cell i in the GWR
model changed with the change of the spatial weight matrix W(ui,vi), which could be
determined according to the distance between other cells and cell i. Additionally, the
weighted least squares method could estimate the parameter β. Its expression was

β(ui, vi) =
[
XTW(ui, vi)X

]−1
XTW(ui, vi)y (9)

where β(ui,vi) represents the estimated parameters of the model, X represents the matrix
of the independent variable explanatory values, y represents the dependent variable, XT

represents the transposition operation of the matrix X, and W(ui,vi) represents the weighted
spatial matrix of the model. To estimate the parameter β(ui,vi) in the above equation, it was
necessary to choose a weight function to determine W(ui,vi). In this research, the Gauss
function method was chosen as the weight function, which was expressed as follows:

Wij = exp

(
−
(dij

b

)2
)

(10)

Here, b is the bandwidth, and dij is the distance between the spatial cells i and j.

4. Results
4.1. Spatial Patterns of Street Centrality

A UNA calculation was used to obtain the node street centrality of the traffic network
in the main urban area of Jinan. The centrality values of the network nodes were assigned
to the roads, and the street centrality value of each road was the average of the sum of
the street centrality values of the nodes at both ends of the road. The distributions of
the closeness centrality, betweenness centrality, and straightness centrality of the traffic
network in the main urban area of Jinan are shown in Figure 4a–c, and the KDE results of
the street centrality are shown in Figure 4d–f.

As Figure 4a shows, the closeness centrality presented a clear concentric ring pattern.
From the center of the city to the periphery, the street centrality of the traffic network
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gradually decreased. This characteristic was consistent with the law of distance decay
in geography. The KDE results of the closeness centrality (Figure 4d) showed that high-
value areas were mainly concentrated within the Inner Ring Road, such as the commercial
shopping malls and the CBD. There were several sub-centers in the north and west of
the Inner Ring Road. The average distance between the nodes in these areas and all the
nodes in the traffic network was the smallest. The spatial distribution characteristics of the
closeness centrality reflected that the traffic accessibility of the main urban area of Jinan
was marked by a multi-center structure.

The spatial distribution of the betweenness centrality was very different from those
of the closeness centrality and the straightness centrality (Figure 4b). The betweenness
centrality of most roads was very low, and only some important arterial roads had high
street centrality, such as Quancheng Road, Luoyuan Thoroughfare, Jiefang Road, Beiyuan
Avenue, Lishan Road, and Shungeng Road. These roads served as the major thoroughfares
of the main urban area, which bore most of the traffic flow inside the city. The KDE results
of the betweenness centrality, as illustrated in Figure 4e, showed that the high-value area
presented an east–west band shape, covering the main arterial roads of the city.

Figure 4. Spatial distributions of centrality indicators (a–c) and KDE of the centrality indicators (d–f).
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The straightness centrality presented a stronger multi-center structure than the close-
ness centrality did. As Figure 4c, f indicate, with the exception of the high-value distribution
areas in the main urban area, the Lashan Commercial District to the west of the city center,
the West Railway Station Commercial District, and the high-tech development zone in the
east had higher straightness centrality. The shortest path from the network node in the
above areas to any node of the traffic network and the deviation from a straight line was
the smallest, and the traffic efficiency was the highest.

Figure 5 shows the frequency distributions of the three centralities of the total 7176 roads
in the main urban area of Jinan. In Figure 5, the horizontal axis represents the street cen-
trality, and the vertical axis represents the frequency of the street centrality. The frequency
distribution of the three centralities had its own characteristics. It can be inferred from
Figure 5 that the number of roads with low closeness centrality was relatively small, the
number of roads with high closeness centrality was far greater than the number of roads
with low closeness centrality, and the frequency presented an increasing power law distri-
bution. The frequency of the betweenness centrality was more in line with the decreasing
exponential distribution (Figure 5), and the frequency distribution of the straightness cen-
trality was more aligned with the Gaussian distribution (Figure 5). This showed that the
frequency of the betweenness centrality was attenuated in accordance with a specific scale,
while the straightness centrality was symmetrically distributed around the average point.
The frequency distribution characteristics of the three centralities were similar to those in
the existing research [48].

