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Abstract: Driven by the information technology revolution, using artificial intelligence to promote
intelligent manufacturing while achieving carbon emissions reduction is increasingly the focus
of international attention. Given this, based on the fact that China’s industrial manufacturing is
more intelligent, this paper uses industrial sector data and robot data from 2000 to 2017 to examine
the impact of intelligent manufacturing on industrial carbon dioxide emissions and to discuss
its internal mechanism. The research found that intelligent manufacturing significantly inhibits
carbon dioxide emissions in the industrial sectors. The emission reduction effect is more obvious in
industries with higher carbon emissions and intelligence. The mechanism test shows that intelligent
manufacturing mainly achieves industrial emission reduction by reducing fossil energy consumption
in the production process and improving energy use efficiency. The research findings of this paper
provide favorable evidence for using new technologies, such as artificial intelligence, to achieve
carbon emissions reduction, and validate the importance of intelligent manufacturing in tackling
climate change in the future. It provides an essential reference for developing countries to use artificial
intelligence for their carbon emissions reduction goals.
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1. Introduction

Climate change has led to more frequent extreme weather events, which have threat-
ened economic activities such as agriculture, forestry, animal husbandry, and fishing [1],
aggravated the spread of diseases [2], and threatened economic growth [3] and public
health [4]. Many studies on climate change show that carbon dioxide emissions from en-
ergy consumption are the leading cause of climate change [5]. Therefore, reducing carbon
dioxide emissions has become a common concern of all countries to lessen the impact of
climate-related disasters. However, considering the differences in the stages of economic
development faced by developed and developing countries, different countries should
play different roles in reducing carbon emissions [6]. Although there are many disputes
between developed and developing countries about the contributions of carbon emission
reduction [7], it is important to note that developing countries are currently playing an
essential role in achieving carbon emission reduction and tackling climate change [8].

As the world’s biggest carbon emitter, China accounts for about 30% of the world’s car-
bon dioxide emissions, 90% of which are caused by fossil energy consumption [9]. Figure 1
shows China’s CO2 emissions by flue type and the share of global CO2 emissions. Since
the reform and opening-up, China’s industrial added value has increased approximately
60-fold from USD 96.05 billion in 1978 to USD 577 billion in 2020 (Constant 2015 USD) [10].
The rapid outward development of China’s economy mainly relies on high investment
and high energy consumption, resulting in a large amount of crude input of fossil energy,
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leading to a large amount of carbon dioxide emissions [11]. At the same time, rapid eco-
nomic growth has led to dramatic declines in environmental quality [12]. To actively and
effectively address the issue of climate change, at the general debate of the United Nations
General Assembly in September 2020, President Xi Jinping declared that China would
scale up its Nationally Determined Contributions (NDCs) by adopting more vigorous
policies and measures and aims to have CO2 emissions peak before 2030 and achieve
carbon neutrality before 2060. The timespan from carbon peak to carbon neutrality that
the Chinese government promised is much shorter than what many developed countries
might take [13]. Therefore, it is very challenging for the Chinese government to achieve
these goals on time.
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Much to our gratification, the rise of artificial intelligence injects new impetus into
China’s economic growth and provides new solutions for improving China’s ecological
environment [14]. According to the statistics, China accounted for nearly one-fifth of global
private investment funding in 2021, attracting USD 17 billion for AI (Artificial Intelligence)
start-ups [15]. Stanford University’s AI Index, which assesses AI advancements worldwide
across various metrics in research, development, and economy, ranks China among the
top three countries for global AI vibrancy. Facts have proved that China has built a solid
foundation to support its AI economy [16]. The development of artificial intelligence has
become a new trend in China’s current economic growth, and new industries represented
by new information technologies such as big data, cloud computing, and mobile internet
have formed. Then, while the information technology revolution promotes the vigorous
development of intelligent manufacturing, can it bring about the dual effects of economy
and ecology? Can it significantly improve the production efficiency of various industries
and promote economic growth? Can it reduce energy consumption and achieve carbon
emission reduction? Can it be an effective means to achieve carbon neutrality? It is worth
studying whether intelligent manufacturing can reduce carbon emissions in industrial
sectors and by what means to achieve carbon reduction in all industries. To this end, based
on the industry data and robot production data from 2000 to 2017, this paper examines the
impact of intelligent manufacturing on industrial carbon dioxide emissions and discusses
its internal mechanism.
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2. Literature Review

Progress in information technology has promoted extensive changes in the economic
growth pattern and development structure. It also has significantly impacted how energy is
produced and consumed in countries around the world. However, the effects of information
technology on energy consumption are complex. On the one hand, information technology
can reduce energy consumption in products and processes through its direct application,
potentially offering considerable improvements in energy efficiency for the transport,
buildings, and industry sectors. On the other hand, information technology will tend to
increase electricity’s importance in the economy. The prevalence of more devices could
cause significant net increases in energy use. At the same time, AI technologies based on big
data and cloud computing are widely used in industry and profoundly impact electricity
and energy use. Scholars have conducted many studies to assess the potential impact of
information technology and AI on energy use.

2.1. Information Technology and Energy Consumption

Many scholars have studied fossil energy consumption in industrial production
and found that intelligent manufacturing enabled by information technology can de-
crease the demand for fossil energy consumption and improve energy use efficiency.
Schulte et al. (2016) used a cross-country cross-industry panel data set covering 13 years,
10 OECD countries, and 27 industries and found that information technology reduced
total and non-electric energy demand, but electrical energy demand was not significantly
affected [17]. Usman et al. (2020) analyzed the impact of ICT (Information and Communi-
cation Technology) on economic performance and energy consumption in selected South
Asian economies from 1990 to 2018. The study shows that in both the short and long term,
ICT helped reduce India’s energy consumption and significantly improved the energy
efficiency of Indian industries [18]. Ishida et al. (2015) used the Autoregressive Distributed
Lag (ARDL) boundary test approach to assessing the long-term relationship between ICT,
energy consumption, and economic growth in Japan. The study shows that ICT investment
can equally contribute to a modest reduction in Japan’s energy consumption but not to an
increase in GDP (Gross Domestic Product) [19]. Bastida et al. (2019) assessed the potential
of ICT-based interventions in households to decrease electricity usage, and improve energy
efficiency, finding that ICT-based effects on consumer behavior can reduce household final
electricity consumption by 0–5% [20].

