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Abstract: Outpatient Chemotherapy Appointment (OCA) planning and scheduling is a process of
distributing appointments to available days and times to be handled by various resources through a
multi-stage process. Proper OCAs planning and scheduling results in minimizing the length of stay of
patients and staff overtime. The integrated consideration of the available capacity, resources planning,
scheduling policy, drug preparation requirements, and resources-to-patients assignment can improve
the Outpatient Chemotherapy Process’s (OCP’s) overall performance due to interdependencies. How-
ever, developing a comprehensive and stochastic decision support system in the OCP environment
is complex. Thus, the multi-stages of OCP, stochastic durations, probability of uncertain events
occurrence, patterns of patient arrivals, acuity levels of nurses, demand variety, and complex patient
pathways are rarely addressed together. Therefore, this paper proposes a clustering and stochastic
optimization methodology to handle the various challenges of OCA planning and scheduling. A
Stochastic Discrete Simulation-Based Multi-Objective Optimization (SDSMO) model is developed
and linked to clustering algorithms using an iterative sequential approach. The experimental results
indicate the positive effect of clustering similar appointments on the performance measures and
the computational time. The developed cluster-based stochastic optimization approaches showed
superior performance compared with baseline and sequencing heuristics using data from a real
Outpatient Chemotherapy Center (OCC).

Keywords: outpatient chemotherapy; cancer; oncology health care; clustering; stochastic simulation-
based optimization; multi objectives; planning; scheduling; decision-making metaheuristics;
artificial intelligence

1. Introduction

Cancer treatment is a significant healthcare challenge. More than 50% of global
cancer cases required chemotherapy in 2018 [1]. Outpatient Chemotherapy Centers (OCCs)
worldwide are struggling to satisfy the increasing demand [2,3]. The service quality level
and costs of the Outpatient Chemotherapy Process (OCP) are affected by the treatment
protocols variety, diverse patient pathways, uncertain durations of services, early and late
patient arrivals to the appointments, stochastic patient health conditions, and resource
capacities [4]. Thus, the complex OCP that operates in a dynamic environment requires
practical and low-cost solutions to increase its efficiency and effectiveness by solving
operational issues through superior appointment planning and scheduling.

OCP involves many decisions that must be taken on the strategic, tactical, and oper-
ational levels [5]. The strategic decisions determine the number of human (receptionists,
nurses, lab technicians, doctors, pharmacists, pharmacy technicians, and aids) and physical
(beds, examination rooms, and chemo hoods) resources.
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On the tactical level, the primary decision is to use the next-day (split) or same-day
scheduling policy. In the split scheduling policy, the patient performs the blood test, and
the oncologist reviews the patient health condition and activates the drug preparation
order before the appointment day. Therefore, advance drug preparation is applicable in the
split scheduling policy, and the nurse directly administrates the drug to the patient on the
appointment day. On the other hand, all these processes are performed in one day if the
same-day scheduling policy is applied.

The operational level consists of gathering the previous two to operate the OCP
efficiently. This level can consist of two stages: first, the days and times of patient appoint-
ments are set; second, the human and physical resources are assigned to the patients. The
performance of the solutions to the strategic, tactical, and operational issues are assessed
by multiple measures. The cost comprises the sum of the salaries and overtime of human
resources and the price and operational costs of the physical resources. Each resource uti-
lization is measured by the percentage of actual working time over the available time. The
time measures include appointment makespan and delays. The makespan is the time from
patient arrival to discharge. The delays are the sum of the mean waiting time, including
delay to the first appointment, waiting during the appointment day, and the difference
between the planned and actual completion day of all cycles.

OCP represents a complex, multi-stage, multi-server environment. Optimization stud-
ies use various idealized assumptions to properly formulate the Outpatient Chemotherapy
Appointment (OCA) planning and scheduling problem. Therefore, the majority of the
planning and scheduling optimization models considered the optimization of a single stage
in OCP. On the other hand, the models that consider multiple stages are deterministic and
do not provide a convenient mathematical representation of the stochastic OCP. In addition,
they are complex to solve analytically and require long computational times [6,7]. To over-
come these challenges, scholars have attempted to develop different heuristics. However,
these heuristics could not provide high-quality solutions and are hard to understand and
apply in the OCCs.

This contribution proposes using clustering with the Stochastic Discrete Simulation-
Based Multi-Objective Optimization (SDSMO) model in a new approach that merges the
clustering algorithms with stochastic optimization. The SDSMO uses computer code and
simulation to model the objectives and constraints functions of the OCP problems and
utilizes patient and appointment data to cope with integrated and enhanced planning
and scheduling decisions in uncertain scenarios. The approach clusters similar appoint-
ments to reduce the effect of stochastic durations and unpunctual patient arrivals on the
schedule. The clustering results are then fed to the optimization model to reduce the
computational time.

In the experimental study, various clustering algorithms were linked to the SDSMO
model and tested. The SDSMO model is configured to provide solutions to the OCA
planning and scheduling problem using an artificial intelligence-enabled general-purpose
optimizer. The experiment study used data from a real OCC to compare the performance
of the proposed approach that uses clustering to the results of the SDSMO model without
clustering, heuristics, and baseline schedules. The following section reviews the current
OCP optimization and simulation literature state and shows the necessity of this research
for OCA planning and scheduling.

2. Literature Review

This review aims to highlight the complexities and uncertainties in OCP, reveal re-
search gaps in the OCA planning and scheduling problem, and propose solutions. The
number of studies that have used simulation and optimization in this context is small
compared with optimization or simulation only.

Several optimization model types and solving methods are used to handle complexities
and uncertainties in OCP. Deterministic optimization models are the most used type of
models for OCA planning and scheduling.
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The scholars in this area have built upon optimization studies that preceded their work
to develop more comprehensive optimization models. Most deterministic optimization
models are integer [8–24] or mixed integer programming [7,25–34]. In mixed integer
models, some of the decision variables (but not all) all required to have integer values.
Constraint programming was used by [6].

Contrastingly, few optimization studies have proposed stochastic optimization models.
A two-stage stochastic integer programming formulation considering the infusion stage
only have been developed in [35]. In similar works, the authors of [36–38] used stochastic
integer programming models and heuristics.

Different simulation models have been used to address several OCP challenges. Schol-
ars focused on using discrete event simulation to improve OCA planning and schedul-
ing [39–51]. Furthermore, scenario-based analysis has been used to study the effect of
capacity planning and scheduling sequencing heuristics on overtime and waiting time [52].

System dynamics simulation models were used to simulate different OCA planning
issues in [30,53–55]. OCP design and coordination challenges were addressed using agent-
based simulation [56–58].

Studies containing optimization and simulation models used the simulation model
to generate inputs for the optimization model or evaluate output solutions. A chain of
articles used both optimization and simulation to study the OCA planning and scheduling
problem. The articles [59,60] triggered two research paths that use simulation to evaluate
optimization solutions and analyze the OCP, each with several research sub-paths. A
one-objective simulation-based optimization to plan shifts of nurses was used in [60].

Different optimization heuristics and exact solution methods were evaluated using
simulation [61–66]. The authors of [67] developed appointment scheduling rules and
compared them using a simulation model. In [68], the simulation model was used to
mimic the complexities and uncertainties of OCP. Uncertainty events were generated by a
simulation model and used as input to the optimization model in [69].

Based on the analysis of the reviewed articles, the challenge of the OCA planning
and scheduling problem is to account simultaneously for the various complexities and
uncertainties shown in Figure 1. This includes the multi-stage processing during infusion
because the medical staff is not permanently required. For example, the nurse installs
the patient and prepares the infusion, and she can then leave the patient for some time,
during which she serves other patients. The flexibility of this work process is known to
be hard to analyze because of the complexity of the involved stochastic programming
mathematical models. Furthermore, the oncologist can propose tolerances for treatment
appointment dates, i.e., a time window for the treatment day. Delaying or bringing forward
an appointment within the time window does not affect the health of the patient but also
increases the planning flexibility. Again, this flexibility is an additional source of complexity.

On the other hand, an example of uncertainties is the unpunctuality of patient arrivals.
Another source of uncertainty is the health condition of the patient at the date of treatment,
i.e., the health condition of the patient is not suitable for the prepared drug. These un-
certainties are other important features that have significant consequences, given that the
prepared drugs may cost several thousands of dollars. Combining the above complexities
and uncertainties to enhance OCA planning and scheduling is a challenging task. However,
at the same time, it can allow for obtaining insightful results and bridge the gap between
the literature and OCP operations in practice.

From the patient pathway perspective, several key performance indicators are studied
in the literature to address different issues. The most used performance measures are
patient waiting, appointment makespan, and resources overtime. Scholars used different
measures for different study scopes. The issues of the OCA planning and scheduling,
corresponding performance measures, and the purposes of optimization or simulation
models are listed in Table 1. Readers are referred to [5] for more complete references and
details about OCP research from an operations management perspective.
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Table 1. OCP issues and performance measures.

Issues Measures Study Scope

Time
Treatment delay Planning

Waiting time Scheduling
Makespan

Cost

Overtime

SchedulingNumber of staff
Number of equipment

Inventory levels

Workload
Fairness Assignment

Capacity Planning
and schedulingUtilization

Satisfaction
Demand fulfillment Planning
Treatment efficiency Assignment
Patient preferences Scheduling
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Research Gap and Aim of This Work

In the simulation studies, the existing models often neglected several human resources
(Clarks, phlebotomists, and lab technicians) and processes (blood test, vitals measurement,
drug order activation, and drip removal) even though they are necessary to the OCP. One of
the reasons behind this gap is the use of these simplifications to ease the studies as the OCP
problems, such as planning and scheduling, are already complex. Another reason might be
the lack of familiarity with different operation models of OCCs. Furthermore, most studies
did not show how the models were developed in the used simulation software.

Regarding the optimization and simulation studies, the developed solutions consider
limited integration of optimization and simulation models. The simulation models are used
mainly to generate data and evaluate optimization solutions. In addition, these studies
neglected many of the performance measures that exist in the literature [4].

