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Abstract: Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely used in consumer
products. However, the role of PFAS in infertility is still poorly understood. A total of 788 women
from the 2013–2016 nationally representative NHANES were included to explore the association
between PFAS exposure and self-reported infertility. Six PFAS, including PFDE, PFNA, PFHxS,
n-PFOA, n-PFOS, and Sm-PFOS, were detected by online SPE-HPLC-TIS-MS/MS. We used the
generalized linear regression model (GLM), generalized additive models (GAM), and Bayesian kernel
machine regression (BKMR) to assess the single effects, non-linear relationships, and mixed effects on
women’s infertility, respectively. The prevalence of self-reported infertility was 15.54% in this study.
In GLM, n-PFOA showed a negative association with self-reported infertility in women for the Q3
(OR: 0.396, 95% CI: 0.119, 0.788) and Q4 (OR: 0.380, 95% CI: 0.172–0.842) compared with Q1 (p for
trend = 0.013). A negative trend was also observed in n-PFOS and ∑PFOS (p for trend < 0.05). In
GAM, a non-linear relationship was revealed in Sm-PFOS, which exhibits a U-shaped relationship.
The BKMR model indicated that there might be a joint effect between PFAS and women’s infertility, to
which PFNA contributed the highest effect (PIP = 0.435). Moreover, age stratification analysis showed
a different dose–response curve in under and above 35 years old. Women under the age of 35 have a
more noticeable U-shaped relationship with infertility. Therefore, the relatively low level of mixed
PFAS exposure was negatively associated with self-reported infertility in women in general, and the
impact of PFAS on infertility may vary among women of different age groups. Further studies are
needed to determine the etiological relationship.

Keywords: PFAS; infertility; mixed effect; generalized linear model (GLM); generalized additive
models (GAM); Bayesian kernel machine regression (BKMR)

1. Introduction

Infertility is a common reproductive disease, with a prevalence of 9% to 18% in the
world’s general population, which involves about 15% of couples of childbearing age [1,2].
Women are more likely to suffer from fertility problems than men [3], and 1.5 million
women in the United States had infertility from 2006 to 2010 [4]. These women may have
harmful effects due to their infertility, such as societal repercussions, personal suffering,
mood disorders [5–7], and sexual dysfunction [8,9].

Poly- and perfluoroalkyl substances (PFASs) belong to a family of highly fluorinated
aliphatic compounds. Due to their hydrophobic and oleophobic properties, they are widely
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used in consumer products such as disposable food packaging, cookware, outdoor gear, fur-
niture, and carpets [10]. PFAS was detectable in the blood of virtually all Americans (98%)
according to a report by Centers for Disease Control and Prevention (CDC) [11]. Exposure
to a high level of PFAS was associated with several reproductive health issues in women,
including menarche delaying, menstrual cycle disorders, early menopause, premature
ovarian failure, and dysregulation of circulating steroid homeostasis [12–15]. Experimental
studies have shown that PFAS (2.0 to 17.5 ng/g feed in mice, 0.1 to 0.5 µM in zebra fish)
has estrogenic properties in vitro and can adversely affect the reproductive system of ex-
perimental animals by disrupting the function of nuclear hormone receptors, interfering
with steroid production, and changing the expression of endocrine-related genes [16–18].
Animal experiments also revealed that PFAS could cause reproductive damage in mice,
pigs, cattle, and other mammals [19–23]. However, the general population’s exposure to
environmental PFAS is usually lower than in animal experiments. The long-chain, legacy
PFAS such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)
have long half-lives and may persist in the human body [24]. The arithmetical mean in
individual apparent half-lives was estimated to be 5.0 years for PFOA and 6.5 years for
PFOS [25]. It is more meaningful to conduct research on PFAS with low exposure levels in
the general population. Meanwhile, the association of mixed PFAS exposure with other
health impacts, such as cognitive function and persistent infections, has been demonstrated
in previous studies [26,27], and the potential interaction between PFAS is also of great
interest. However, the association of mixed PFAS exposure with women’s infertility has
not been explored. Therefore, we aimed to investigate the relationship between PFAS
and women’s infertility using a large and representative sample from the National Health
and Nutrition Examination Survey (NHANES) 2013–2016 data. We also use three models,
including generalized linear regression model (GLM), generalized additive models (GAM),
and Bayesian kernel machine regression (BKMR) to explore the effects of single PFAS,
non-linear relationships, and mixed PFAS exposure on women’s infertility.