Figure 5. Frequency distribution of centrality indicators. The red line is the cumulative percent-
age curve.

4.2. Spatial Distributions of Urban LUI

The quartile method divided the residential, industrial, commercial, and public service
land uses into four categories according to the floor area ratio. Figure 6a–d shows the
spatial distribution of each type of land use. Figure 6e–h shows that except for the industrial
land use, the intensively used parcels were mainly concentrated in the area within the
Second Ring Road. Specifically, in terms of the LUI, each type of land use selected in
this study had its own spatial distribution characteristics. For instance, parcels with the
residential land use designation and high LUI were mainly distributed in the eastern area
of Daming Lake and the CBD, showing an obvious dual-kernel structure. Parcels with the
industrial land use designation and high LUI were mainly located on the urban fringe. The
Luzhuang Industrial Park in the north of the city, in particular, was the main agglomeration
center. There were also many smaller agglomeration centers in the northeast and southwest
of the city. Parcels with the commercial land use designation and high LUI showed a
multi-kernel spatial distribution pattern. In this category, the CBD was the main and largest
agglomeration center, with multiple secondary agglomeration centers surrounding it. The
spatial distribution of the parcels with the public service land use designation and high
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LUI was similar to that of the parcels with the residential land use designation, and its
agglomeration scale was much larger than that of the commercial land use category.

Figure 6. Spatial distributions of land use intensities (a–d) and KDE of land use intensities (e–h).

Figure 7 shows the frequency distributions of the LUI for the residential, industrial,
commercial, and public service land uses. The horizontal axis represents the LUI, and the
vertical axis represents the frequency of the LUI for each category. It can be seen from
Figure 7 that the frequencies of the LUI for the four land use types presented a decreasing
exponential curve. This meant that the number of parcels with low LUI was large, while
the number of parcels with high LUI was relatively small. The declining trends of the
LUIs of the four land use categories showed a consistent pattern; that is, there was a rapid
declining tail in the second half. The distribution of land use intensity of the four types
conforms to the power law, which is consistent with the previous research [41,60].
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Figure 7. Frequency distributions of land use intensities. The red line is the cumulative percent-
age curve.

4.3. Correlation Analysis

To analyze the correlation between the street centrality of the traffic network and the
urban LUI, the ArcGIS software had to be used to process the relevant data further. First,
the Feature to Point tool was used to convert the polygon layer of the residential, industrial,
commercial, and public service land uses into a point layer. Then the Extract Multi Values
to Points tool was used to extract the kernel density values of the street centrality and the
LUI corresponding to each point. The extracted data were imported into SPSS software to
calculate the Pearson correlation coefficient between the street centrality (x) and the LUI (y)
for each land use category. Using the methodology employed by Wang et al. [47], in this
research, the correlation coefficients were calculated for four scenarios, namely x versus y,
x versus ln(y), ln(x) versus y, and ln(x) versus ln(y). The calculation results are shown in
Table 1.

Table 1. Pearson’s correlations between street centrality and land use intensities.

Centralities Resi Indu Comm Publ ln(Resi) ln(Indu) ln(Comm) ln(Publ)

CC 0.7293 *** 0.1751 *** 0.6835 *** 0.7164 *** 0.7440 *** 0.0046 0.7158 *** 0.6966 ***
CB 0.6537 *** −0.0170 0.5474 *** 0.6414 *** 0.6693 *** −0.2397 *** 0.6060 *** 0.6252 ***
CS 0.7077 *** 0.1733 *** 0.6662 *** 0.6911 *** 0.7267 *** 0.0676 *** 0.7157 *** 0.6938 ***

ln(CC) 0.5057 *** 0.1363 *** 0.4386 *** 0.5522 *** 0.6982 *** 0.0809 *** 0.6424 *** 0.6855 ***
ln(CB) 0.4819 *** 0.1116 *** 0.3928 *** 0.5232 *** 0.6951 *** 0.0034 0.6225 *** 0.6869 ***
ln(CS) 0.4584 *** 0.1170 *** 0.3893 *** 0.5003 *** 0.6302 *** 0.0873 *** 0.5799 *** 0.6306 ***

Note: *** p < 0.01.