Table 2 summarizes the studied characteristics of the problem encountered in the liter-
ature via a literature synthesis using detailed comparison and indicates how the proposed
problem and solution methodology differs from earlier research. A study that used a similar
technique was conducted by [19], where the authors used clustering algorithms to cluster
similar appointments in small groups (approximately one to seven patients per cluster)
and assigned resources to the resulting clusters to solve the one-day OCA scheduling prob-
lem. The authors considered one process of the OCP (the drug infusion). Therefore, they
clustered appointments based on two infusion-related features, namely infusion duration
and acuity level. The clusters of patients were then used instead of individual patients
in a modified version of the model from [10] to assign nurses, chairs, and time slots; this
optimization model is a deterministic zero-one linear programming model. The binary
variables in this model made it difficult to solve. Therefore, [19] introduced clustering to
reduce the number of binary variables and thus the computational time. They evaluated
their approach using a single performance measure, the patient treatment makespan.

Our study differs from the previous one in several fundamental points: First, we
clustered similar appointments in the planning horizon days with consideration of the
tolerance limits of the appointment target day. Hence, our clustering algorithm is on the
planning level rather than scheduling (appointments of the same day). Furthermore, we
considered features related to the drug preparation stage as well as drug infusion, namely
the number of drugs to be prepared, eligibility for advance drug preparations, and total
drug infusion duration. Therefore, our study analyzed the effect of clustering on all OCP
stages rather than the drug infusion stage only. Secondly, our optimization approach is
completely different from the single-objective deterministic model in [19]. We used the
SDSMO model that explicitly considers uncertainty about assigning patients to days and
time slots. Therefore, our work falls under the category of stochastic OCA planning and
scheduling. However, different from the single-stage models in [35–38,64], we considered
the multi-stage process, including the patient registration, triage, blood sample extraction,
blood test, health condition review, discharge, as well as drug order activation, validation,
preparation, delivery, and administration. Moreover, we took into account the different
required human and physical resources of each stage, not only the nurses and chairs. As
opposed to the mentioned five studies, we did not assume a punctual arrival of patients to
appointments. Furthermore, we considered the different patterns of patient arrivals based
on their assigned time slots.
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Table 2. Previous relevant OCA research.

Reference Optimization
Problem

Objective
Function

Improvement
Level Uncertainty Uncertainty

Handling Model Type Solving
Methods

Problem
Size/CPU *

[19] Scheduling
and assignment

Minimize
makespan

Single stage:
infusion - Deterministic Integer

programming
Clustering, and

exact 150/852

[35] Scheduling
and assignment

Minimize waiting
time, and
makespan

Single stage:
infusion

Drug infusion
duration Stochastic

Stochastic
mixed integer
programming

Heuristic 12/18

[36] Scheduling
and assignment

Minimize waiting
time, overtime, and

chair idle time

Single stage:
infusion

Drug infusion
duration Stochastic

Stochastic
mixed integer
programming

Heuristic 8/30

[37] Scheduling
and assignment

Minimize waiting
time and overtime

Single stage:
infusion

Drug infusion
duration Stochastic

Stochastic
mixed integer
programming

Exact 12/6

[38] Scheduling
and assignment

Minimize waiting
time, overtime, and

excess acuity

Single stage:
infusion

Drug infusion
duration Stochastic

Stochastic
mixed integer
programming

Heuristic 7/6

[52] Scheduling Minimize waiting
time and overtime

Multistage:
registration,
triage, drug
preparation,

drug infusion,
and discharge

Patient
arrivals Stochastic Discrete event

simulation
Sequencing
heuristics

[64]
Planning,

scheduling, and
assignment

Minimize first
appointment start

delay, and
scheduling

conflicts

Single stage:
infusion

Drug infusion
duration, and

nurse
availability

Stochastic

Mean-risk
stochastic

integer
programming

Exact

This
paper

Planning and
scheduling

Minimize
makespan and

overtime

Multistage:
registration,
blood draw,

triage,
oncologist
visit, drug

preparation,
drug infusion,
and discharge

Duration of
stages and

services,
patient
arrivals,

probabilities of
patient and
drug orders

paths

Stochastic

Stochastic
discrete

simulation-
based

optimization

Clustering, and
Meta-heuristics 246/786

* Number of appointments and approximated computation time (in minutes).

On the other hand, same as the model in [36], our model does not decide on patient-
to-resource assignments. Nevertheless, we used the acuity levels of patients to restrict the
simultaneous nurse tasks. The models in [35–37] used a positive integer variable to decide
the appointment time without time slots, while the models in [38,64] assigned patients to
time slots using a binary variable. We combined both techniques by using discrete variables
and restricting their values to a set of feasible values associated with the time slots in the
planning days.

The models in [37,64] were solved to optimality using optimization solvers. In con-
trast, heuristics were used in [35,36,38] to find approximate solutions within a reasonable
computational time. We searched for solutions by utilizing an artificial intelligence-enabled
General-Purpose Optimizer (GPO) developed by OptQuest. Scholars used GPOs in various
other NP-hard operations and logistics applications [70–72]. However, GPOs have never
been applied to OCA planning and scheduling [5]. Therefore, this work is an extension of
this research stream and applies an artificial intelligence-enabled GPO to the OCA plan-
ning and scheduling problem for the first time considering the specificities of the OCP
problem. This work paves the way for scholars in this research direction by answering the
following questions:

• How to develop the SDSMO model for OCA planning and scheduling considering
the process of multi-stages, stochastic durations, probability of uncertain events oc-
currence, performance measures, patterns of patient arrivals, acuity level, demand
variety, drug preparation policy, and diversity in patient pathways?

• How to use this model to find solutions by a GPO?
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• What is the effect of clustering OCAs using their drug preparation and infusion
features on the value of the performance measures and the computational time of
stochastic optimization?

• What is the efficiency of the proposed approaches compared with heuristics and real
baseline schedules?

3. Problem Description

In this section, the OCP setup and the OCA problem are described. In addition, the
baseline approach for OCA planning and scheduling in a real OCC is explained.

3.1. OCP Setup

The proposed OCA planning and scheduling approaches are based on a real OCP
setup in a large OCC in the gulf region. In the beginning, the primary oncologist confirms
the patient cancer diagnosis. Then, the primary oncologist plans the treatment types and
sequence based on various examinations such as CT, MRI, and biopsy. For instance, a
patient may have to undergo surgery or/and radiotherapy before the start of chemotherapy.

The patient journey in the OCP starts after the primary oncologist determines the
chemo protocol and treatment plan. The protocol contains information about the drugs,
the number of cycles, durations of cycles, and recovery time between cycles with tolerance
limits. The Day Care Unit (DCU) receptionists use the information in the protocol to book
the days and times of the OCA. The DCU is the place where the infusion rooms are located.

Two parallel main stages start before each cycle/appointment, namely, patient health
check and drug order preparation. The patient health status needs to be examined before
every treatment appointment. Therefore, blood tests and other pretreatment examinations
are required.

Depending on the treatment protocol, a patient might take several drugs in one
appointment. For each drug, a separate drug order is placed in the system. The oncologists
in the DCU review the results and the general health condition of the patient, including
weight and height. After that, they review the chemo drug orders and make any required
modifications. For example, the drug doses might require modification due to changes in
the patient weight. The next step is to approve the drug orders and activate them.

At that point, the preparation process of the drugs starts in the pharmacy. First,
the pharmacists perform clinical verification of the drug orders. In the first cycle, the
pharmacists review the protocol reference and approvals by the health organization and
the scientific literature. Then the blood test results and the dosing weight are checked. In
case of required modifications, the pharmacy sends a request to the DCU and waits until
the drug order is modified on the system. The second step is adding labels and medication
materials to the preparation kit. Then the kit is handed to the pharmacy technician, who
prepares the drug and provides it to the pharmacist for the final check. The same steps are
repeated for all drug orders of an appointment.

Next, the pharmacy aid transports the prepared drugs to the door of the DCU. The
nurses take the drugs and administer them to the patient one by one. The health of
the patient is observed after the drug administration is completed. Then the patient is
discharged and comes to his next appointment after a specified recovery period.

3.2. Baseline Approach

The baseline approach is the current decisions and procedures the case study center ap-
plies to handle the OCA planning and scheduling problem in the OCP step described in the
previous section. The performance of the baseline approach is compared with the cluster-
based SDSMO approach to evaluate the difference in performance in the real environment.

For the human and physical resources dimensioning decisions, the number of human
resources depends on the maximum possible number of physical resources. For instance,
one room can take a maximum of five beds. Therefore, two nurses are hired to serve each
room, considering the acuity levels.
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A hybrid scheduling policy is applied, and the blood test follows the split scheduling
method. At the same time, the review of results, drug order activation, and drug preparation
follow mainly the same-day scheduling policy. Most patients perform their blood tests
before the day of the appointment. However, a maximum of one-quarter of patients have
their blood tests and health condition reviewed before the appointment. Therefore, the
drug orders are activated for only those checked patients. Then their drug is prepared in
advance. The rest of the patients are checked on the same appointment day. These patients
wait on the beds during the activation and preparation of the drug orders.

The time of patient arrival might be scheduled at 7:00 or 11:00 a.m. considering three-
time slots: 7:00–11:00, 11:00–15:00, or 7:00–15:00. An electronic calendar is used to book
the appointment days and arrival times manually. For example, an appointment might be
planned on Sunday, and the arrival of the patient is scheduled at 7:00 a.m. It is assumed
that the patient had his blood test performed one day before. Therefore, the appointment
duration is estimated to be the sum of times required for patient registration, health
condition review, as well as drug order activation, preparation, delivery, and administration.
If the estimated appointment time exceeds 4 h, the patient is assigned to the most extended
time slot (7:00–15:00).

The as-soon-as-possible method is applied to plan appointments on days. Neverthe-
less, the appointments are distributed on the weekdays to have a balanced daily workload
considering the appointment day tolerance limits and the drug infusion duration. Suppose
that the number of appointments in a certain week (5 working days) is around 250 patients.
The daily schedule for this week has around 45 to 55 appointments.

The patient-to-nurse assignment is decided on the appointment day. The charge nurse
attempts to balance the workload among nurses by assigning patients according to their
estimated drug infusion duration.

3.3. SDSMO Formulation

This section describes the proposed SDSMO formulation of the OCA planning and
scheduling problem, driven by the OCP setup and baseline approach presented in the
previous sections. There are three main components of the SDSMO model, namely opti-
mization formulation structure, stochastic simulation model (Section 4.1), and optimization
methodology (Section 4.2). We next describe and explain the optimization problem formu-
lation.