A few scholars have found that progress in information technology has not always
contributed to lower energy consumption. Saidi et al. (2017) investigated the impact of
information communication technology (ICT) and economic growth on electricity con-
sumption for a global panel of 67 countries using a dynamic panel data model. They
found that ICT and economic growth increased electricity consumption [21]. Zhou et al.
(2018) used a three-tier structural decomposition analysis (SDA) approach to analyze the
main drivers behind China’s change in energy intensity. They found that while higher
energy efficiency in the ICT sectors led to a slight decrease in energy intensity, structural
changes in ICT investments increased energy intensity. The spread of ICT products in-
creased energy consumption in the production process [22]. Lange et al. (2020) used an
economic-environmental analytical model to discuss ICT’s direct and indirect effects on
energy consumption and energy efficiency. The study showed that ICT brought addi-
tional energy consumption instead of saving energy. The energy-increasing impact of
information technology (direct effect and economic growth) was more significant than the
energy-reducing effect (energy efficiency improvement and sectoral changes) [23].

2.2. Information Technology and Carbon Emissions

Excessive fossil energy consumption is the main reason for the continuous increase in
carbon dioxide emissions [24]. In addition to evaluating the direct impact of information
technology progress on energy consumption, scholars have also focused directly on the
effects of information technology on carbon emissions. Some scholars argue that advance-
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ments in information technology can reduce carbon emissions. Ozcan et al. (2018) used
panel data to analyze the effect of information technology on CO2 emissions in 20 emerging
economies. The long-term parametric results showed that the more internet users a country
has, the lower its emissions [25]. Lu (2018) investigated the impact of information and com-
munication technology (ICT) on carbon dioxide emissions using panel data from 12 Asian
countries from 1993 to 2013. The results show that ICT negatively impacts carbon dioxide
emissions [26]. Other scholars argue that the advancements in information technology will
increase carbon emissions. Belkhir et al. (2018) evaluated the global carbon footprint of the
entire ICT industry. They pointed out that, if not controlled, the relative contribution of ICT
GHGE (Greenhouse Gas Emissions) may increase from 1–1.6% in 2007 to 14% in 2040 [27].
Park et al. (2018) used panel data from the European Union from 2001 to 2014 to examine
the impact of the internet, financial development, economic growth, and trade openness
on carbon dioxide emissions in selected EU (European Union) countries. The results show
that electricity consumption due to Internet use positively and significantly impacts carbon
emissions [28].

2.3. Artificial Intelligence and Energy Consumption

With the rapid development of AI, scholars have also begun to pay attention to the
impact of AI on carbon emissions. In contrast to the carbon reduction effect of ICT, scholars
largely agree that intelligent manufacturing brought by AI applications suppresses carbon
emissions. Liu et al. (2022) investigated the impact of AI on carbon intensity using China’s
industrial sector data from 2005 to 2016. The empirical results show that AI significantly
reduces carbon intensity, as measured by the number of robots adopted by industry and
the number of academic AI-related papers [29]. Similar to the findings of Liu et al. (2022),
Li et al. (2022) empirically examined the carbon reduction effect of industrial robot appli-
cations based on the environmental Kuznets curve (EKC) model. They used data from a
sample of 35 countries from 1993–2017, and the results also showed that the application
of industrial robots significantly reduced carbon intensity [30]. Chen et al. (2022) assessed
AI’s impact on carbon emissions based on panel data from 270 Chinese cities from 2011 to
2017, using the Bartik’s method to quantify the data of Chinese manufacturing firms and
robots. The findings show that AI has a significant inhibitory effect on carbon emission
intensity and that the impact of AI on carbon emission reduction varies across cities of
different sizes [31].

The literature review shows that the existing studies mainly focus on three aspects.
Firstly, more research focuses on the impact of information technology progress on fossil
energy consumption. Most scholars believe technological progress can reduce energy
consumption and improve energy use efficiency. A few scholars believe technological
advancement has brought about economic expansion, increasing total energy consump-
tion. Secondly, some studies focus directly on the impact of IT (Information Technology)
progress on carbon emissions, but it is inconclusive whether IT progress has reduced car-
bon emissions. Thirdly, some studies have focused on the carbon reduction effect of AI,
suggesting that intelligent manufacturing resulting from the applications of AI has curbed
carbon emissions.

In summary, the existing research still has the following limitations. The current
studies do not sufficiently explore the mechanism of carbon emission reduction achieved
by the progress of information technology, and the studies on the impact of information
technology progress on fossil energy consumption do not directly link fossil energy con-
sumption with carbon emissions. However, these two problems are the core elements of
the studies on the impact of intelligent manufacturing on carbon emission reduction in
the industrial sectors. Given this, based on the industrial data and robot data from 2000
to 2017, this paper examines the impact of intelligent manufacturing on industrial carbon
dioxide emissions and discusses its internal mechanism. The possible contributions are:
first, analyzing the effect of intelligent manufacturing on emission reduction with industrial
data and robot data; second, based on the overall assessment, this paper distinguishes
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high-carbon emission industries from low-carbon emission industries and high-intelligence
industries from low-intelligence industries to examine the heterogeneous emission reduc-
tion effect of intelligent manufacturing. Third, to make up for the shortcomings of existing
studies on the intrinsic mechanism of the impact of intelligent manufacturing on carbon
emission reduction, this paper examines the effect of intelligent manufacturing on total fos-
sil energy consumption and energy use efficiency. It also examines the intrinsic mechanism
of intelligent manufacturing to achieve carbon emission reduction. The attempts and efforts
in the above three aspects of this paper provide helpful supplements to existing studies.

3. Theoretical Analysis and Research Hypotheses

The application of information technology in production has promoted the rapid
development of intelligent manufacturing in various industries [32]. Can intelligent manu-
facturing brought by technological progress reduce carbon emissions in multiple industries
to achieve carbon dioxide emission reduction? Figure 2 shows the specific internal mech-
anism. Firstly, technological progress causes a rebound effect, affecting the industry’s
carbon dioxide emission reduction [33]. On the one hand, technological advancement
has positive externalities. Technological progress can improve energy efficiency and save
energy consumption, which is conducive to pushing the industry to reduce carbon dioxide
emissions. On the other hand, technological progress has negative externalities. Tech-
nological progress will promote rapid economic growth, resulting in new demand for
energy consumption and resistance to energy-saving energy consumption, which is not
conducive to reducing carbon dioxide emissions in the industrial sectors. Secondly, the
differences between industries will impact intelligent manufacturing’s carbon dioxide emis-
sion reduction [34]. Different industries have different carbon emissions, and the impact
of intelligent manufacturing on high-carbon and low-carbon emission industries may be
heterogeneous, and various industries have different degrees of intelligence intensity, and
the effect of intelligent manufacturing on industries with higher intelligence intensity and
industries with lower intelligence intensity may also be heterogeneous [35]. Combined with
the above two levels of analysis, the rebound effect of technological progress and industry
differences will affect the carbon emission reduction effect of intelligent manufacturing. So,
it is uncertain whether intelligent manufacturing can promote carbon dioxide emission
reduction in all industries. Therefore, we propose the first hypothesis:

Hypothesis 1. Intelligent manufacturing can significantly reduce CO2 emissions in the industrial sectors.