2. Method
2.1. Study Design and Population

We selected the study population from the 2 cycles of NHANES (the year 2013–2014,
2015–2016), a cross-sectional, multistage probability sample representative of adults’ and
children’s health and nutritional status in the United States [28]. The survey contains separated
projects of interviews, physical examinations, and laboratory tests designed with stratified
samples. The National Center for Health Statistics (NCHS) Research Ethics Review Board
approved all study protocols, and all participants provided written informed consent.

We screened a total of 20,135 participants in the study. We excluded men (n = 9887),
women without reproductive health-related data (n = 6525), and two-thirds of the partici-
pants were not sampled due to the serum PFAS concentration being measured in a one-third
subsample of persons 12 years and over (n = 2567). We excluded 368 participants based on
age (under 20) and pregnancy status (being pregnant). Finally, a total of 788 females were
included in this study. Figure 1 shows the data integration process.

2.2. PFAS Measurement

In each survey cycle, a randomly selected one-third of participants over 12 years
of age measured PFAS levels in serum. The measurement method of serum PFAS was
described in previous studies [29]. According to the NHANES standard, we used the limit
of detection (LOD) divided by the square root of two to replace the values below the LOD.
Six PFAS with a detection rate over 65% in the 2013–2016 cycle were analyzed, including
perfluorohexane sulfonic acid (PFHxS), pefluorodecanoic acid (PFDE), perfluorononanoic
acid (PFNA), n-perfluorooctanoic acid (n-PFOA), n-perfluorooctane sulfonic acid (n-PFOS),
and Sm- perfluorooctane sulfonic acid (Sm-PFOS). We also summed the Sm-PFOS and
n-PFOS as the ∑PFOS according to the previous studies to assess the exposure of total
PFOS [27,30].
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2.3. Infertility Data

Self-reported infertility data were from NHANES reproductive health questionnaire
(RHQ), and survey data were collected at all study sites by well-trained personnel following
standardized procedures [31]. Briefly, the participants were asked two infertility-related
questions. Firstly, they were asked: “Tried for a year to become pregnant?” and, “Have you
ever been to a doctor or other medical provider because you have/she has been unable to
become pregnant?” Those who answered these questions were enrolled in the study. One
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of these two questions answered “Yes” defined “ever infertile”, and both answered “No”
described “fertility”. No response was considered missing [32].

2.4. Covariates

We identified sociodemographic, lifestyle, and survey-specific factors as covariates that
could potentially bias the associations of PFAS exposures with infertility. In our analyses,
age [33,34], race/ethnicity [35], body mass index (BMI) [36,37], family poverty income
ratio (PIR), education level, physical activity, smoking status, alcohol drinking, and marital
status were potential confounders based on the previous studies [32]. We also considered
reproductive factors, including the age of menarche and reproductive history (any prior
pregnancy), to control for bias in PFAS measurements due to pregnancy [38]. All these
variables were extracted from NHANES questionnaires and laboratory measurements.

2.5. Statistical Analysis

Descriptive statistical analyses were applied to evaluate the demographic characteristics
and self-reported infertility. Continuous variables were presented as medians with interquar-
tile ranges (IQRs), and categorical variables were displayed as numbers (%). The baseline of
characteristics of the infertility status was compared using the Mann–Whitney U test for con-
tinuous variables and the Wilcoxon rank-sum test for categorical variables. We simultaneously
calculated and compared the serum PFAS concentrations in the baseline characteristics.

In generalized conditions, humans are exposed to several PFAS contemporaneously.
Due to the skewed distribution of serum PFAS in the general population, we performed
a log2 transformation for all PFAS. We applied three different methods to determine the
impact of single, non-linear, and mixed PFAS exposure.

2.5.1. Statistical Method 1: Generalized Linear Regression Model (GLM)

We performed the statistical analysis using four-year subsample B weights and strata
variables for studies as required by the CDC analytical guidelines [39]. Multiple linear
regression was used to evaluate the relationships between serum PFAS and self-reported
infertility individually. Serum PFAS exposure levels were divided into 4 quantiles in GLM
modeling, as most recent studies have reported [26,32,40]. In Model 1, we did not adjust
any covariate. Model 2 included age, BMI, race, education, PIR, physical activity, smoking
status, serum creatinine, alcohol drinking, stroke, marital status, age of menarche, and
reproductive history.