An analysis of Table 1 revealed that except for the correlation coefficient between the
betweenness centrality and the LUI of the industrial land use, the correlation coefficients
for the three scenarios passed the significance test at the 0.01 level. The street centrality
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of the traffic network had different effects on the LUI of each land use category. From the
perspective of street centrality, the correlation coefficient between the closeness centrality
and the LUI was the highest, followed by the straightness centrality. This showed that the
LUI in the main urban area of Jinan had a very high correlation with the location of the
land use in the traffic network and traffic efficiency. It also showed that the location was
still the most effective indicator of the urban land use intensity. The correlation coefficient
between the betweenness centrality and the LUI was the lowest, similar to the research
results of Liu et al. [48] in the City of Wuhan. However, Porta et al.’s [41] study of Bologna,
Italy, showed that the betweenness centrality and the commercial land use intensity had a
high correlation. This illustrated that urban development had its own characteristics.

From the perspective of land use, the LUIs of the residential, public service, and
commercial land use categories had strong correlations with the three centrality indicators.
The correlation between the industrial land use intensity and the three centrality indicators
was extremely weak. The main function of industrial land is to provide a place for industrial
activities, which generally have the characteristics of large areas and pollutants discharged
during production. At the same time, the transportation of industrial raw materials and
products also needs convenient transportation. Therefore, industrial land is generally
distributed in the urban fringe area with a low land price. As Figure 6 illustrates, unlike
the concentrated distribution of the residential, commercial, and public service land use
types with the high LUI in the urban kernel areas, the industrial land use intensity was
scattered on the urban fringe where the road network was sparse, leading to an extremely
weak correlation to the centrality indicators.

4.4. Spatial Correlation between Street Centrality and Urban LUI

The bivariate global Moran’s I value calculated by GeoDa software is shown in Table 2.
The global Moran’s I is positive and has passed the significance test at the level of 1%,
indicating a significant and positive spatial autocorrelation between the street centrality of
the traffic network and the urban LUI. From Table 2, we can see that from the perspective
of land use, the spatial correlation intensity between the LUI of residential and street
centrality is the largest, followed by public service land, commercial land, and industrial
land. The reason is that the areas with convenient transportation have a strong attraction for
residential land. In contrast, industrial land is mostly concentrated in the peripheral areas
of the city, with a sparse traffic road network and low street centrality. From the perspective
of the three indicators of street centrality, the spatial correlation between closeness centrality
and LUIs of different functions is the largest, followed by straightness centrality, and the
spatial correlation of betweenness centrality is the smallest. High traffic accessibility is the
most significant road network feature in the area with high urban LUI.

Bivariate local Moran’s I further explores the spatial concentration between street
centrality and urban LUI. Four types of spatial distribution were shown in Figure 8. From
Figure 8, it can be seen that there are similar spatial correlation characteristics between the
LUIs of the residential, public service, commercial, and street centrality. Among them, the
H-H type is mainly concentrated in the central area of the city, the distribution proportion
of L-H and H-L types is low, and the L-L type is distributed in a larger spatial range, mainly
in the peripheral area of the city. In comparison, the spatial pattern between street centrality
and industrial LUI significantly differs from the other three types of land use. H-H type
is mainly concentrated in industrial parks in the northwest., while the L-L type is mainly
distributed in the urban fringe. This is mainly affected by industrial activities and land
use characteristics.
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Table 2. Bivariate Global Moran’s I of street centrality and Urban LUI.