Carbon dioxide emissions are closely related to total energy consumption, the propor-
tion of fossil energy, and energy efficiency [36]. As the largest carbon dioxide emitter in the
world, China is still in the process of industrialization, and energy-intensive industries still
have a great demand for energy consumption [37]. China’s total energy consumption is still
high, and the fossil energy consumption is the primary source. Therefore, reducing fossil
energy consumption and improving the efficiency of fossil energy use is an important way
to achieve CO2 reduction in the industrial sectors. Studies show China’s overall energy use
efficiency lags behind developed countries [38]. The information technology revolution
can promote the flow of production factors from energy-intensive and emission-intensive
industries to highly processed and technology-intensive industries, thereby reducing fossil
energy consumption and improving energy efficiency [39]. Enterprises can improve intelli-
gent manufacturing through technological progress, thus reducing the cost of economic
activities and improving production efficiency. The reduction of cost and improvement of
production efficiency will also encourage enterprises to conduct technological research and
development, thus enhancing the level of intelligent manufacturing, further reducing the
demand for fossil energy consumption, and improving the efficiency of fossil energy use.
It will have a dual effect on the industry’s fossil energy consumption, thus driving down
carbon emissions. Moreover, the different levels of intelligent manufacturing in various
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industries will make them achieve different carbon emission reduction effects. Therefore,
we have the second hypothesis:

Hypothesis 2. Intelligent manufacturing achieves carbon reduction in the industrial sectors by
reducing fossil energy consumption and improving the energy use efficiency.
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4. Methods and Data
4.1. Model Setting

This paper takes China’s industrial sector as the research object and examines the
impact of intelligent manufacturing on carbon dioxide emissions in different industries
based on industrial robot data. To this end, this paper establishes the following panel
measurement model at the industry level:

CO2emissionit = α + β × Intelligentit + ∑ Controlit + µi + δt + ξit (1)

In the equation, CO2emissionit represents carbon dioxide emissions. This paper uses
the total industrial carbon dioxide emissions and the per capita industrial carbon dioxide
emissions to measure the carbon emissions at the industry level. Intelligentit denotes the
level of industrial robot use in industry i in year t, it says how many robots will be used by
10,000 people in this industry during this period. It will measure the degree of intelligent
manufacturing in different industries; Controlit represents a series of control variables that
affect the industry carbon emissions. µi and δt represent industry fixed effect and time
fixed effect, ξit is the random disturbance term. β is the top concern of this paper, it is
used to evaluate the net effect of industrial robot usage level on industrial carbon dioxide
emissions, and this paper expects high robot usage level will have a positive emission
reduction effect.
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4.2. Variables Selection

Carbon dioxide emission is the focus of this study. To comprehensively examine
the carbon dioxide emissions of the industrial sectors, this paper first chooses the total
industrial carbon emissions as the main object and compares it with the per capita industrial
carbon emissions. Then, considering the fact that fossil energy consumption in all energy
consumption types will generate more carbon emissions in industrial sectors, it is essential
to investigate the carbon emissions caused by different energy consumption in the industrial
sectors, which is highly policy-oriented. Given this, to analyze the impact of intelligent
manufacturing on carbon emissions of different types of energy consumption, this paper
also selects the carbon emissions of coal consumption, oil consumption, and natural gas
consumption as the explained variables to supplement the comprehensive analysis.

In addition, as for the core explanatory variable, this paper chooses the robot usage
per 10,000 people in the industrial sector as the measurement index of intelligent manufac-
turing. Aside from the above main variables, according to the industry’s carbon emissions
characteristics, this paper also selects factors such as industrial scale, export value, industry
gross output value, foreign investment, and industry profit to control the industry’s output
scale. It shows detailed together with descriptive statistical analysis in Table 1.

Table 1. Descriptive statistics of main variables.

Variable Calculation Method Obs Mean Std. Dev.

CO2 emissions ln (total carbon emissions of the industry + 1) 718 2.7256 1.8076

CO2 emissions per capita ln ((total carbon emissions of the industry + 1)/(number of
employees in the industry + 1)) 621 −2.0527 1.5854

Coal CO2 emissions ln (industry coal consumption carbon emissions + 1) 718 2.1633 1.6759
Oil CO2 emissions ln (industry oil consumption carbon emissions + 1) 696 0.1805 0.4075
Natural gas CO2 emissions ln (industry natural gas consumption carbon emissions + 1) 756 0.6082 0.9996
Intelligent ln (number of robots in industry + 1) 756 0.1851 0.9379
size ln (total industry assets + 1) 756 7.7773 3.0553
profit ln (total industry profit + 1) 752 5.2761 2.4744
open ln (industry export delivery value + 1) 756 4.6751 3.1278
fdi ln (industry foreign capital + 1) 756 3.8204 2.5969
energy ln (total energy consumption by industry + 1) 756 6.9990 2.4705
state ln (industry state capital + 1) 756 4.3180 2.5034
labor ln (number of employees in the industry + 1) 756 4.0827 2.0721
tax ln (tax payable by industry + 1) 756 3.6631 2.7391
debt ln (total industry liabilities + 1) 756 7.2298 2.9051
gdp ln (gross industrial output value + 1) 756 5.8686 4.1352

4.3. Data Sources

In order to examine the impact of intelligent manufacturing on industry carbon
emissions, this paper constructs Chinese industry-level panel data from international
industrial robot statistics and relevant data collected from the China Energy Statistical
Yearbook and the China Statistical Yearbook over the years to conduct the study. The specific
data sources are as follows: First, this paper uses robotics-related statistics to capture
the scale of robot applications in China from the industry level to measure intelligent
manufacturing. International industrial robot statistics come from IFR, a database that
provides authoritative data on industrial robot applications worldwide broken down by
application area, industry branch, and robot type (http://ifr.org/worldrobotics/ (accessed
on 1 November 2022)). Based on these data, this paper constructs the sizeable number of
new robots per year by industry. Limited by the availability of robotics data, the sample
interval of this paper is 2012–2017. Secondly, the paper’s core is to examine the impact
of intelligent manufacturing on carbon emission reduction in the industrial sectors. The
measurement of CO2 mainly depends on energy consumption, so the total consumption of
natural gas, total consumption of crude oil, and total consumption of coal in 42 industries
from 2000–2017 was searched and compiled in the China Energy Statistical Yearbook to

http://ifr.org/worldrobotics/
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calculate the industry-level CO2 emissions. Finally, considering other important factors
affecting the development of the industry, a series of industry-level related economic
variables were therefore selected, which were obtained from the China Statistical Yearbook
for all years. Figure 3 shows the number of robots used in different industries in China.
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5. Empirical Results and Analysis
5.1. The Impact of Intelligent Manufacturing on Carbon Emissions