2.5.2. Statistical Method 2: Generalized Additive Model (GAM)

Considering the GLM method might not be adequately fitted in potential non-linearity
relationship, we applied a generalized additive model (GAM) to reveal whether there was
a nonlinear relationship between serum PFAS exposure and self-reported infertility. GAM
is an extension of the GLM, which allows the evaluation of the non-linear relationship
between the outcome and the predictors. It provides insight into the relationship between
response variables and explanatory variables [41]. The estimated degree of freedom (EDF)
was used to represent the complexity of the smooth. When the EDF is greater than 1, it
is considered that there is a nonlinear relationship, with higher EDFs describing wigglier
curves. We used ANOVA to test whether the smoothing term is statistically significant. In
the GAM model, and all covariates were adjusted to control the basis.

2.5.3. Statistical Method 3: Bayesian Kernel Machine Regression (BKMR)

To examine associations between serum PFAS and self-reported infertility, we per-
formed Bayesian kernel machine regression (BKMR) to investigate the single and mixed
exposure. BKMR estimates the model via Bayesian inference to account for uncertainty
due to evaluating a high-dimensional set of directions and multiple-testing penalty [42].
Briefly, BMKR models the non-linear function using a Gaussian process model with a
radial basis function (RBF) kernel, and measures each PFAS individual contribution by
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locating a spike-and-slab before the pollutant components [43]; 50,000 iterations were
conducted for the BKMR models with all covariates adjusted. All six PFAS were included
using the variable selection option to assess the individual posterior inclusion probability
(PIPs). A cumulative effect was calculated by fitting the predictors at 25th and 50th per-
centiles, respectively, to reveal the different reference point selecting scenarios. As noted
by Bobb et al., we also conducted a series of sensitivity analyses, including changing the
prior distribution and adjusting the smoothness of the kernel to assess the robustness of
our BKMR model. The information about BKMR and sensitivity analyses were described
in Supplementary Materials File S1.

2.6. Stratified Analyses

Numerous studies have shown that age has a significant effect on women’s fertility [33,44,45].
We performed a stratified analysis to investigate the association between women’s infertility and
serum PFAS in different age groups. We separated the different ages into two subgroups by
35 years of age (median age of present study) and performed both GLM and GAM methods
for the two groups separately to investigate the impact of serum PFAS on women’s infertility in
different age groups.

GAM and BKMR do not currently support adjustments for clustered sampling schemes,
so NHANES weights and strata variables were not included in these models. All analyses
used the Stata software (Version 17, Stata Corp, College Station, TX, USA) and R pack-
ages (R Development Core Team, https://cran.r-project.org/ (accessed on 27 April 2022)).
Statistical significance was set at p < 0.05.

3. Results
3.1. Population Characteristics

Table S1 presents the participants’ general characteristics (n = 788). The mean age was
35.48 years, and nearly 70% of participants were overweight or obese (BMI > 24.9). Women
with infertility were older, more educated, and with a higher proportion married than in
the control group. There were no significant differences in serum cotinine, drinking status,
BMI, family PIR, physical activity, age of menarche, and ever pregnant.

3.2. Distribution and Correlation of Serum PFAS

Table 1 summarizes the distributions of the PFAS and the percent that were higher
than the LOD. 6 PFAS or their congeners are above LOD among the 65% of participants.
The concentration of Sm-PFOS is lower in the infertility group (p < 0.05). There was no
statistical difference in other serum PFAS concentrations between the two groups (p > 0.05).

Table 1. Description of perfluoroalkyl levels among participants, NHANES 2013–2016 a.