In stochastic simulation-based optimization, the simulation model codes replace parts
of the optimization formulation to describe the actual process complexity and incorporate
its stochastic behavior [73]. The uncertainty in the arrival of patients, durations, and
demand of stages is represented using scenarios (simulation replications). A random
number generator generates the value of durations and events occurrence of a scenario
based on distribution functions and probabilities inserted in the simulation model [74].
Assuming these scenarios and considering that the objective and constraint functions have
stochastic parameters, we used the simulation model to measure the objective function and
model the constraints. Therefore, in simulation optimization, the optimization formulation
consists of the measured objective function using the simulation outputs and the restrictions
on the values of the decision variables only [75]. The problem constraints (e.g., capacities,
queue disciplines, order of stages, sequence of activities, priorities, and policies) are defined
in the simulation model to replicate the real-world process and requirements accurately.
Previous studies showed the ability of this approach to find good solutions for planning and
scheduling problems in outpatient [76–79], surgery [80], and emergency [81] departments.

The problem considered in this paper is the planning and scheduling of the patient
arrival times (i.e., determining the day and time of patient arrivals) to the chemotherapy
appointments where the actual patient arrivals, service times, and stages that are per-
formed during the appointment are stochastic variables. The notations for the optimization
formulation are listed below.
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Indices:
i Appointment;
z Objective;
d Day in the planning horizon.
Sets:
I Appointments;
O Objectives;
S Feasible values of xi, start time of appointment slots in the time horizon.
Parameters:
NI Number of appointments;
NO Number of objectives;
ND Number of days in the planning horizon;
Wz Weight of objective z ∈ O;
LBi Lower bound of planned patient arrival time xi of appointment i ∈ I ;
UBi Upper bound of planned patient arrival time xi of appointment i ∈ I ;
ET End time of the planning horizon.
Decision variables:
xi Planned patient arrival time of appointment i = 1, 2, . . . , NI .

The objective is to determine the day and time of patient arrivals that minimizes the
following function, which represents the expected total cost of the objective functions.

∀x ∈ RNI min
x

F(x) = ∑NO
z=1WzE[ fz(x)] Wz > 0 (1)

subject to
LBi ≤ xi ≤ UBi ∀i ∈ I (2)

xi ∈ S ∀i ∈ I (3)

where x =
(

x1, x2, . . . , xNI
)
∈ RNI is the decision vector. The components of the decision

vector x are the planned patient arrival times (xi) of the appointments in I . The decision
vector, x, belongs to RNI (NI -dimensional real space), where NI is equivalent to the number
of decision variables.

Since conflicting objectives, O = {zi}1,NO , exist it is impossible to find a single Pareto
optimal solution that optimizes all the involved objective functions [82]. Therefore, a
single-objective function in (1) is formulated by scalarizing and combining the conflicting
objectives, fz, using weights,Wz. In this study, the weights of scalarization are based on
expert opinions.

As shown in Figure 2, the values of decision variables are restricted by two constraints
to exclude infeasible solutions. Constraints (1) ensure that the value of the decision variables
xi ∀i ∈ I are between the lower, LBi, and upper, UBi, bounds. The LBi and UBi are
determined based on the appointment day tolerance limits. Each appointment has a target
day and tolerance limits based on the treatment plan. The scheduling policy defines the
start time of the time slots, S , of these days in the planning horizon. Constraints (2) ensure
that the values assigned to the decision variables belong to S . For instance, if the target
day of the appointment i is Monday with ±1 day tolerance limits, the arrival of the patient,
xi, can be planned in any time slot on Monday, Sunday, or Tuesday defined in S . In this
example, LBi is the first time slot on Sunday, and UBi is the last time slot on Tuesday.

Then, the generated set of values for decision variables is analyzed using the simula-
tion model. As described in Figure 2, the other constraints of the problem are intrinsically
incorporated into the stochastic simulation model, including acuity levels, resource capaci-
ties, availability, patient availability, priority, queuing discipline, sequence of stages, patient
flow, and drug preparation policy.
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days, except for drug mixing
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Objective (4)
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Figure 2. Formulation of the studied OCA problem.

This study considers two objective functions to test the SDSMO model. The average
makespan is the first objective function. f1 is the sum of the makespan of all appointments,
MPi, i ∈ I over their number, NI . MPi is measured from the time of actual patient arrival
to discharge. This is defined by (4) and calculated by the simulation model. As illustrated
in Figure 2, the requirement of demand fulfillment of all appointments is checked by (5)
based on the actual patient arrival time, XAi, obtained from the simulation model and the
value of MPi. If (5) is not true for any appointment i, the solution is considered infeasible
and excluded. Otherwise, the solution is improved using the methodology explained in
Section 4.2.

∀x ∈ RNI f1(x) =
∑NI

i=1 MPi(x)
NI

(4)

MPi + XAi ≤ ET ∀i ∈ I (5)

The second objective function, f2, is the sum of the daily overtime of receptionists,
OVRd; pharmacists, OVMd; pharmacy technicians, OVEd; and nurses, OVNd in each
day d ∈ D, over the number of days, ND . The generic expression is defined by (6). We
developed an algorithm inside the simulation model to calculate the average daily overtime
of these resources. This algorithm is presented in Section 4.1.

∀x ∈ RNI f2(x) =
∑ND

d=1 OVRd(x) + OVMd(x) + OVEd(x) + OVNd(x)
ND

(6)

For the cluster-based approach proposed in Section 4.3, the appointment clusters
are considered instead of individual appointments. The same formulation applies with i
representing a cluster, I is the set of clusters, NI is the number of clusters, xi is the planned
patient arrivals of all appointments in the cluster, LBi is the minimum lower bound of
xi of the appointments in the cluster, and UBi is the maximum upper bound of xi of the
appointments in the cluster.

4. Solution Methodology

As it is evident from Sections 2 and 3, the problem of OCA scheduling under uncer-
tainty was mathematically formulated and solved optimally for only small problems using
idealized assumptions. In this section, we develop a SDSMO model of the OCA planning
and scheduling problem to generate solutions using a GPO as an alternative approach.
First, we describe the development steps of the stochastic simulation model of the SDSMO
model. Second, the solutions generation method using a GPO is discussed. Thirdly, we
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introduce a framework of an iterative sequential approach that uses clustering to reduce
the computational time and enhance the solutions of the SDSMO model. The proposed
framework can be adapted to other types of stochastic optimization models.

4.1. Stochastic Simulation Model of SDSMO

The stochastic simulation model was developed based on the described OCP setup,
problem formulation structure in Section 3, and the flowchart of the OCP of the studied
center presented in Figure S1 in the Supplementary Materials. We used AnyLogic to develop
the simulation model. AnyLogic is a well-established discrete-event simulation software
that uses OptQuest for simulation optimization [83]. Table A1 (Appendix A) summarizes
the parameters used in the stochastic simulation model. The main development steps of
the simulation model, including the modeling of process flow, constraints, logic coding,
and validation of the model, are described next.

We split an appointment into two agents for a more accurate calculation of the per-
formance measures. The first agent is the patient agent. A source block generates the
patient agent, reads the patient appointment parameters from a database, and stores it in
the patient agent. Then the patient agent goes through checks to determine its eligibility
for advance drug preparation.

If the patient agent is found eligible, a copy of this agent is generated under the
name drug agent and linked to it (we call this copy Drug Eligible for Advance Preparation
(DEAP)). Otherwise, this split happens after the triage or the blood test stages (let it be
called Drug Prepared on the Same Day (DPSD)). The DEAP goes to the drug preparation
stage directly. In contrast, the DPSD waits for the patient agent to complete the registration,
triage, blood test, and drug order activation stages if they are not performed before the
arrival of the patient.

The DEAP or DPSD is combined with their linked patient agents after going through
the drug preparation stage. The patient agent waits for its copy (drug agent, DEAP, or
DPSD) to arrive at this combining point and vice-versa. The combined block destroys
the copy (DEAP or DPSD) and outputs the patient agent only. Finally, the patient agent
continues its journey in the drug administration and discharge stages.

The following technique is used to model patients’ early, on-time, or late arrival
patterns. First, we generate the patient agent way before its planned arrival time (xi). Then,
we keep it waiting (without including this time in the measure of waiting time) until the
time of the earliest expected actual arrival, XDip, of the patients who are following the same
arrival distribution p. Subsequently, the patient agent is released and interred in another
waiting block. The latter uses the arrival distribution p to randomly release the patient
agents after waiting an amount of time equal to XPip. We consider the arrival distributions
of the two time slots defined by the scheduling policy of the center, where p = 1 and p = 2
are the arrival distributions of 7:00 a.m. and 11:00 a.m. appointments, respectively.

For example, the historical data showed that patients with 7:00 a.m. appointments
might arrive as early as 45 min prior to their appointment, i.e., 6:15 a.m. The pattern of
patient arrivals after 6:15 follows an exponential distribution. Therefore, we set the genera-
tion time of patient agents for all 7:00 a.m. appointments to 6:15 a.m. The generated patient
agents are entered into a delay block. The delay block uses the exponential distribution to
assign waiting times to patient agents. When the waiting time of a patient agent is finished,
the delay block releases the patient agent. Thus, from a reporting standpoint, the patient
agent appears to have just arrived as it leaves the delay block.

We found that the parameter values of arrival distributions are different for each time
slot. For instance, the early morning arrival pattern is different than before noon. Therefore,
we considered different arrival distributions that can be identified using historical data for
each time slot.

The acuity level is a difficult logic to implement in the simulation model. A nurse is
assigned to several patients with total acuity levels equal to the maximum level she can
handle simultaneously, LNu. Then she can serve one of them at a time for premedication,
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drug injection, removal, or any other uncertain need. We used Algorithm 1 to simulate this
procedure. Using this algorithm, the patient agent can only seize the nurse assigned to it,
and a nurse is assigned to patient agents with a total acuity level less than LNu.