To examine the impact of intelligent manufacturing on carbon emissions, we first
estimate model (1) regression to assess the effects of industry robot use on carbon emissions.
The specific estimation results are shown in Table 2. Among them, columns (1) and (3) are
the regression results without adding control variables, while columns (2) and (4) are the
estimated results after adding the relevant control variables affecting carbon emissions. It
shows that intelligent manufacturing can significantly reduce carbon dioxide emissions
in the manufacturing industry, both in terms of total and per capita carbon emissions. Its
reduction effect is significant at the 1% and 5% confidence levels. Meanwhile, comparing
the assessed coefficients shows that intelligent manufacturing can significantly reduce
carbon emissions per capita by about 23% and total carbon emissions by 11%, which shows
that intelligent manufacturing has a more substantial effect on carbon emissions per capita,
and hypothesis 1 is verified.

The regression results in Table 2 show that intelligent manufacturing significantly
reduces the industry CO2 emissions, but how does intelligent manufacturing affect the
carbon emissions from fossil energy sources in industry production? To further complement
and refine this conclusion, we analyze the impact of intelligent manufacturing on fossil
energy carbon emissions in industry production by breaking down the carbon dioxide
emissions caused by different fossil energy sources. The regression results are shown in
Table 3. Columns (1) and (2) in Table 3 mainly analyze the effect of intelligent manufacturing
on carbon emissions caused by coal consumption. Columns (3) and (4) focus on the impact
of intelligent manufacturing on carbon emissions caused by oil-based consumption, while
columns (5) and (6) focus on carbon emissions caused by natural gas consumption. It
shows that intelligent manufacturing reduces carbon dioxide emissions from coal and
oil consumption in the industry at a 5% significance level and reduces carbon dioxide
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emissions from natural gas use in the industry at a 1% significance level. Moreover, the
assessed coefficients further indicate that intelligent manufacturing has the most significant
dampening effect on carbon emissions released from coal consumption, reducing them by
about 9.44%. In contrast, it has a weaker impact on carbon emissions from oil and natural
gas consumption. This result may be due to the characteristics of China’s manufacturing
industry in terms of energy use, which is overly dependent on coal consumption and less
on natural gas. The results in Table 3 strongly suggest that intelligent manufacturing can
reduce carbon emissions from the industrial sectors’ three primary fossil energy sources,
but with significant variability in reducing carbon emissions from different energy sources.

Table 2. The impact of intelligent manufacturing on carbon emissions under different types of
emission indicators.

CO2 Emissions CO2 Emissions per Capita

(1) (2) (3) (4)

Intelligent −0.1160 ** −0.1100 ** −0.2552 *** −0.2299 ***
(0.0433) (0.0459) (0.0548) (0.0590)

Control variables NO YES NO YES
Time fixed effect YES YES YES YES

Industry fixed effect YES YES YES YES
_cons 2.7384 *** 2.0874 *** −2.0225 *** 1.6683 ***

(0.0048) (0.2983) (0.0061) (0.5827)
N 718 715 620 617
F 7.184 3.308 21.718 30.265

r2_a 0.958 0.959 0.921 0.936
Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

Table 3. The Impact of Intelligent Manufacturing on Different Types of Emission Sources.

Coal CO2 Emissions Oil CO2 Emissions Natural Gas CO2 Emissions

(1) (2) (3) (4) (5) (6)

Intelligent −0.0981 ** −0.0944 ** −0.0636 ** −0.0655 ** −0.0321 *** −0.0332 ***
(0.0447) (0.0444) (0.0297) (0.0306) (0.0101) (0.0108)

Control variables NO YES NO YES NO YES
Time fixed effect YES YES YES YES YES YES

Industry fixed effect YES YES YES YES YES YES
_cons 2.1741 *** 1.6738 *** 0.1874 *** 0.1284 * 0.6142 *** 0.4581 **

(0.0049) (0.2513) (0.0032) (0.0639) (0.0019) (0.1966)
N 718 715 696 693 756 752
F 4.816 2.248 4.575 1.879 10.064 1.893

r2_a 0.962 0.964 0.825 0.819 0.881 0.877

Note: (1) The values in parentheses are robust standard errors of clustering; (2) *, **, and *** indicate significance
at the confidence levels of 10%, 5% and 1%, respectively.

5.2. Heterogeneity Analysis of the Impact of Intelligent Manufacturing on Carbon Emissions

The previous regression results show that intelligent manufacturing can reduce the
industrial sectors’ total and per capita carbon emissions and can positively affect the
reduction of carbon emissions generated by fossil energy in the industry. However, due to
the existence of industry differences, the carbon emission levels of different industries and
the degree of intelligence intensity of various industries vary. This section will analyze the
heterogeneity of intelligent manufacturing affecting industry carbon dioxide emissions.

5.2.1. The Impact of Intelligent Manufacturing on Carbon Emissions under Industrial
Carbon Emission Differences

According to the difference in industrial carbon emissions, this paper divides the
industries that produce carbon emissions into high-carbon and low-carbon emission indus-
tries to analyze the heterogeneous impact of intelligent manufacturing on carbon emissions.
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The regression results are shown in Table 4. It shows that in industries with high-carbon
emissions, intelligent manufacturing significantly reduces the total carbon emissions and
per capita carbon emissions at the significance level of 1%, reducing the total carbon emis-
sions and per capita carbon dioxide emissions by about 12.37% and 11.79%. However, in
low-carbon emission industries, intelligent manufacturing does not significantly affect the
carbon emission level of the industry. It may be because high-carbon emission industries ur-
gently need more space for carbon emission reduction than low-carbon emission industries,
and the emergence of intelligent manufacturing can have a significant effect on high-carbon
emission industries but will not have a substantial impact on low-carbon industries.

Table 4. The impact of intelligent manufacturing on carbon emissions under carbon emission differences.