Variables Bivariate Global
Moran’s I z-Value p-Value

Closeness and Residential LUI 0.7263 217.6262 0.001
Betweenness and Residential LUI 0.6581 198.2794 0.001
Straightness and Residential LUI 0.7020 213.8111 0.001

Closeness and Industrial LUI 0.1815 32.2781 0.001
Betweenness and Industrial LUI 0.0357 6.4741 0.001
Straightness and Industrial LUI 0.1743 30.9267 0.001
Closeness and Commercial LUI 0.6797 199.9732 0.001

Betweenness and Commercial LUI 0.5516 171.3770 0.001
Straightness and Commercial LUI 0.6577 195.0182 0.001
Closeness and Public service LUI 0.7110 104.1247 0.001

Betweenness and Public service LUI 0.6527 98.2945 0.001
Straightness and Public service LUI 0.6776 99.7421 0.001

Figure 8. Four spatial patterns of street centrality and Urban LUI: (a–c) Closeness, betweenness
straightness and residencial LUI; (b–f) Closeness, betweenness straightness and industrial LUI;
(g–i) Closeness, betweenness straightness and commercial LUI; (j–l) Closeness, betweenness straight-
ness and public service LUI.
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4.5. Spatial Heterogeneity Explored with the GWR Model

The correlation between the street centrality of the traffic network and the urban
LUI described in Section 4.3 did not take into account the impact of the spatial location.
Figures 4 and 6 show that the kernel density values of the street centrality and the LUI had
spatial agglomeration characteristics; that is, the spatial data was non-stationary, which
might lead to spatial disparity in the correlation between the centrality indicators and the
LUI. For this reason, in this study, a geographically weighted regression model was used to
explore the spatial heterogeneity of the correlation between the street centrality of the traffic
network and the urban LUI. According to the correlation analysis conclusions described in
Section 4.3, in this research, the influences of the closeness centrality, betweenness centrality,
and straightness centrality on the residential, commercial, and public service land use
intensities were analyzed. As Table 3 indicates, twelve GWR models in total were used. The
GWR tool in the ArcGIS software was used to estimate the model parameters, and for the
model bandwidth, the corrected Akaike information criterion (AICc) method was adopted.
In this research, the relevant parameters of the ordinary least squares (OLS) model were
also calculated as a comparison. It can be seen from Table 3 that the GWR model had a
lower AICc and a higher Adjusted R2 than the OLS model did, indicating that the fitting
result of the GWR model was significantly better than that of the OLS model. Due to space
constraints, not all of the relevant parameters of the GWR model could be displayed on
a map. Only the spatial distribution of the β coefficients and the local R2 were used to
explore the spatial heterogeneity of the correlation between the street centrality of the traffic
network and the urban LUI (Figures 8–11).

Table 3. Descriptive statistics of the GWR and OLS model.

Dependent
Variable

Explanatory
Variables

OLS GWR GWR-OLS

AICc Adjusted R2 AICc Adjusted R2 AICc Adjusted R2

Residential LUI CC 47,542 0.53 37,790 0.90 −9752 0.37
Residential LSU CB 48,787 0.43 35,181 0.93 −13,606 0.50
Residential LSU CS 47,956 0.50 39,006 0.88 −8950 0.38
Industrial LUI CC 14,625 0.03 10,989 0.80 −3636 0.77
Industrial LUI CB 14,701 0.00 8584 0.93 −6117 0.93
Industrial LUI CS 14,629 0.03 11,394 0.76 −3252 0.73

Commercial LUI CC 48,901 0.47 39,642 0.88 −9259 0.41
Commercial LUI CB 50,568 0.30 33,483 0.96 −17,085 0.66
Commercial LUI CS 49,200 0.44 39,917 0.88 −9283 0.44

Public service LUI CC 11,424 0.52 8763 0.86 −2661 0.34
Public service LUI CB 11,843 0.42 7102 0.93 −4741 0.51
Public service LUI CS 11,596 0.48 8843 0.85 −2753 0.37