Algorithm 1 Simulating patient-to-nurse assignment based on acuity levels

1:
Find the first available nurse (nurse assigned to patient agents with a total acuity level less
than the maximum acuity level of the nurse, LPu);

2:
Check if the to-be-assigned patient agent has an acuity level, LPi, less than or equal to the
access acuity level that the nurse can handle;

3:
If step 2 is true, assign the patient agent to the available nurse directly before the
premedication stage;

4:
Increase the number of assigned patient agents to the nurse, LAu, by the value equal to the
acuity level, LPi, of the last assigned patient agent;

5:
After patient agent discharge, decrease the number of assigned patient agents to the nurse by
the value equal to the acuity level, LPi, of the discharged patient agent;

6: Repeat step 1 to 5 for all patient agents

For optimization we considered the two performance measures (i.e., overtime and
makespan) that are explained in Section 3.3 and described in (4) and (6). However, we
considered forty-two performance measures for post-optimization analysis under five main
categories, including appointment makespan, waiting times between stages, overtime,
utilization of resources, and advance drug preparation as shown in Table A3 (Appendix B).
The first three categories contain the most used performance measures in OCP studies [4].
However, we included new performance measures under each category which have usually
been neglected by previous studies due to the exclusion of several stages. For example,
since our model includes most OCP stages, we reported the waiting time in all stages.
Furthermore, we considered the overtime of receptionists and pharmacy technicians.

On the other hand, studies have rarely addressed the performance measures of uti-
lization and drug advance preparation. We reported the utilization of several main and
secondary resources from all stages to understand the effect of appointment admission
policies during different time intervals, namely before, during, and after regular working
hours. Moreover, since advance drug preparation is one of the most used strategies to
reduce waiting time, we deeply analyzed its performance by considering the number
of completed tasks of the main preparation steps. For instance, the number of verified
drug orders, and prepared drug kits before the specified time to start the advance drug
preparation.

Built-in blocks in AnyLogic can be used to collect performance measures of all cat-
egories except overtime of resources. Therefore, we developed the algorithm shown in
Figure 3 to calculate the average daily overtime of a resource. In the first step, the time
difference between the time of the release of resource Z by a simulated agent and the regular
close time of the center is calculated and recorded in data set A. Then the algorithm finds
the maximum recorded overtime in data set A and records it in data set B as the overtime
of resource Z for that day. After the simulation finishes, the average of values in data set B
are reported as the average daily overtime of resource Z.

4.2. Solving Method

The decision algorithm and the solution evaluator are the two main components
required to generate solutions from the SDSMO model. We used the developed stochastic
simulation model as a solution evaluator and the GPO as the decision algorithm. The
decision algorithm generates a new set of values for the decision vector, X, at each sim-
ulation iteration. A new set is generated by changing the value of one decision variable
within a defined feasible range. These values are inserted in the simulation model as
input parameters. Then the value of the multi-objective function is calculated based on the
simulation results.
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The decision algorithm was based on metaheuristics and artificial intelligence used
by OptQuest software [84]. Scatter search and tabu search are the two incorporated
metaheuristics. The artificial intelligence component uses a multi-layered neural network
model [85]. The role of the combined metaheuristics is to guide the decision algorithm
toward a new set of values for decision variables. The tabu search uses an adaptive memory
to prevent the scatter search from regenerating a previously evaluated set of values and
guide the diversification and intensification of the search process.

Start Loop

End Loop

Resource Z  

released 

after regular 

hours?

Current 

model time 

is equivalent 

to 11:59:00 

p.m.? 

Simulation 

end?

Add the difference in 

time (release time − 

end of regular time) 

into data set A

Get maximum value 

(overtime of a day) 

from data set A  and 

add it into data set B

Get the average of 

values stored in data 

set B

Average Daily 

Overtime of 

Resource Z

data set A

data set B

False

False

Figure 3. Flowchart of the calculation algorithm of average daily overtime of a resource in the
simulation model.

The neural network is utilized to accelerate the search process by excluding the sets
of values that are predicted to produce inferior values of the multi-objective function [86].
In other words, the neural network helps reduce the number of simulations whose results
are likely to be poor. The data of the evaluated solutions (values of the decision vector
and objective function) are used to train the neural network. The training continues until a
prespecified minimum error between the known and predicted objective function values
is reached.
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The OptQuest algorithm focuses on each objective at the beginning of the search. Then,
the successor iterations fill the gaps on the Pareto frontier [87]. Readers are referred to [85]
for a broader description of the OptQuest algorithm as well as its formulas.

The OptQuest algorithm writes the values of the decision variables in the simulation
model parameters. AnyLogic software runs the simulation model using the parameter
values from OptQuest. At the end of the run, AnyLogic exports the simulation results to
the OptQuest algorithm. The latter assigns the value of the multi-objective function to the
current set of values of decision variables.

The search process continues unless terminated by stopping criteria. The simulation-
based optimization literature has two main approaches for defining the stop criteria [88].
The most used approach applies arbitrary criteria specified depending on the running
time, the number of consecutive non-improving solutions, or the number of decision
variables. The second approach was based on Karush–Kuhn–Tucker conditions that use
gradients for the stopping criterion. OptQuest supports the first approach only [89]. The
recommended minimum number of simulation iterations for multi-objective optimization
with over 100 decision variables is 25,000 [90]. Therefore, we used this recommended
number of iterations as a stop criterion to evaluate the performance of the model. For each
iteration, the replication stops when the desired confidence level and error percent are
reached after a minimum defined number of replicates by the user.

4.3. Clustering and Stochastic Optimization Framework

There are two main reasons behind the use of clustering in our solution approach. The
first reason is to reduce the effect of the unpunctuality of patient arrivals on the performance
of the solutions. In our approach, we take all problem factors, such as the number of time
slots and the number of resources, as inputs to the optimization problem and we only
decide on the day and time of patient arrivals. Unpunctual arrivals directly affect the
performance of the solution. Therefore, we cluster similar appointments to minimize the
effect of unpunctual arrivals on the schedule of the appointments.

For example, consider the two scenarios shown in Figures 4 and 5, with clustered
and non-clustered appointments. The rectangles show the required time to prepare the
drugs of the patient, and the bidirectional arrows represent the infusion time. In these
two scenarios, the drug preparation cannot be started before the arrival of the patients.
Although the two scenarios have different appointment groups, drug preparation and
infusion completion times are the same under the assumption of punctual patient arrivals
(left side of Figures 4 and 5). In contrast, when uncertainty in patient arrivals is introduced
(right side of Figures 4 and 5), the non-clustered appointments take much longer than
the clustered appointments to complete all appointments. This is because the clustered
appointments are exchangeable, and the order does not matter when unpunctual patient
arrivals disrupt the schedule.

The second reason is to reduce the number of decision variables used in the SDSMO
model. This is because using a smaller number of decision variables by clustering appoint-
ments decreases the computational time required for the same size of problem. Moreover,
this is useful when the SDSMO model is running in a software that specifies a limit on the
number of parameters of the simulation model. Therefore, the use of appointment clusters
instead of individual appointments allows the SDSMO model to solve problems involving
a number of decision variables more than the specified limit.
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Figure 4. Example of a schedule of clustered appointments with punctual and unpunctual
patient arrivals.
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Figure 5. Example of a schedule of non-clustered appointments with punctual and unpunctual
patient arrivals.

The proposed framework consists of two main steps, clustering and feeding the
clusters to the SDSMO model. First, all received appointment requests are kept in a queue.
Then, these appointment requests are entered into a clustering algorithm to generate
appointment clusters. For that purpose, we used appointment features related to the
appointment time window, the drug preparation stage, and the drug infusion stage. We
included the target appointment day to increase the number of clusters that contain similar
appointments with the same or close target day. For instance, if the appointment target
day is Monday, this appointment is clustered with appointments that have similar features
on Monday or appointments of the closest day to Monday. Consequently, fewer possible
values of the decision variable (i.e., planned arrival time) are considered. This is because
the distance between the lower and upper bounds is reduced.

The other features are used to cluster similar appointments that are exchangeable
at the different stages of the process, including drug order activation, preparation, and
infusion. For example, the drugs of the clustered appointments in Figure 4 are all ineligible
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for advance preparation and have the same durations of drug preparation and infusion.
Finally, the obtained appointment clusters are fed to the SDSMO model for day and time
assignment.

We considered testing different clustering algorithms in the experimental study. K-
means was used as it is one of the classic algorithms available. Furthermore, we also
considered Hierarchical and Self-Organizing Maps clustering. Our intent is not to compare
these clustering algorithms, but we used them to verify the proposed framework.

We propose the methodology shown in Figure 6 to link the clustering algorithms to
the SDSMO model. As opposed to [19] we do not recommend a guideline to choose K
because we think just saying K equals the number of patients over the number of nurses
plus one is not enough to justify the choice. Furthermore, this kind of clustering algorithm
belongs to unsupervised learning that provides different K clusters in each run due to its
random start. Therefore, there should be a criterion to choose the clustering results of the
chosen K. We used a maximum number of clustering replications same as the work in [19].
However, we did not pick the clustering results of K based on the lowest summation of
distances between points and their cluster centroids.

In our iterative sequential approach, we used the clustering and optimization loops
illustrated in Figure 6 to choose the best value of K and clustering results. First, in the K
loop, the Ks of the first round, s = 1, is set to Kmin. We chose Kmin be equal to the number of
daily time slots multiplied by the number of planning days. This value of Kmin was chosen
to have at least one cluster for each time slot in the planning horizon and let the SDSMO
model decides the distribution of these clusters on the time slots. In the clustering loop,
the clustering algorithm was used to generate Ks clusters. Then, the clusters are fed to the
SDSMO model to obtain the value of the objective function. To reduce the time required to
complete the optimization experiment, we used less strict search stop criteria by enabling
the automatic stop option. This means that the optimization experiment stops when the
solution is not improving after OptQuest has used all its techniques for the default number
of times (two) specified by AnyLogic [91]. However, we maintained a 95% confidence
level and 5% error with a minimum of two replicates as a stop criterion for simulation
replications of a solution iteration.

The value of the objective function is added to data set A, and the same steps are
repeated for the same Ks until the 95% confidence level with a 5% error of the mean value
of the objective function is reached. The mean of the objective function values of Ks is
stored in data set B. After that, Ks value is increased by one, and the loop is executed again
until Ks = Kmax. We chose Kmax to be equal to the number of appointments divided by two.
Since each cluster has one decision variable in the SDSMO model, the chosen value of Kmax
ensures that the number of decision variables is reduced by half at least. This allows for
reaching the minimum desired reduction in the computational time. Finally, the Ks that
corresponds to the best mean value of the objective function in data set B is chosen as Kbest
for the optimization loop.