High-Carbon Emission Industries Low-Carbon Emission Industries

CO2 Emissions CO2 Emissions per Capita CO2 Emissions CO2 Emissions per Capita

(1) (2) (3) (4)

Intelligent −0.1237 *** −0.1179 *** 2.2606 37.1189
(0.0254) (0.0281) (58.8531) (54.1533)

Control variables YES YES YES YES
Time fixed effect YES YES YES YES

Industry fixed effect YES YES YES YES
_cons 2.3461 *** 3.5478 2.1571 *** 1.7443 ***

(0.2940) (2.1168) (0.2936) (0.4770)
N 267 231 448 386
F 6.573 11.848 5.132 24.742

r2_a 0.995 0.990 0.950 0.915

Note: (1) The values in parentheses are robust standard errors of clustering; (2) *** indicate significance at the
confidence levels of 1%.

5.2.2. The Impact of Intelligent Manufacturing on Carbon Emissions under Industrial
Intelligence Differences

Since different industries have different degrees of intelligence, this paper divides the
industries that generate carbon emissions into those with high-intelligence intensity and
those with low-intelligence intensity according to the differences in the application of robots
in the industries so as to study the impact of the use of robots on carbon emissions under the
intelligence differences. The regression results are shown in Table 5. The regression results
show that intelligent manufacturing significantly reduces carbon dioxide emissions at the
5% significance level in the more intelligent industries and significantly reduces carbon
dioxide emissions per capita at the 1% significance level. In contrast, in the less intelligent
industries, intelligent manufacturing does not significantly impact the industry’s carbon
emission level. It may be because the more intelligent industries are more likely to achieve
intelligent manufacturing than the less intelligent industries. The more intelligent industries
can take advantage of the better intelligent infrastructure to change production methods
and improve production efficiency, thus achieving significant carbon emission reduction in
the industry. In contrast, the less intelligent industries may not require much robot input
and not change the original industry production methods on energy consumption or energy
efficiency, and thus cannot achieve significant emission reduction effects in the industry.
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Table 5. The impact of intelligent manufacturing on carbon emissions under the intelligence differences.

Industries with High-Intelligence Intensity Industries with Low-Intelligence Intensity

CO2 Emissions CO2 Emissions per Capita CO2 Emissions CO2 Emissions per Capita

(1) (2) (3) (4)

Intelligent −0.3319 ** −0.6605 *** 0.0114 −0.0975
(0.1341) (0.1423) (0.0476) (0.0597)

Control variables YES YES YES YES
Time fixed effect YES YES YES YES

Industry fixed effect YES YES YES YES
_cons 3.6975 *** −0.5822 0.1168 1.5940 ***

(0.1950) (1.3370) (0.2471) (0.5287)
N 410 348 302 265
F 2.866 11.940 11.663 50.723

r2_a 0.966 0.959 0.743 0.920

Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

5.3. Robustness Test

The empirical results demonstrate that intelligent manufacturing can significantly
reduce the industry’s CO2 emissions. To ensure the robustness of the results, we will
conduct relevant robustness tests on the regression results in this section. Specifically, the
robustness tests include indicator replacement, reducing the sample period, eliminating
interference policy, instrumental variable method, and adding control variables.

5.3.1. Indicator Replacement

The above analysis focuses on the industry’s total and per capita carbon dioxide
emissions, which are measured more from the perspective of the total amount. However,
in reality, we are not only concerned about the total carbon emissions but also the carbon
emissions per unit of output value. Therefore, to avoid the bias of carbon emission measure-
ment in this paper, the carbon emission of the industry is re–measured here, and Table 6
shows measured regression results. Among them, column (1) measures carbon emissions
per unit of output value by the ratio of total carbon dioxide emissions to the industry’s total
output value. The regression results show that intelligent manufacturing still positively
affects reducing carbon emissions per unit of output value, and the impact is significant
at the 1% confidence level. Column (2) measures the carbon emissions of individual en-
terprises by the ratio of total carbon dioxide emissions to the number of enterprises in the
industry. The regression results show that Intelligent manufacturing also has a significant
positive impact on carbon emissions per unit enterprise. The regression results are shown
in columns (3)–(5) of Table 6. It shows that regardless of whether added control variables,
intelligent manufacturing still has a significant positive impact on reducing overall carbon
emissions and carbon emissions per unit of output value. The regression results in Table 6
are consistent with those in Table 2, indicating that the above results are more robust.

5.3.2. Reducing the Sample Period

The main study period of this paper focuses on 2000–2017 but, considering that this
paper is mainly based on the use of robots to measure intelligent manufacturing, and these
data are less available between 2000 and 2004, we are concerned that this lack of data may
have an impact on the results of this paper. Given this, the study period of the sample is
adjusted here by year reduction. Table 7 shows the reduced regression results. Among
them, columns (1) and (4) selected the sample from 2005–2017, columns (2) and (5) are from
2009–2017, and columns (3) and (6) are from 2010–2017. The regression results all show that
intelligent manufacturing has a significant inhibitory effect on reducing total and per capita
carbon emissions. This result is consistent with the regression results in Table 2, further
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validating that this finding that intelligent manufacturing has a significant inhibitory effect
on CO2 emissions is robust.

Table 6. Indicator replacement.

CO2 Emissions per
Unit Output Value

Average CO2 Emissions
per Enterprise

CO2
Emissions

CO2
Emissions

Carbon Emissions per
Unit Output Value

(1) (2) (3) (4) (5)

Intelligent −0.1285 *** −0.1841 *** −0.1016 *** −0.1170 *** −0.4720 ***
(0.0457) (0.0521) (0.0165) (0.0216) (0.1016)

Control variables YES YES NO YES YES
Time fixed effect YES YES YES YES YES

Industry fixed
effect YES YES YES YES YES

_cons 0.0329 −1.6101 *** 6.8857 *** 6.2580 *** 5.5216 **
(0.4883) (0.4068) (0.0038) (0.5339) (2.0892)

N 654 654 411 408 408
F 123.502 27.014 37.738 13.634 50.541

r2_a 0.964 0.950 0.961 0.962 0.954

Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

Table 7. Reducing the sample period.