Figure 9a,b shows the spatial heterogeneity of the closeness centrality affecting the
residential land use intensity. It can be seen from Figure 9a that the significant positive
correlation was mainly distributed in the urban kernel area. Two agglomeration centers
existed east of Daming Lake and west of the CBD. There was also a strong positive cor-
relation between the northern and southern regions of the city. The negative correlation
was mainly distributed in the fringe areas of the city. The higher local R2 was mainly
distributed to the west of the CBD and to the north of Daming Lake. Figure 9c,d illustrates
the spatial heterogeneity of the betweenness centrality that affected the residential land use
intensity. It can be seen from Figure 9c that the significant negative correlations were scat-
tered in the central area of the city, which was very different from the closeness centrality.
The significant positive correlation and the higher local R2 were concentrated in several
small areas in the city center and to the south of the city. Figure 9e,f displayed the spatial
heterogeneity of the straightness centrality that affected the residential land use intensity.
The spatial distributions of the β coefficients and the local R2 were similar to that of the
closeness centrality.
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Figure 9. Spatial heterogeneity of the regression outputs from the GWR model for centrality and
residential land use density: (a) β coefficients for closeness; (b) local R2 for closeness; (c) β coeffi-
cients for betweenness; (d) local R2 for betweenness; (e) β coefficients for straightness; (f) local R2

for straightness.

Figure 10 shows the spatial heterogeneity of the closeness centrality, betweenness
centrality, and straightness centrality affecting the industrial LUI. The spatial distribution
of the β coefficients and the local R2 of the closeness centrality and the straightness cen-
trality is the same (Figure 10a,b,e,f). There are mainly 4 positive correlation high-value
areas, respectively, in the southwest and east edge of the study area and near Luzhuang
Industrial Park and Daxinzhuang. The negative correlation is mainly concentrated near the
intersection of Xiaoqing Hebei Road and Huanggang Road. The higher local R2 is mainly
distributed on both sides of Lanxiang Road, with Luzhuang Industrial Park as the core.
Figure 10c,d shows the spatial heterogeneity of the betweenness centrality that affected
the LUI of industrial. Compared with closeness and straightness, only the southwest and
east edges of the study area and Luzhuang Industrial Park are the high-value areas with
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positive intermediary correlation, and the distribution range of negative correlation is
expanded to the northwest. The high value of local R2 is more prominent in the west of the
old commercial district.

Figure 10. Spatial heterogeneity of the regression outputs from the GWR model for centrality
and industrial land use density: (a) β coefficients for closeness; (b) local R2 for closeness; (c) β

coefficients for betweenness; (d) local R2 for betweenness; (e) β coefficients for straightness; (f) local
R2 for straightness.

Figure 11 shows the spatial heterogeneity of the closeness centrality, betweenness
centrality, and straightness centrality affecting the commercial land use intensity. The
spatial distribution patterns of the β coefficients and local R2 of the closeness centrality and
straightness centrality were similar. The positive correlations were mainly concentrated
in the CBD in the city center and the high-tech development zone in the east of the city.
The higher local R2 was mainly distributed in the CBD, the eastern part of the city, and the
southwest area. Figure 11c,d shows the spatial heterogeneity of the betweenness centrality
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that affected the commercial land use intensity. The negative correlations were mainly
distributed in the CBD of the city, and there was a small-scale distribution in the eastern
part of the city. With no significant pattern, the distribution of the higher local R2 had only
a small agglomeration in the southwest part of the city.

Figure 12 shows the spatial heterogeneity of the three centrality indicators affecting the
public service land use intensity. Similar to the commercial land use, the spatial distribution
of the β coefficients and the local R2 of the closeness centrality and the straightness centrality
for this land use category tended to be the same (Figure 12a,b,e,f). The cases with negative
correlations were mainly distributed in the CBD and on the urban fringe, while those with
positive correlations and the higher local R2 were mainly concentrated in the eastern part of
Daming Lake, the western part of the CBD, and the southern part of the city. Figure 12c,d
shows the spatial heterogeneity of the betweenness centrality affecting the public service
land use intensity. Parcels with significant positive correlations were mainly distributed in
the southern and southeastern regions of the city. The higher local R2 did not show a clear
spatial pattern for this type of land use, and the distribution pattern tended to be random.