The same clustering loop in the K loop is used in the optimization loop with different
stop criteria. First, for the SDSMO model, we used a specified number of maximum
simulation iterations (e.g., 25,000 [90]) to be conducted instead of an automatic stop. Since
running the SDSMO model for a large number of iterations takes a relatively long time, we
chose to terminate the clustering loop after the 95% confidence level with a 5% error of
the mean value of the objective function is reached, or a maximum number of clustering
replications (e.g., seven [19]) of Kbest is completed. Then, the clustering and SDSMO results
that correspond to the best objective function in data set C was chosen as the best solution.
Finally, we took this solution and ran a greater number of replications using the Monte
Carlo experiment to estimate the values of the objective and performance measures with a
smaller margin of error.
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Figure 6. The proposed iterative sequential approach to link clustering to stochastic optimization.

5. Experimental Design

In this section, we demonstrate the design steps of a comprehensive computational
study that is used to evaluate the solution methodology. First, we validate the reliability
of the developed stochastic simulation model in representing the real OCP. Second, the
verification procedure of the proposed approach is presented.

5.1. Validation of the Stochastic Simulation Model

A senior pharmacy informatics officer collected empirical operations data from a large
OCC in the gulf region. Appointment and process data over three months were extracted
from the deployed healthcare information system in the center. The data included time
stamps at the beginning and end of each major stage and service of all appointments. In
addition to actual and scheduled patient arrivals and drug order data.

We analyzed the data using a statistics package (Minitab) to determine the best-
fit duration distributions of stages and probabilities of stochastic parameters. We used
the p-value of the Anderson–Darling Test (ADT) to justify the distribution choices. If an
optional extra parameter was added in a distribution, we used the p-value of the Likelihood-
Ratio Test (LRT) to indicate the importance of adding the extra parameter. For example, in
Table A2 (Appendix A) the duration of the registration stage was found to be following a
Weibull distribution, the p-value of ADT is greater than 0.005, and the p-value of the LRT
is less than 0.005, which indicates the adequacy of the distribution and the importance of
adding the third parameter [92,93]. As shown in Table A2 (Appendix A), expert opinion
and literature were used when data were unavailable to generate portability distributions.
Consequently, some values of the stochastic parameters were calculated using deterministic
functions for experimental purposes.

We used historical data and medical and management staff feedback to validate
the simulation model. Length of stay is the only reported performance measure in the
collected data. Therefore, we compared the average makespan from the historical data with
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the average makespan measured by the stochastic simulation model using the baseline
schedules.

Our simulation model contains a large number of stochastically varied parameters.
Therefore, we used the Monte Carlo method because its accuracy is independent of the
number of stochastic parameters in the simulated model [94]. We ran 100 simulation
replicates using the Monte Carlo experiment in AnyLogic to consider the effect of stochastic
parameter values. As shown in Table 3, the 100 simulation replicates allowed the analysis
of the makespan with 0.008 half-width (HW) of the 95% confidence interval (CI).

The histogram shown in Figure 7 visualizes the distribution of the average makespan
of the 100 simulation replicates. The minimum and maximum obtained average makespan
values and the deviation are 4.628, 4.784, and 0.04, respectively. The results in Table 3
and Figure 7 indicate that the simulation model is a tractable representation of the actual
process. Moreover, the staff feedback confirmed the reliability of the simulation model. The
system data and expert opinion helped to represent the process accurately.
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Table 3. Comparison of the actual and simulated average makespan of the baseline schedules (in
hours) for three months.

Historical Data Monte Carlo Experiment

Average Makespan n Mean HW of the 95% CI

4.71 100 4.69 0.008

5.2. Verification of Clustering and Stochastic Optimization Framework

As shown in Table 4, the experimental design included four experiment sets to be used
to answer the research questions and verify the proposed approach. The first set investigates
the impact of clustering on the performance of the SDSMO model and the solution.

We conducted the experiments of the first set using the two sets of clustering features
shown in Table 5. Set A has four features, and Set B includes the same features except one
feature related to the eligibility of advance drug preparation. These features were selected
based on the reasons explained in Section 4.3. We excluded the feature of eligibility for
advance preparation in the second set because the percentage of eligible drug orders that
are actually prepared in advance is variable. Therefore, we analyzed the effect of including
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and excluding this feature on the exchangeability of drug orders at the drug preparation
stage. Our aim is not to find the optimal combination of features. We used these two sets as
examples to show the effect of the used features on the proposed approach.

The results of the first sets were compared with the solution of the SDSMO model
without the use of clustering to evaluate the effect of clustering on the computation time
and the value of the objective function. Furthermore, we used the third set to perform an
objective comparison with sequencing heuristics from the literature [52,95]. As benchmarks,
we used nine different sequencing heuristics based on the eligibility for advance drug
preparation (expensive and not expensive drugs) and durations of drug preparation and
infusion. Moreover, the baseline schedules were used in the fourth set to assess the value
of the proposed approach in practice.

One-week scenarios were used to calculate the value of the multi-objective function
and the performance measures. This week had 246 appointments distributed over five days
with the drug and patient data listed in Table S1. The value of the clustering features of sets
A and B are in Table S2. Tables S1 and S2 are available in the Supplementary Materials of
this paper.

Table 4. Experiments sets.

Set Approach

1.1 SDSMO for planning & scheduling of the K-means clustering results
1.2 SDSMO for planning & scheduling of the Hierarchical clustering results
1.3 SDSMO for planning & scheduling of the Self-Organizing Maps clustering results

2.1 SDSMO for planning & scheduling of individual appointments

3.1 Expensive Drugs First (EDF)
3.2 Expensive Drugs and Long Infusion Duration First (EDLIDF)
3.3 Long Drug Preparation Duration First (LDPDF)
3.4 Short Drug Preparation Duration First (SDPDF)
3.5 Short Infusion Duration First (SIDF)
3.6 Long Infusion Duration First (LIDF)
3.7 Plateau Pattern (P.P.)
3.8 Not Expensive Drugs First (NEDF)
3.9 Not Expensive Drugs Short Infusion Duration First (NEDSIDF)

4.1 Baseline schedules

Table 5. The included appointment features in the sets of features A and B.

Appointment Feature Set A Set B

Target appointment day • •
Number of drugs to be prepared • •

Eligibility of all drugs for advance preparation •
Total infusion duration of all drugs • •

The resource data that were used in the experiments are shown in Table 6. As can be
seen, some resources work an extra amount of time before and after the regular hours. The
overtime before the regular opening time is one hour for all overtime resource types. On
the other hand, overtime resources work after the regular hours for varying amounts of
time that depend on the required time to complete all tasks.
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Table 6. Resource data.

Resource Amount Overtime before
Regular Hours (hour)

Overtime after
Regular Hours (hour)

G 2
L 2
C 2

R, R′, R′′ 3, 1, 1 1

Until the completion of all tasks

B, B′, B′′ 42, 42, 42 1
M, M′, M′′ 4, 1, 1 1

E, E′, E′′ 2, 2, 1 1
A, A′, A′′ 2, 2, 1 1
N, N′, N ′′ 16, 2, 2 1

As explained in Section 4.2, we ran the simulation-based optimization experiment for
approaches 1.1–2.1 until the stop criterion was met. We used 25,000 maximum number of
iterations as suggested in [90] for problems with more than 100 decision variables to stop
the experiment. The behavior of the tested solution under stochasticity was considered
by using a varying number of replications. For each iteration of a solution, the replication
stopped when a 95% confidence level and 5% error were reached after a minimum of two
replicates. Then, the next iteration was started, and the same replication procedure was
repeated.

The obtained solutions of approaches 1.1–2.1, as well as the solutions of the sequencing
heuristics and the baseline schedules (approaches 3.1–4.1) were simulated for 10,000 repli-
cations. This number of simulation replicates allows the analysis of the objective function
and performance measures with HW in the less than ± 1% range. For that purpose, we
used the Monte Carlo experiment in AnyLogic to compare the solutions of approaches
under the effect of stochastic parameters.

For each solution, the simulation replicates were run using random values of the
stochastic parameters in each run. Finally, we reported the obtained values of the mean,
minimum, maximum, standard deviation, and HW of the 95% CI of the value of the
objective function, as well as the forty-two performance measures considered in the post-
optimization analysis.

6. Results and Discussion

In this section, we first determine the set of features for approaches that use clus-
tering (1.1–1.3). After fixing the feature set, we compare the performance of the SDSMO
approaches without and with clustering (experiment sets 1 and 2) to assess the value of
clustering. After that, we report the percentage gap between the solution found by the first
set with sequencing heuristics from the literature. We also compare the solution with the
baseline schedules.

Finally, we analyze the results of the Monte Carlo experiment of the forty-two perfor-
mance measures that are considered for post-optimization analysis to assess the solutions
in practice from various perspectives. The experiments were all performed on H.P. Pavil-
ion Gaming Laptop with an AMD Ryzen 5 5600 H processor running at 3.30 GHz with
32.0 GB RAM.

6.1. Determining the Set of Features

In this section, we perform approaches 1.1–1.3 using the two sets of features A and B.
In the subsequent sections, we use the set of features that helped achieve better objective
functions. As we see next, the set of features is an important parameter, as it directly affects
both the solution quality and run time spent to obtain a solution.

We applied the algorithm shown in Figure 6 to obtain the clustering results for the sets
of features A and B. We ran the SDSMO model for each clustering result until the specified
stop criteria in Section 5.2. Table 7 shows the objective values and the associated run time
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to obtain the solutions. When set B is used, the objective value improves by more than 17%,
12%, and 7% for approaches 1.1–1.3, respectively. The model run time needed to reach the
stop criteria increases significantly when set B is used. Compared with the literature, this
run time is short for the considered problem size (Table 2).