CO2 Emissions CO2 Emissions per Capita

(1) (2) (3) (4) (5) (6)

Intelligent 0.1240 *** −0.0985 *** −0.0872 ** −0.1741 *** −0.1232 *** −0.1045 ***
(0.0385) (0.0340) (0.0334) (0.0427) (0.0325) (0.0302)

Control variables YES YES YES YES YES YES
Time fixed effect YES YES YES YES YES YES

Industry fixed effect YES YES YES YES YES YES
_cons 1.9012 *** 2.1936 *** 2.3328 *** 1.4975 ** 3.0504 *** 3.7572 ***

(0.4128) (0.2903) (0.2261) (0.6689) (0.6079) (0.5783)
N 475 357 317 403 294 257
F 5.661 3.954 3.920 24.185 33.568 47.325

r2_a 0.985 0.989 0.990 0.978 0.984 0.987

Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

5.3.3. Eliminating Interference Policy

Since the Chinese government implemented a series of environmental policies after
2000, implementing these will undoubtedly have a particular impact on the industry’s
carbon emissions, which will indirectly affect the assessment of this paper. Given this, we
exclude three policies the Chinese government has implemented. First, at the beginning of
the 21st century, due to the excessive energy consumption and environmental pressure in
China, the government introduced a series of policies to curb the development of the “two
high and one leftover” industries. In particular, in 2006, the “two high and one leftover”
industries moved towards sustainable development through industrial transformation and
cleaner production under the macro–control of national policies. To exclude the influence
of national policies on the robustness of the regression results, we exclude the “two high
and one leftover” industries from the industry sample that are easily influenced by national
policies for robustness testing. Second, the Chinese government’s five-year plan will include
the support policies of the relevant industries within five years. To avoid the regression
results being affected by the support policies of the five–year plan, the authors remove the
industries affected by the support policies of the five-year plan from the industry sample for
the robustness test, and the regression results are shown in columns (2) and (5) of Table 8.
Finally, the Chinese government has conducted carbon pilots in the thermal power, gas,
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paper, and tobacco industries to mitigate climate change. To avoid the impact of the carbon
pilot policy, the authors exclude the thermal power, gas, paper, and tobacco industries
from the industry sample for robustness testing, and the regression results are shown in
columns (3) and (6) in Table 8. The specific regression results show that after excluding the
above significant environmental policies, the regression results all indicate that intelligent
manufacturing significantly positively affects total and per capita carbon emissions.

Table 8. Eliminating interference policy.

CO2 Emissions CO2 Emissions per Capita

(1) (2) (3) (4) (5) (6)

Intelligent −0.1566 *** −0.1124 ** −0.1179 ** −0.2793 *** −0.2248 *** −0.2116 ***
(0.0461) (0.0443) (0.0440) (0.0868) (0.0677) (0.0512)

Control variables YES YES YES YES YES YES
Time fixed effect YES YES YES YES YES YES

Industry fixed effect YES YES YES YES YES YES
_cons 1.8434 *** 2.0838 *** 2.6753 *** 1.4433 ** 1.4615 ** 1.1187

(0.3057) (0.3170) (0.3011) (0.5639) (0.6743) (0.8469)
N 447 537 520 364 450 449
F 3.180 3.792 3.422 25.059 22.809 13.420

r2_a 0.943 0.958 0.959 0.920 0.933 0.939

Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

5.3.4. Instrumental Variable Method

The potential endogeneity of the econometric model is also a problem that needs to be
considered in this paper. Since the core explanatory variable in this paper is the number
of robots in the industry, there is a correlation between the number of robots used and
carbon emissions. At the same time, industries with higher carbon emissions may have a
more vigorous production capacity and thus preferentially promote the use of industrial
robots. This interaction may lead to a probable mutual causality between the model’s
independent and explanatory variables. Therefore, in this paper, we choose instrumental
variables to be addressed here. The choice of instrumental variables generally requires that
the instrumental variables are highly correlated with the independent variables and cannot
be correlated with the random disturbance terms. Under this constraint, we choose the
average level of robot use worldwide as the instrumental variable for robot use in Chinese
industries. It is obvious that there is a correlation between these two variables.

In contrast, the average number of robots used in industries around the world bears
no correlation between the number of robots used and China’s carbon emissions, so the
instrumental variable is satisfied, and the specific regression results are shown in Table 9.
It shows that the average number of robots in all countries as an instrumental variable
passes the under–identification and weak identification tests. It also shows the first stage
results that the instrumental variable is positively correlated with the core explanatory
variable intelligent machines at the 1% significance level, which indicates the rationality
of the instrumental variable selected in this paper. From the regression results of the
second stage, IV-2SLS is consistent with the conclusion obtained from OLS that intelligent
manufacturing has a significant inhibitory effect on carbon emissions, and the absolute
value of the coefficient is more significant, which further indicates the reliability of the
primary conclusion of this paper.

5.3.5. Adding Control Variables

In addition to the above robustness tests, we try to control more industry-level eco-
nomic variables in the model to bring more factors affecting CO2 emissions under control
to ensure the net effect of intelligent manufacturing involving carbon emissions. Here we
select essential variables such as industry gross output value, the number of employees,



Int. J. Environ. Res. Public Health 2022, 19, 15538 14 of 20

industry tax burden paid total corporate liabilities, and industry Chinese–owned capital
into the econometric model and run regressions, as shown in Table 10. Among them,
subsets (1)–(5) in Table 10 are added to the model, while (6) is a regression with all macro
factors included in the econometric model. The results show that even after controlling for
the above five essential elements, intelligent manufacturing still positively affects reducing
carbon emissions. The effect is significant at the 5% confidence level, proving the reliability
of the previous regression results.

Table 9. Instrumental variable test.

CO2 Emissions CO2 Emissions per Capita

(1) (2) (3) (4)

Intelligent −0.6193 ** −0.6611 ** −1.3020 *** −1.1136 ***
(0.2791) (0.2816) (0.4038) (0.3639)

Control variables NO YES NO YES
Time fixed effect YES YES YES YES

Industry fixed effect YES YES YES YES
N 706 703 620 617
F 7.939 7.241 2.957 6.977

First stage

Iv 0.420 *** 0.423 *** 0.416 *** 0.411 ***
(0.091) (0.093) (0.099) (0.100)

LM statistic Chi-sq (1) 5.85 6.81 16.2 13.82
Anderson-Rubin Wald test 21.13 20.86 17.65 17.04

Cragg-Donald Wald F statistic 21.24 20.79 17.67 16.89
Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

Table 10. Adding control variables.