Figure 11. Spatial heterogeneity of the regression outputs from the GWR model for centrality
and commercial land use density: (a) β coefficients for closeness; (b) local R2 for closeness; (c) β
coefficients for betweenness; (d) local R2 for betweenness; (e) β coefficients for straightness; (f) local
R2 for straightness.
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Figure 12. Spatial heterogeneity of the regression outputs from the GWR model for centrality and
public service land use density: (a) β coefficients for closeness; (b) local R2 for closeness; (c) β

coefficients for betweenness; (d) local R2 for betweenness; (e) β coefficients for straightness; (f) local
R2 for straightness.

5. Discussion

The findings described in Sections 4.3 and 4.4 showed that, regardless of the land use
category, there was a strong correlation between the street centrality of the traffic network
and the urban LUI. This implies that centrality was a very important factor (although not
the only factor) that affected the urban LUI. This conclusion is consistent with previous
studies [41,46,47].

There were significant disparities in the Pearson correlation coefficients between
the three centrality indicators, i.e., the closeness centrality, betweenness centrality, and
straightness centrality, and the LUI of the four land use types, namely the residential,
industrial, commercial, and public service land uses. The correlation coefficients between
the three centrality indicators and the residential land use intensity were significantly
higher than those of other land use types. The correlation coefficient between the closeness
centrality and the residential land use intensity was the highest, as shown in Table 1. Two
factors could explain these patterns. First, to meet the needs of urban residents concerning
commuting, transportation, and supply of goods and services, investors and real estate
developers compete to obtain land with prime location and convenient accessibility for
residential development. Second, with the continuous increase in the population size of
Jinan and the gradual growth of land prices, the intensity of residential properties increased,
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as evidenced by the development of high-rise residential complexes in the City. These two
factors led to the development of residential properties with high traffic accessibility and
high floor area ratios. In contrast, various commercial facilities in European cities have a
strong correlation with the street centrality of the road networks, and the street centrality
of the commercial land use is generally stronger than that of other land use types, such
as residential land use [41,46]. The traffic orientation of residential land use in the main
urban area of Jinan is unique for China’s big cities. The correlation coefficient between the
commercial land use intensity and the closeness centrality was higher than the correlation
coefficients between the commercial land use intensity and both the straight centrality and
the betweenness centrality. The commercial land use intensity depended on the location of
the land. Properties with convenient transportation connectivity and high accessibility links
undoubtedly attracted commercial agglomerations and yielded high-intensity development
patterns. The civic functions of Public service land required that these properties be located
in areas with good accessibility and high traffic efficiency. Therefore, as shown in Table 1,
the public service land uses had the strongest correlation with closeness centrality and
straightness centrality. In addition, in urban planning, the land demand of the public
service land was met first due to its public welfare nature, and areas with high accessibility
were first given to such land. The correlation between industrial land use and the three
centrality indicators was relatively weak. A very important reason for this was the influence
of industrial suburbanization. Due to environmental and land use policies and rising land
prices, a large number of industrial enterprises moved out of the city’s central areas since
the 1990s, and new agglomeration centers began to form in the suburbs with sparse traffic
networks. The sparse traffic network and the isolated and scattered industrial layout led to
a low correlation between street centrality and industrial land use intensity.

In this study, the GWR model was used to identify and analyze the local characteristics
of the centrality and the LUI. The results showed that, at the local level, the closeness
centrality, betweenness centrality, and straightness centrality had significant spatial hetero-
geneity in terms of the impact of the LUI of four urban land use types. Specifically, the street
centrality and the LUI are spatially non-stationary. While the relationship between the two
parameters varied in different parts of the study area, it was consistent locally, similar to
the research results of Liu et al. [48] in the City of Wuhan. The spatial heterogeneity of the
correlation came from the particularity of the traffic network and the varying urban land
use intensity in different locations, and was essentially the spatial differentiation of the
urban system in the evolution process.