Nevertheless, we used the comparison in Table 8 to analyze the reason behind this
improvement of objective values and the increase in computational time. We analyzed the
number of clusters that have all appointments with the same target day and the number
of those that have appointments with different target days. For example, a cluster with
appointments of different target days might have three appointments with Monday as the
target day and two appointments on Tuesday. When all appointments are on the same day,
this means fewer possible values for the decision variable, which is the day and time of
arrival of patients.

For instance, considering two-time slots in a day, the possible number of values of
decision variables in Approach 1.1 with the set of features B is two only for the majority of
the clusters. On the other hand, the number of values of decision variables in Approach
1.1 with the set of features A is two for 75% of the clusters and four for 25% of the clusters
(two days with two-time slots each). Therefore, when set B is used, the search space
is smaller because fewer possible values of decision variables need to be checked. The
decision algorithm concentrates on enhancing the solution of one day instead of exploring
the solutions that mix appointments of two days. However, the varying number of required
replicates of each iteration to reach the 95% confidence level with an error of 5% that
the current solution is better than the last tested one is significantly higher because the
difference between the solutions is minimal. Therefore, the computational time increases.
Another reason is related to the additional feature used in set A, which is the eligibility of
all drugs for advance preparation. This feature has a minor effect on the exchangeability of
drug orders at the drug preparation stage. This is because a low percentage of eligible drug
orders are actually prepared in advance due to the current applied conservative policy in
the center.

Finally, we did not compare the results of the clustering algorithms because rather
than the accuracy of clustering (summation of squared distances between the data points
and their nearest centroids), it is the features of appointments in each cluster that makes
the difference in the planning and scheduling. Particularly, the purpose of the previous
comparisons is to indicate that clustering can help reduce the computational time and
enhance the solution of the utilized stochastic optimization model, provided the right set
of features is used. In the following comparisons, we use the results of Approach 1.1 with
the set of features B to report the gap and the difference in computation time.

Table 7. Objective function values and run times (in hours) of the clustering approaches 1.1–1.3 using
two different sets of features and the same stop criteria for the SDSMO model.

Approach

Set of Features A Set of Features B

Objective Time Objective Time

µ Min Max σ 95% CI HW µ Min Max σ 95% CI HW

1.1 402.1 231.4 1475.9 107.5 2.1 4.4 338.2 155.2 1476.1 110.5 2.2 13.1
1.2 404.1 211.1 1272.9 107.0 2.1 3.9 358.2 175.2 1195.9 110.0 2.2 10.9
1.3 375.1 189.5 1204.3 104.2 2.0 5.7 348.4 190.9 1646.5 109.0 2.1 9.8

Table 8. Percentages of clusters with appointments that have the same target day and two target days
in the clustering results of the sets of features A and B that are used to obtain the results in Table 7.

Approach
Set of Features A Set of Features B

One Day Two Days One Day Two Days

1.1 75 25 98 2
1.2 80 20 96 4
1.3 67 34 93 7
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6.2. Comparison of Stochastic Optimization with and without Clustering

To assess the value of appointment clustering with the optimization model, we com-
pared the results of Approach 1.1 with Approach 2.1, which does not use the clustering
results. We kept all the settings of the SDSMO model the same as described in the experi-
mental design section.

Based on the objective values and computational times in Table 9, Approach 2.1 spends
approximately eight and a half hours more than Approach 1.1 for the same stop criteria. The
gap between the mean objective value from Approach 1.1 solution is almost 15%. The results
indicate that the proposed clustering methodology for stochastic optimization of the OCA
problem helped the SDSMO model find a better solution in considerably less computation
time (approximately 48%). The standard deviation and the 95% CI HW of Approach 1.1 are
higher than Approach 2.1. This statistically means that clustering improved the accuracy,
but also increased the scattering (standard deviation). As a consequence, if one wants
more accurate results, clustering should be used; but if one wants less scattered (i.e., more
repetitive and predictable), clustering should be avoided.

Table 9. The gap between the solutions and the run times (in hours) of the SDSMO model with and
without clustering.

Result Approach 2.1 Approach 1.1 Gap (%) 1

Objective

µ 392.0 338.2 14.7
Min 211.4 155.2 30.7
Max 1588.9 1476.1 7.4
σ 106.5 110.5 −3.7

95% CI HW 2.1 2.2 −4.7

Time 21.3 13.1 47.7
1 The minus sign before the percentage indicates that the result of Approach 1.1 is higher than the result of
Approach 2.1.

6.3. Benchmarking with Sequencing Heuristics

To justify our claim in Section 4.3 that the use of clustering is an appropriate method
to decrease disruption in the schedule of OCAs that is caused by the unpunctuality in
the arrival of patients, we compared our clustering-based solution with the solutions of
sequencing heuristics from the literature.

In Table 10 we present the percentage gap between the objective value associated
with the clustering-based approach 1.1 and the heuristics approaches 3.1–3.9. Based on
these results, the clustering solutions can obtain a better objective function value than the
benchmark heuristics.

LIDF has the best performance among these heuristics, generating a 12.5% gap with
approach 1.1. For EDF and EDLIDF, we observe relatively larger gaps, around 23%. These
results indicate that it is important to consider appointment clustering to reduce the effect
of stochasticity on the solution.

Table 10. The gap between the solution of the SDSMO model with clustering and the sequencing
heuristics.

Result
Objective Value Gap (%) *

Approach 1.1 EDF EDLIDF LDPDF SDPDF SIDF LIDF PP NEDF NEDSIDF

µ 338.2 −22.9 −22.4 −18.8 −19.2 −21.9 −12.5 −12.6 −15.6 −15.9
95% CI LB 336.1 −23.1 −22.6 −18.9 −19.3 −22.0 −12.6 −12.7 −15.7 −15.9
95% CI UB 340.4 −22.8 −22.3 −18.7 −19.0 −21.8 −12.4 −12.5 −15.5 −15.8

* The minus sign before the percentage indicates that the result of Approach 1.1 is better than the result of the
compared sequencing heuristic.
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6.4. Comparison with the Baseline Schedules

We assessed the value of using clustering and the SDSMO model in practice by
comparing Approach 1.1 with the baseline schedules (Approach 4.1). The comparison
results are shown in Table 11. We compared both approaches with respect to the average
objective value, makespan, and overtime. The baseline schedules yielded significantly
worse objective values. Approach 1.1 outperforms the baseline in terms of overtime value
by almost 18%. Due to the use of only two-time slots in both approaches, the improvement
in average makespan value is particularly small.

Table 11. The gap between the solution of the SDSMO model with clustering and the baseline schedules.

Results Objective Value Makespan Overtime

Approach Approach Approach

4.1 1.1 4.1 1.1 4.1 1.1

Objective

µ 394.9 338.2 293.0 282.72 346.1 291.1
Min 208.0 155.2 251.5 247.86 163.7 111.7
Max 1521.1 1476.1 328.5 317.64 1708.8 1748.6
σ 108.0 110.5 9.7 9.78 130.2 133.5

95% CI HW 2.1 2.2 0.2 0.18 2.6 2.6

6.5. Analysis of Performance Measures

The previous results are obtained from a complex stochastic simulation model of
the OCP queuing network. This network comprises the arrivals, queues, service times,
and paths. Therefore, there are three categories of randomness sources in the developed
simulation model that are listed as stochastic parameters in Table A1 (Appendix A). The
first one is the patterns of patient arrivals, which are defined by arrival distributions, as
explained in Section 4.1. The second source of randomness is the service time distributions.
Finally, the third source of randomness is the probabilities that decide the paths of patients
or drug agents in the process.

We analyzed the effect of these sources of randomness on the forty-two performance
measures (described in Section 4.1) that are considered for post-optimization analysis using
the Monte Carlo experiment in AnyLogic. The analysis shown in Table A3 (Appendix B)
indicates that the overall performance of Approach 1.1 under stochasticity is better than
the other approaches listed in Table 5. Approach 1.1 achieved the lowest average overtime
and lower average makespan than most approaches.

Nevertheless, the utilization of the main resources, such as beds, nurses, and pharmacy
technicians, is low. This indicates that there is a capacity to have more appointments to
be served on the analyzed week. However, the advance drug preparation requirements
and policy restrict the use of the remaining capacity. For instance, although around 35%
of drug orders were verified and their kits were prepared before 06:00 a.m. (the time to
start advance drug production as per the center policy), less than 19% were produced in
advance. This is because the remaining drug orders contain expensive drugs. Therefore,
the pharmacy waits until the admission of the patient to start the drug production of these
orders due to the applied policy.

The comparison of the performance measures indicates that the clustering of appoint-
ments and the use of the SDSMO model considerably increased the overall performance of
the process. The better patient-to-time slots assignment enhanced the patient flow through
the stages. Furthermore, it was possible to decide on more efficient appointments for the
scenarios of uncertainties summarized in [5].

Furthermore, the SDSMO model verified its remarkable ability to utilize the scenario
characteristics while reacting to uncertainties. All the proposed clustering-based approaches
achieved better performance than sequencing heuristics and baseline schedules. Clustering
similar appointments had a positive effect on the overall performance of the OCC.
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Moreover, this approach helped reduce the schedule disruption caused by unpunctual
patient arrivals. This is because the drug preparation tasks of the clustered appointments are
exchangeable due to the similarity in their required preparation time. Therefore, clustering
the OCAs reduces the effect of the change in the order of drug preparation tasks caused by
unpunctuality in patient arrivals on the performance of the overall schedule.

7. Limitations and Future Research Directions

There are some limitations of the research in this article. The first limitation is mainly
related to the considered scope of the optimization problem. In the problem design, we
focused on the planning and scheduling of patient arrivals. Although this strategy facili-
tated the study of a relatively large problem, considering the resource–patient assignment
decisions can help analyze the proposed approach in more depth. Furthermore, we address
the planning of appointments within their tolerance days, regardless of the fact that each
appointment is one cycle of a series of appointments separated by recovery days.

Additional studies can build on this work by examining the effect of linking patient
appointments in the planning horizon on the continuity of care. We used makespan and
overtime for the objective function. The study can be extended to include other performance
measures, such as fairness and patient preferences. In addition, we defined the problem
and developed the SDSMO model based on the literature and the observations and data
from one OCC. A generic model based on a wide range of OCC environments is needed to
generalize the results.