CO2 Emissions CO2 Emissions CO2 Emissions CO2 Emissions CO2 Emissions CO2 Emissions

(1) (2) (3) (4) (5) (6)

Intelligent −0.1093 ** −0.1116 ** −0.1071 ** −0.1043 ** −0.1070 ** −0.0954 **
(0.0451) (0.0463) (0.0449) (0.0478) (0.0473) (0.0471)

gdp 0.0037 0.0018
(0.0197) (0.0183)

labor 0.0136 0.0247
(0.0275) (0.0296)

tax 0.0349 0.0480 **
(0.0263) (0.0235)

debt 0.3510 0.4486
(0.4467) (0.4543)

state −0.0261 −0.0507 *
(0.0272) (0.0281)

Control variables YES YES YES YES YES YES
Time fixed effect YES YES YES YES YES YES

Industry fixed
effect YES YES YES YES YES YES

_cons 2.0841 *** 2.0920 *** 2.0775 *** 2.1584 *** 2.0997 *** 2.1956 ***
(0.3050) (0.2978) (0.2911) (0.3174) (0.3154) (0.3339)

N 715 715 715 715 715 715
F 2.931 2.955 2.889 3.706 3.328 3.040

r2_a 0.959 0.959 0.959 0.960 0.959 0.960

Note: (1) The values in parentheses are robust standard errors of clustering; (2) *, **, and *** indicate significance
at the confidence levels of 10%, 5% and 1%, respectively; (3) The test results of CO2 emissions per capita do not
show significant changes, due to space limitations, the corresponding results are not presented here.
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6. Mechanism Test of Intelligent Manufacturing to Achieve Emission Reduction Effect

The above analysis provides detailed evidence and rich robustness tests on China’s in-
telligent manufacturing’s carbon emission reduction effect. The findings fully demonstrate
that the large-scale use of robots can reduce carbon dioxide emissions in the industry. Then,
the question that makes us ponder is why intelligent manufacturing can achieve carbon
emission reduction and its mechanism.

Changes in enterprise behavior can profoundly impact its carbon emissions. Therefore,
we speculate that the mechanism underlying the significant reduction of carbon emissions
by intelligent manufacturing focuses more on the impact of intelligent manufacturing on
enterprise behavior. There are differences in the application of intelligent manufacturing
among enterprises in different industries. Intelligent manufacturing can promote a rapid
increase in output scale and a significant increase in revenue for IT-based enterprises.
However, it raises the relative cost of energy-consumption-based traditional industries,
leading to the risk of revenue loss for energy-consumption-based traditional enterprises
under competitive market conditions. Under the loss risk constraint due to intelligent
manufacturing, enterprises will adjust their energy use and efficiency.

We first examine the impact of intelligent manufacturing on enterprise income. The
data on enterprise income are difficult to obtain, so in order to measure the impact of
intelligent manufacturing on the income of enterprises in the industry, we choose two
indicators, the number of enterprises in the industry with losses and the proportion of the
number of enterprises with losses to the total number of enterprises, respectively, and the
specific results are shown in Table 11. Among them, columns (1) and (2) mainly examine the
impact of intelligent manufacturing on the number of enterprises in the industry. The results
show that intelligent manufacturing increases the number of enterprises in the market. Due
to the increase in the number of enterprises, the competition within the industry increases,
which leads to enterprises facing higher competitiveness. Columns (3)–(6) examine the
effect of intelligent manufacturing on the number of loss–making enterprises and the share
of the number of loss–making enterprises in the total number of enterprises. The results
show that intelligent manufacturing exacerbates enterprises’ losses within traditional
industries dominated by energy consumption. Thus, intelligent manufacturing forces firms
to face the dual pressure of increased external competition and revenue losses.

Table 11. The impact of intelligent manufacturing on enterprise income.

Total
Number of
Enterprises

Total
Number of
Enterprises

Total Number of
Loss-Making
Enterprises

Total Number of
Loss-Making
Enterprises

Total Number of
Loss-Making

Enterprises/Total
Number of Enterprises

Total Number of
Loss-Making

Enterprises/Total
Number of Enterprises

(1) (2) (3) (4) (5) (6)

Intelligent 0.2521 *** 0.0310 * 0.3689 ** 0.2916 ** 0.0134 *** 0.0103 ***
(0.0464) (0.0165) (0.1530) (0.1366) (0.0025) (0.0020)

Control variables NO YES NO YES NO YES
Time fixed effect YES YES YES YES YES YES

Industry fixed
effect YES YES YES YES YES YES

_cons 7.4175 *** −0.2699 3.7599 *** 1.0213 0.1024 *** −0.0033
(0.0086) (0.4066) (0.0283) (1.1401) (0.0005) (0.0277)

N 756 752 756 752 756 752
F 29.501 224.425 5.812 12.184 28.567 16.562

r2_a 0.871 0.990 0.846 0.877 0.758 0.837

Note: (1) The values in parentheses are robust standard errors of clustering; (2) *, **, and *** indicate significance
at the confidence levels of 10%, 5% and 1%, respectively.

Figure 2 shows that enterprises will change their energy use and efficiency. Therefore,
we speculate that intelligent manufacturing can affect carbon emissions by reducing fossil
energy consumption and improving energy use efficiency. Given this, we first analyze
the relationship between intelligent manufacturing and energy consumption, and the
specific results are shown in Table 12. Among them, column (1) in Table 12 mainly analyzes
the impact of intelligent manufacturing on total energy consumption, and the results
show that the improvement of intelligence level can reduce the energy consumption of
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the industry by about 7.48%, and this reduction effect is significant at the 5% confidence
level. In addition to the analysis of total energy consumption, we also analyze different
types of fossil energy consumption, including coal consumption, coke consumption, oil
consumption, and natural gas consumption, as shown in columns (2)–(5) in Table 12. From
the results of the regression, we can see that the increase in the level of intelligent energy
reduces the consumption of different types of fossil energy, but the impact of intelligent
manufacturing on the total consumption of different types of fossil energy varies, with the
most significant effect of intelligent manufacturing on reducing the total consumption of
coal, the second most significant impact on the consumption of coke and natural gas, and
the most negligible significant impact on the total consumption of oil.

Table 12. The impact of intelligent manufacturing on energy consumption.

Total Energy
Consumption

Total Coal
Consumption

Total Coke
Consumption

Total Oil
Consumption

Total Natural Gas
Consumption

(1) (2) (3) (4) (5)

Intelligent −0.0748 ** −0.1427 *** −0.1326 *** −0.0768 ** −0.1019 **
(0.0285) (0.0307) (0.0332) (0.0327) (0.0378)

Control variables YES YES YES YES YES
Time fixed effect YES YES YES YES YES

Industry fixed effect YES YES YES YES YES
_cons 5.7509 *** 4.9926 *** 5.1362 *** 1.8222 *** −1.5469

(0.6859) (0.7194) (0.5889) (0.4911) (1.1048)
N 612 612 636 752 590
F 2.075 6.547 5.282 3.424 3.935

r2_a 0.956 0.938 0.919 0.925 0.903

Note: (1) The values in parentheses are robust standard errors of clustering; (2) **, and *** indicate significance at
the confidence levels of 5% and 1%, respectively.