To summarize, the layout and the development intensity of the urban land for different
functions had strong traffic directivity. Therefore, it was particularly necessary to analyze
the traffic utilization efficiency and to evaluate the existing and planned road network from
the perspective of urban functional accessibility. This work could provide some suggestions
for urban land use and urban transportation planning. For example, the high-intensity
utilization of residential and public service land uses in the main urban area of Jinan drove
up the travel demand and traffic flow in the area. Therefore, the main urban traffic network
could be adjusted from the road network topology and street centrality to reduce the vehicle
capacity of key road sections and to relieve traffic pressure.

6. Conclusions

Based on the multiple centrality assessment model and kernel density estimation
methods, in this study, the statistical characteristics and spatial distribution characteris-
tics of the closeness centrality, betweenness centrality, and straightness centrality of the
traffic network in the main urban area of Jinan were scrutinized. The Pearson correlation
coefficient and the GWR model were also used to explore the relationship between the
street centrality of the traffic network and the LUI of four land use categories, as well as
the spatial heterogeneity of the relationship. The results confirmed the conclusions of the
existing research in that the street centrality of the traffic network was strongly correlated
with the urban LUI. At the same time, the results also revealed the spatial disparity of
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the correlation between the three centrality indicators and the intensities of different land
use types.

Based on the statistical characteristics, the closeness centrality, betweenness centrality,
and straightness centrality indicators of the 7176 roads in the main urban area of Jinan
showed a power-law distribution, negative exponential distribution, and Gaussian distri-
bution, respectively. From the perspective of the spatial distribution characteristics, the
closeness centrality and the straightness centrality showed multi-center characteristics,
which meant that travel convenience and traffic efficiency met the travel needs of residents
in different locations. The single center feature of the betweenness centrality indicated
that the traffic flow was concentrated in the urban kernel area within the Inner Ring Road,
which increased the traffic pressure in the city center. The different land uses in the central
area of Jinan city showed obvious traffic directivity. In areas with high street centrality,
the intensities of the residential, commercial, and public service land uses were also very
high. The closeness centrality and straightness centrality had a greater impact on the LUI
than the betweenness centrality. Because it was affected by the rent bidding mechanism
and residential housing choices, the intensity of the residential land use had a stronger
correlation with the street centrality of the traffic network than the intensities of the com-
mercial and public service land uses had with the street centrality of the traffic network.
The industrial suburbanization process caused industrial land use to be mainly distributed
in urban fringe areas where the road network was sparse, far away from the main road
network of the city, and, as a result, the correlation between the LUI of this land use type
and the street centrality of the road network was weak. The maps of the β coefficients and
the local R2 obtained from the geographically weighted regression model showed a spatial
heterogeneity in the correlation between the street centrality of the road network and the
intensity of the land use. For example, the positive correlations between the closeness
centrality and the residential land use intensity were concentrated in the urban kernel area.
In contrast, a large number of positive correlations between the betweenness centrality and
the commercial land use intensity were distributed on the urban fringe. The conclusion of
this study could help explain the dynamic mechanism of the road network form and the
topological structure of the urban spatial evolution, and it could provide effective support
for the simulation and prediction of urban land use change.

In this study, a more detailed exploration of the correlation between the urban LUI
and the street centrality of the traffic network was performed. This exploration needs
improvement in terms of the following aspects. When calculating the centrality indicators
using the multiple centrality assessment model, factors such as road grade and width were
not considered. In fact, different grades of roads had different roles in the road network,
which may have affected the results to some extent. In addition, only four types of land use,
including residential, industrial, commercial, and public service land uses, were selected
and analyzed in this study. Follow-up studies may consider exploring the correlation
between the street centrality of the road network and the intensities of other land uses,
such as logistics and storage land use, green fields, and public facilities land use, to explore
the complex relationship between the traffic network and urban land use patterns.
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