Second, we used stochastic simulation optimization to model the problem and enhance
the solution. This method does not require a complete mathematical formulation of the
objective and constraint functions. Furthermore, the deployed metaheuristics can find
high-quality solutions. However, it does not guarantee near-optimal or optimal solutions.
In addition, we used a user-defined criterion based on the number of decision variables
and computational budget to stop the search. An alternative is to use gradient-based stop
criteria. Therefore, formulating a multi-stage multi-objective stochastic mathematical model
and solving it optimally within a reasonable computational time represents a challenging
future research direction.

Third, in the experimental study, we tested three clustering algorithms only. Inte-
grating other clustering algorithms with the optimization models of OCA planning and
scheduling problems leads to a more comprehensive analysis. Moreover, the proposed
iterative sequential clustering and optimization approach considered only unsupervised
clustering algorithms. Semi-supervised and supervised clustering can be used to produce
class-uniform clusters, particularly if we want to extend the scope of the paper beyond the
OCA problem.

Therefore, this study can be extended to a more in-depth assessment of the proposed
approach. The first potential future research direction is to re-evaluate the tradeoffs between
different objectives in the multi-objective function and use more objectives. The four classes
of multi-objective optimization methods, namely no preference, a priori, a posteriori, and
interactive should be used and compared.

Furthermore, a test case in a real environment is required to validate the accuracy
of the simulation model. Finally, further studies can implement the proposed approach
in an adaptive manner to handle stochastic events such as the inability of patients to
take the treatment. Moreover, the full-factorial experimental design can be used to jointly
consider the strategic, tactical, and operational decisions to assess their interaction. The
comprehensive multi-stage stochastic simulation model developed in this article can be
used to fulfill this goal.

Another extension can be related to robotic chemotherapy compounding. By using
the iterative sequential clustering and stochastic optimization approach proposed in this
research, future work can facilitate the transition from manual to automated drug produc-
tion. In the automated process, the pharmacy staff loads the robot with the drug order
information and raw materials [96]. The main challenge of applying this technology is
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the number of required robot setups per day [97]. Therefore, appointment clustering and
scheduling optimization are needed for batch production of identical drug orders instead
of individualized production.

8. Conclusions

Appointment planning and scheduling in multi-class open queuing networks with
feedback such as the OCP remain challenging, as it comprises many uncertainties, such
as stochastic arrivals and service durations. Advance drug preparation before the arrival
of patients is a common strategy applied by the OCCs to improve the OCP. However, the
number of eligible drug orders for advance preparation that are prepared in advance is small
due to several restrictions such as patient health, drug validity period, and unpunctuality
in patient arrivals. Hence, there is a need for a planning and scheduling approach that
considers the stochasticity and uncertainty in the process while assigning days and time
slots to appointments.

Therefore, this research proposes an iterative sequential approach for OCA planning
and scheduling. The approach uses clustering algorithms to generate appointment clusters
based on the similarity in the target appointment day, drug orders, and infusion durations.
Then, a stochastic optimization model is used to decide the days and times of the arrival of
patients for these appointment clusters.

From the conducted experimental study, it is evident that the proposed approach
improves the overall performance of the OCP, helps the SDSMO model to find better
solutions in less computational time, and enhances the responsiveness of the solution to
stochasticity. The proposed approach performs exceptionally well compared with other
heuristics and the baseline schedules. Furthermore, the Monte Carlo analysis showed the
robustness of the approach using randomly generated values for the stochastic parameters.

This research has several potential extensions for OCA or other appointment planning
and scheduling problems. The proposed framework and models can be tested in different
environments. Second, a scenario-based analysis using the developed simulation model
and algorithms can reveal interesting findings. One interesting future direction would be
to coordinate the arrival of patients with automated batch drug production.
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Appendix A

Table A1. Parameters of the stochastic simulation model.

Symbol Description

R, R′ , R′′ Number of receptionists during, before, and after regular hours of the center, respectively

G Number of triage nurses

L Number of lab technicians

B, B′ , B′′ Number of beds use during, before, and after regular hours of the center, respectively

C Number of doctors during, before, and after regular working hours, respectively

M, M′ , M′′ Number of pharmacists during, before, and after regular working hours, respectively

E, E′ , E′′ Number of pharmacy technicians during, before, and after regular working hours, respectively

A, A′ , A′′ Number of pharmacy aid during, before, and after regular working hours, respectively

N, N′ , N′′ Number of nurses during, before, and after regular working hours, respectively

HDPVNC Hour of the day when the drug orders production of advance preparations can start as per the center policy

HC Regular center daily closing hour (the hour of the day when the center completes the regular operating time)

XEp
Largest negative expected deviation from xi (from actual arrival before the scheduled time to the scheduled time) of an appointment i ∈ I following
patient arrival distribution p

XDip
Dummy parameter, used to model the stochastic patients’ arrival patterns,
XDip equals xi − XEp for the patient of appointment i ∈ I that have planned patient arrival time xi and following patient arrival distribution p

XPip
Delay time from XDip to XAi of the patient of appointment i ∈ I and following arrival pattern p, where p = 1 corresponds to arrival pattern of 07:00
a.m. appointments, and p = 2 corresponds to arrival pattern of 11:00 a.m. appointments

XAi
Actual patient arrival time, XAi equals to XDip + XPip for the patient of appointment i ∈ I that have planned patient arrival time xi and following
patient arrival distribution p

DVNCi Binary parameter, equal 1 if all the drug orders of appointment i ∈ I are eligible for advance preparation; 0, otherwise

BS Percentage of patients who perform the blood test on the same day of the appointment after the registration stage

DVM Percentage of drug orders that need modification after the drug order verification stage

DAM Percentage of drug orders that need modifications and are modified by the doctor to keep it considered for advance preparation

DKB Percentage of drug orders that their kits are considered to be prepared in advance

DVM Percentage of drug orders that need modification after the drug order verification stage

DNi Number of drugs for the patient of appointment i ∈ I

AFij

Drug infusion duration (drug administration stage) of drug j for the patient of appointment i ∈ I (this parameter is deterministic because the center
uses an electronic infusion pump; therefore, the stochasticity in the duration of the drug administration stage is considered in the durations of
premedication AP, drug injection AI, removal AR, and observation of patient after drug infusion AO)

LPu Maximum acuity level that a nurse u can handle simultaneously

LPi Acuity level of patient of appointment i ∈ I

LAu Number of assigned patients to a nurse u at any time

RE Registration stage delay time

T Triage stage delay time

BE Blood extraction delay time (blood test stage)

BT Blood results delay time (blood test stage)

DA Orders activation delay time

DV Orders verification delay time (drug preparation stage)

DK Preparation of orders kit delay time (drug preparation stage)

DP Orders production delay time (drug preparation stage)

DC Orders checking and bagging delay time (drug preparation stage)

DD Orders delivery from pharmacy to bed delay time (drug preparation stage)

API Premedication injection/preparation delay time (drug administration stage)

AP Premedication delay time (drug administration stage)

AI Drug injection delay time (drug administration stage)

AR Drug removal delay time (drug administration stage)

AO Final observation delay time (drug administration stage)

CH Discharge stage delay time
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Table A2. Values of the stochastic simulation model parameters used in the model validation and the
experimental study.

Parameter Value Source

XPip for p = 1 exponential(67.27423, 0.97882) min, ADT p-value = 0.010, LRT p-value = 0.000 Historical Data

XPip for p = 2 exponential(239.49579, 0.84100) min, ADT p-value = 0.010, LRT p-value = 0.001 Historical Data

RE weibull(1.42, 4.01, 0.90) min, ADT p-value = 0.016, LRT p-value = 0.002 Historical Data

T weibull(1.89037, 3.96305) min, ADT p-value = 0.011 Historical Data

BS 7% Historical Data

BE triangular(2, 7, 4) min Expert opinion

BT triangular(5, 51, 11) min Expert opinion & [98]

DA weibull(2.20099, 3.99678) min, ADT p-value = 0.009 Historical Data

DV DNi × 1.5 min Expert opinion

DK DNi × 2 min Expert opinion

DP DNi× triangular(2, 20, 7) min Expert opinion

DC DNi × 0.4 min Expert opinion

DD normal(2.169, 4.141) min, ADT p-value = 0.025 Observation data

API weibull(1.32, 1.2) min, ADT p-value = 0.014 Historical Data

AP triangular(3, 15, 8) min Expert opinion & observation
data

AI normal(2.13, 2.92) min Expert opinion & [98]

AR 3.43× beta(0.67,0.577) min Expert opinion & [98]

AO exponential(89.70559, 0.94490) min, ADT p-value = 0.010, LRT p-value = 0.000 Historical Data

CH weibull(1.42, 4.01, 0.90) min, ADT p-value = 0.016, LRT p-value = 0.002 Historical Data

XEp for p = 1 45 min Historical Data

XEp for p = 2 267 min Historical Data

HDPVNC 6:00 a.m. Data

HC 3:00 p.m. Data

DNi Patient-specific Data
DVNCi Data

AFij Patient-specific Data

LNu Nurse-specific (from 4 to 6) Data

LPi Patient-specific Data
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Appendix B

Table A3. Results of post-optimization analysis of performance measures using Monte Carlo experiments.