In addition to energy consumption, improving energy efficiency is also an effective way
to reduce carbon emissions. Therefore, to examine the impact of intelligent manufacturing
on energy use efficiency, this paper uses intelligent manufacturing to regress the overall
energy use efficiency and the three major fossil energy use efficiencies separately. The
specific results are shown in Table 13. Among them, column (1) is the ratio of total energy
consumption to the total industrial output value, column (2) is the ratio of total energy
consumption to industrial value–added, and columns (3)–(5) are the ratios of total coal, oil,
and natural gas consumption to the total industrial output value, respectively. The results
show that intelligent manufacturing is conducive to improving energy use efficiency and
the efficiency of the three major fossil energy sources, and intelligent manufacturing has
the most significant impact on improving the efficiency of coal use, followed by oil, and the
most negligible impact on improving the efficiency of natural gas use. Through the above
analysis, hypothesis 2 is tested, and intelligent manufacturing can reduce carbon emissions
in the industry by reducing fossil energy consumption and improving the efficiency of
fossil energy use.

In summary, intelligent manufacturing can inhibit fossil energy consumption and
improve energy efficiency. It has the most apparent inhibitory effect on coal consumption
and the most noticeable improvement in coal use efficiency. This variability in the impact
of intelligent manufacturing on fossil energy may be related to China’s long–established
coal-dominated energy consumption structure. Coal, oil, and gas are China’s primary
source of fossil energy consumption and brings more than 90% of carbon emissions from
the three primary fossil energy consumptions. The impact of intelligent manufacturing
on coal–led fossil energy consumption is conducive to promoting the improvement and
upgrading of China’s energy consumption structure, which further reduces fossil energy
carbon emissions.
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Table 13. The impact of intelligent manufacturing on energy efficiency.

Total Energy
Efficiency

Total Energy
Efficiency

Coal Use
Efficiency

Oil Use
Efficiency

Natural Gas Use
Efficiency

(1) (2) (3) (4) (5)

Intelligent −0.2282 ** −0.2161 * −0.3708 ** −0.3140 *** −0.2827 **
(0.1120) (0.1071) (0.1367) (0.1061) (0.1374)

Control variables YES YES YES YES YES
Time fixed effect YES YES YES YES YES

Industry fixed effect YES YES YES YES YES
_cons −1.0195 −0.8782 4.2199 *** 0.7517 −0.3974

(0.9410) (1.4954) (1.5219) (1.7090) (1.7172)
N 752 752 639 425 593
F 66.556 37.142 15.256 31.676 18.914

r2_a 0.922 0.908 0.941 0.956 0.950

Note: (1) The values in parentheses are robust standard errors of clustering; (2) *, **, and *** indicate significance
at the confidence levels of 10%, 5% and 1%, respectively.

7. Conclusions

With the rapid development of information technology, the application of intelligent
manufacturing has been promoted in various production fields. Intelligent manufacturing
is essential in reducing carbon emissions and can effectively promote China’s goal of
achieving a carbon peak by 2030 and carbon neutrality by 2060. Therefore, it is crucial
to explore the impact of intelligent manufacturing on carbon emissions and its internal
mechanism. Based on this, this paper uses industry data and robot data from 2000 to 2017
to test the impact of intelligent manufacturing on carbon emissions and analyze the effects
of intelligent manufacturing on carbon emissions in heterogeneous industries. The study’s
main conclusions are as follows: intelligent manufacturing positively impacts the industry’s
total carbon emissions and carbon emissions per capita. Intelligent manufacturing can
comprehensively reduce the carbon emissions from the consumption of the three primary
fossil energies in the industrial sectors. Heterogeneity analysis shows that intelligent
manufacturing can significantly reduce emissions in high-carbon emission industries than
in low–carbon emission industries. Furthermore, intelligent manufacturing can reduce
carbon emissions in industries with high-intelligence intensity but not in industries with
low– intelligence intensity.

The mechanism analysis shows that intelligent manufacturing leads to the risk of loss
for energy-based companies. Under the income loss constraint, enterprises will adjust the
amount of energy used and energy efficiency. Intelligent manufacturing can significantly
reduce the total consumption of various types of fossil energy. However, the degree of the
reduction varies for different kinds of fossil energy. In general, intelligent manufacturing
has the most apparent impact on reducing the total consumption of coal, followed by
coke and natural gas consumption, and the most negligible effect on total oil consumption.
Intelligent manufacturing is also conducive to improving the energy efficiency of the three
primary fossil energies. It has the most obvious impact on improving coal use efficiency,
followed by oil and natural gas. So, we can see that intelligent manufacturing can reduce
carbon emissions by reducing fossil energy consumption and improving energy efficiency.
The policy implications of the above conclusions are as follows.

(1) The government should use technological advances to drive production changes to
ensure innovation-driven green development. Intelligent manufacturing can reduce
the industry’s carbon emissions, so the potential for technological innovation needs
to be further explored to provide a lasting driver for the green development of
production. The government should further increase policy support and investment in
innovative research and development to support enterprises in developing advanced
energy-saving and environmental protection technologies, processes, and equipment.
At the same time, relevant management departments should actively carry out pilot
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demonstrations in process intelligence, aggregating the multi-dimensional strength
of manufacturing enterprises and research institutes to achieve interdisciplinary and
cross-disciplinary collaborative research and support traditional industries to achieve
carbon emission reduction with intelligent production.

(2) The government should focus on developing high-carbon emission and less intelligent–
intensive industries and promote low carbonization with intelligent manufacturing.
Intelligent manufacturing can comprehensively reduce carbon emissions from fossil
energy consumption in the industry. However, due to the heterogeneity of its impact
on carbon emission reduction in the industrial sectors and the current status of
high energy consumption in China’s high carbon emission industries, less-intelligent
intensive industries urgently need to upgrade industry technology and renewal
industry equipment. Therefore, the government should control the development of
high energy–consuming, heavy chemical industries and other high carbon emission
enterprises and adjust their products and industrial structures. Less intelligent and
less intensive enterprises should take the initiative to seek technological upgrading
and transformation of production methods.

(3) The government should improve China’s energy consumption structure with intelli-
gent manufacturing in the industrial sectors and gradually establish an energy system
centered on renewable energy. As a sizeable coal-consuming country, China has
formed an energy consumption structure dominated by coal consumption. Adopting
targeted emission reduction policies is necessary to change this high–carbon emission
energy consumption structure. Intelligent manufacturing has a significant effect on
both reducing fossil energy consumption and improving fossil energy use efficiency.
Therefore, it is necessary to use intelligent manufacturing to improve the energy
consumption structure by improving energy efficiency and establishing a renew-
able energy–centered energy consumption system in light of the current situation of
China’s energy consumption.
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