Performance Measure Average (95% CI HW)

Approach

1.1 1.2 1.3 2.1 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1

Average patient length
of stay (Makespan) 282.7 (0.2) 284.6 (0.2) 285.8 (0.2) 297.7 (0.2) 308 (0.2) 304 (0.2) 323 (0.2) 257.8 (0.1) 266.9 (0.2) 311.6 (0.2) 304.7 (0.2) 281 (0.2) 270.9 (0.2) 293 (0.2)

Average total patient
waiting time 129.2 (0.2) 134.5 (0.2) 130.9 (0.2) 134 (0.2) 143.9 (0.2) 139.9 (0.2) 158.9 (0.2) 93.6 (0.1) 102.8 (0.1) 147.4 (0.2) 140.6 (0.2) 117.3 (0.2) 108.5 (0.1) 129.3 (0.2)

Average patients wait to
start registration 0.6 (0) 0.6 (0) 0.6 (0) 0.7 (0) 1.7 (0) 1.7 (0) 1.7 (0) 1.7 (0) 1.7 (0) 1.7 (0) 1.7 (0) 1.8 (0) 1.7 (0) 1.4 (0)

Average patients wait to
start triage 12.9 (0.1) 14.5 (0.1) 13.3 (0.1) 13.5 (0.1) 19 (0.1) 19 (0.1) 18.9 (0.1) 19 (0.1) 19 (0.1) 19 (0.1) 19 (0.1) 19 (0.1) 19 (0.1) 16.3 (0.1)

Average patients wait to
start blood extraction 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Average patients wait
for blood test results 22.2 (0.1) 22.3 (0.1) 22.4 (0.1) 22.3 (0.1) 22.3 (0.1) 22.2 (0.1) 22.3 (0.1) 22.3 (0.1) 22.3 (0.1) 22.2 (0.1) 22.2 (0.1) 22.4 (0.1) 22.2 (0.1) 22.3 (0.1)

Average drug orders
wait to start activation 2.6 (0) 2.8 (0) 2.6 (0) 1.9 (0) 3.4 (0) 3.4 (0) 2.8 (0) 2.5 (0) 2.5 (0) 2.7 (0) 2.6 (0) 2.2 (0) 2.4 (0) 2.7 (0)

Average patients wait
for activation 6.2 (0) 6.4 (0) 6.2 (0) 5.5 (0) 7 (0) 6.9 (0) 6.4 (0) 6.1 (0) 6.1 (0) 6.2 (0) 6.2 (0) 5.8 (0) 5.9 (0) 6.2 (0)

Average drug orders
wait to start drug order

verification
23.5 (0) 27.1 (0) 23.5 (0) 11.5 (0.1) 24.5 (0) 24.5 (0) 24.5 (0) 24.4 (0) 24.4 (0) 24.5 (0) 24.5 (0) 24.4 (0) 24.4 (0) 24.4 (0)

Average drug orders
wait to start preparing

drug kit
1.1 (0) 1.3 (0) 1.1 (0) 0.2 (0) 1.1 (0) 1.1 (0) 1.1 (0) 1.1 (0) 1.1 (0) 1 (0) 1.1 (0) 1.1 (0) 1.1 (0) 1.1 (0)

Average drug orders
wait to start drug

production
91.1 (0.2) 94.7 (0.2) 92.3 (0.2) 90.9 (0.2) 99.9 (0.2) 95.9 (0.2) 114.5 (0.2) 47.6 (0.1) 57.7 (0.1) 101.9 (0.2) 95.8 (0.2) 71.6 (0.2) 61.7 (0.1) 87.4 (0.2)

Average drug orders
wait to start checking

and bagging
0.1 (0) 0.1 (0) 0.1 (0) 0 (0) 0.1 (0) 0.1 (0) 0 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0)

Average drug orders
wait to start drug

delivery
0 (0) 0.1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Average patients wait
during drug

preparation and
delivery

137.8 (0.2) 141.8 (0.2) 139.3 (0.2) 128.8 (0.2) 150.1 (0.2) 145 (0.2) 165.7 (0.2) 85.3 (0.1) 97.9 (0.2) 147.6 (0.2) 143.2 (0.2) 112.6 (0.2) 100.1 (0.2) 133.9 (0.2)
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Table A3. Cont.

Performance Measure Average (95% CI HW)

Approach

1.1 1.2 1.3 2.1 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1

Average patients wait to
start premedication 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.1 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Average patients wait to
start drug injection 0 (0) 0.1 (0) 0 (0) 0.1 (0) 0 (0) 0 (0) 0.1 (0) 0 (0) 0 (0) 0.1 (0) 0.1 (0) 0 (0) 0 (0) 0 (0)

Average patients wait to
start drug removal 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.2 (0) 0 (0) 0 (0) 0.2 (0) 0.1 (0) 0 (0) 0 (0) 0.1 (0)

Average patients wait to
start discharge 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.2 (0) 0 (0) 0 (0) 0.2 (0) 0.1 (0) 0.1 (0) 0.1 (0) 0.1 (0)

Average patients wait
after triage to start drug

administration
115.6 (0.2) 119 (0.2) 116.8 (0.2) 119.6 (0.2) 123 (0.2) 118.9 (0.2) 137.8 (0.2) 72.8 (0.1) 82 (0.1) 126.2 (0.2) 119.6 (0.2) 96.3 (0.2) 87.7 (0.1) 111.4 (0.2)

Utilization beds 38.2 (0) 39.4 (0) 38.4 (0) 39.8 (0) 40.2 (0) 39.7 (0) 42.3 (0) 33 (0) 34.1 (0) 41.1 (0) 40.2 (0) 36.7 (0) 35.2 (0) 38.7 (0)

Utilization nurses 4.5 (0) 4.6 (0) 4.5 (0) 4.4 (0) 4.4 (0) 4.4 (0) 4.3 (0) 4.4 (0) 4.4 (0) 4.5 (0) 4.5 (0) 4.5 (0) 4.5 (0) 4.4 (0)

Utilization pharmacy
technicians 54.4 (0) 55.2 (0) 54.3 (0) 54.9 (0) 54 (0) 53.9 (0) 54 (0) 54.7 (0) 54.4 (0) 54.3 (0) 54.2 (0) 54.5 (0) 54.8 (0) 54.2 (0)

Utilization triage nurses 23.4 (0) 24.2 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0) 23.4 (0)

Utilization of overtime
receptionists before

regular Hours
20.4 (0.1) 19.2 (0.1) 21 (0.1) 21.7 (0.1) 27.3 (0) 27.3 (0) 27.3 (0) 27.3 (0) 27.3 (0) 27.3 (0) 27.3 (0) 27.3 (0) 27.2 (0) 26.8 (0)

Utilization of overtime
beds before regular

hours
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Utilization of overtime
nurses before regular

hours
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Utilization of overtime
pharmacists before

regular hours
6.7 (0) 6.5 (0) 6.3 (0) 4 (0) 6.7 (0) 7.4 (0) 7.8 (0) 5.9 (0) 5.9 (0) 7.6 (0) 6.3 (0) 6.4 (0) 5.8 (0) 7 (0)

Utilization of overtime
drug deliverers before

regular hours
331.3 (2.7) 357.8 (2.6) 321.6 (2.6) 164.4 (2.3) 361.3 (2.9) 369.7 (2.9) 327.6 (2.6) 335.7 (2.7) 347.1 (2.8) 303.6 (2.5) 325.9 (2.6) 292 (2.5) 281.1 (2.3) 338.2 (2.8)

Utilization of overtime
pharmacy technicians
before regular hours

9.1 (0.1) 10.7 (0.1) 10 (0.1) 4.9 (0.1) 12.3 (0.1) 12.4 (0.1) 11.5 (0.1) 7.1 (0.1) 9 (0.1) 9.7 (0.1) 10.7 (0.1) 8.4 (0.1) 5.5 (0) 11.1 (0.1)
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Table A3. Cont.

Performance Measure Average (95% CI HW)

Approach

1.1 1.2 1.3 2.1 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.1

Utilization of overtime
receptionists after

regular Hours
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Utilization of overtime
beds after regular hours 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Utilization of overtime
nurses after regular

hours
3.6 (0) 3.9 (0) 3.7 (0) 4.2 (0) 4.1 (0) 3.9 (0) 4.2 (0) 3.8 (0) 4.2 (0) 3.5 (0) 3.5 (0) 3.7 (0) 3.9 (0) 4 (0)

Utilization of
pharmacists after

regular hours
0 (0) 0.1 (0) 0 (0) 0.1 (0) 0 (0) 0 (0) 0 (0) 0.1 (0) 0.1 (0) 0 (0) 0 (0) 0.1 (0) 0.1 (0) 0 (0)

Utilization of overtime
drug deliverers after

regular Hours
24.5 (0.4) 36.2 (0.5) 24.9 (0.4) 27.2 (0.5) 25.9 (0.4) 24.1 (0.4) 38.6 (0.7) 20.7 (0.3) 20.3 (0.3) 31.6 (0.5) 24 (0.4) 23.6 (0.4) 24.7 (0.4) 24.8 (0.4)

Utilization of overtime
pharmacy technicians

after regular hours
0.4 (0) 0.6 (0) 0.4 (0) 0.4 (0) 0.5 (0) 0.4 (0) 0.6 (0) 0.3 (0) 0.3 (0) 0.5 (0) 0.4 (0) 0.4 (0) 0.4 (0) 0.4 (0)

Number of drug order
verifications before

patient arrival
88.6 (0) 87.6 (0) 88.6 (0) 88.6 (0.1) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0)

Number of drug order
kits prepared before

patient arrival
88.6 (0) 87.6 (0) 88.6 (0) 88.6 (0.1) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0) 88.6 (0)

Number of ready kits of
eligible drug orders for

advance production
before the specified time

to start advance drug
preparations by the

center policy (6:00 a.m.)

43.9 (0) 41.9 (0) 43.9 (0) 44.1 (0.1) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0) 43.9 (0)

Mean overtime of
receptionists 0.2 (0) 0.2 (0) 0.2 (0) 0.2 (0) 0.2 (0) 0.2 (0) 0.2 (0) 0.2 (0) 0.2 (0.1) 0.2 (0) 0.2 (0) 0.2 (0.1) 0.2 (0) 0.2 (0)

Mean overtime of
pharmacy technicians 11.7 (0.6) 15 (0.6) 11.2 (0.6) 12.3 (0.6) 12.3 (0.6) 12.6 (0.6) 12.9 (0.6) 13 (0.6) 13.1 (0.6) 12.7 (0.6) 12.2 (0.6) 12.9 (0.6) 13.3 (0.6) 12 (0.6)

Mean overtime of
pharmacists 11.9 (0.6) 15.3 (0.6) 11.5 (0.6) 12.6 (0.6) 12.5 (0.6) 12.8 (0.6) 13 (0.6) 13.5 (0.6) 13.5 (0.6) 12.8 (0.6) 12.4 (0.6) 13.2 (0.6) 13.7 (0.6) 12.2 (0.6)

Mean overtime of
nurses 267.3 (1.4) 280.3 (1.4) 277.8 (1.4) 317.2 (1.3) 349.5 (1.3) 347.4 (1.3) 328.4 (1.4) 340.2 (1.3) 350.3 (1.3) 305.7 (1.4) 308.2 (1.4) 322.4 (1.3) 324.2 (1.4) 321.7 (1.3)
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