Exposure LOD (ng/mL) b N (%) of Below LOD Total
Infertility

p-Value
No Yes

N 788 682 106
Individual PFAS (ng/mL)

PFDE, Median [IQR] 0.10 32.73% 0.10 [0.07, 0.20] 0.10 [0.07, 0.20] 0.10 [0.07, 0.20] 0.620
PFHxS, Median [IQR] 0.10 1.92% 0.60 [0.40, 1.02] 0.60 [0.40, 1.10] 0.60 [0.30, 0.80] 0.078

PFNA, Median [IQR] 0.10 1.72% 0.50 [0.30, 0.80] 0.50 [0.30, 0.80] 0.40 [0.30, 0.70] 0.184
n-PFOA, Median [IQR] 0.10 0.79% 1.10 [0.70, 1.60] 1.10 [0.70, 1.60] 0.90 [0.60, 1.50] 0.083
n-PFOS, Median [IQR] 0.10 0.72% 2.20 [1.30, 3.50] 2.20 [1.30, 3.58] 1.85 [1.30, 3.08] 0.066
Sm-PFOS, Median [IQR] 0.10 1.37% 0.70 [0.40, 1.10] 0.70 [0.40, 1.20] 0.55 [0.32, 1.10] 0.041 *
Total PFAS (ng/mL)
∑PFOS, Median [IQR] - - 1.17 [0.77, 1.70] 1.17 [0.77, 1.70] 0.97 [0.67, 1.59] 0.081

a Median (and interquartile range, IQR) are shown for the PFAS. b The limit of detection (LOD) was not available
because total PFAS were calculated by its isomers. Note: * p < 0.05.

The Spearman correlations among the six log-transformed PFAS are shown in Figure 2.
PFDE was strongly correlated with PFNA (r = 0.72, p < 0.01) and moderately correlated
with PFHxS (r = 0.28, p < 0.05). PFHxS was also correlated with PFNA (r = 0.48, p < 0.01).

https://cran.r-project.org/
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3.3. Using GLM to Evaluate Single PFAS Exposure

In the full adjusted GLM model, n-PFOA was negatively associated with women’s
infertility in the Q3 [OR (95% CI): 0.396 (0.199, 0.788)] and Q4 [OR (95% CI): 0.380 (0.172,
0.842)] compared with Q1 (Table 2). A negative association was also found in PFNA
for the Q3 [OR (95% CI): 0.430 (0.214, 0.860)], while p for trend showed no significance
(p-t = 0.098). n-PFOS and ∑PFOS also showed a negative trend with women’s infertility
(both p-t = 0.032).

Table 2. Association between PFAS exposure and women’s infertility using GLM.

PFAS Quartile1 Model 1
OR (95% CI) p-Value Model 2

OR (95% CI) p-Value

Individual PFAS
PFDE Quartile1 Ref. Ref.

Quartile2 0.674 (0.297, 1.533) 0.335 0.738 (0.292, 1.862) 0.507
Quartile3 0.582 (0.283, 1.198) 0.136 0.541 (0.232, 1.262) 0.149
Quartile4 0.886 (0.463, 1.694) 0.705 0.776 (0.414, 1.453) 0.415
p-t 0.429 0.236

PFHxS Quartile1 Ref. Ref.
Quartile2 0.496 (0.198, 1.242) 0.129 0.442 (0.185, 1.054) 0.065
Quartile3 1.151 (0.591, 2.241) 0.670 0.987 (0.481, 2.025) 0.97
Quartile4 0.532 (0.253, 1.118) 0.093 0.532 (0.236, 1.199) 0.123
p-t 0.295 0.337

PFNA Quartile1 Ref. Ref.
Quartile2 0.682 (0.316, 1.474) 0.318 0.660 (0.297, 1.467) 0.297
Quartile3 0.537 (0.252, 1.144) 0.104 0.430 (0.214, 0.860) 0.019 *
Quartile4 0.650 (0.278, 1.520) 0.309 0.580 (0.252, 1.331) 0.190
p-t 0.218 0.098
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Table 2. Cont.

PFAS Quartile1 Model 1
OR (95% CI) p-Value Model 2

OR (95% CI) p-Value

n-PFOA Quartile1 Ref. Ref.
Quartile2 0.785 (0.471, 1.310) 0.342 0.664 (0.390, 1.131) 0.127
Quartile3 0.509 (0.296, 0.877) 0.017 * 0.396 (0.199, 0.788) 0.010 *
Quartile4 0.502 (0.240, 1.046) 0.065 0.380 (0.172, 0.842) 0.019 *
p-t 0.035 * 0.013 *

n-PFOS Quartile1 Ref. Ref.
Quartile2 1.440 (0.669, 3.102) 0.339 1.819 (0.930, 3.557) 0.079
Quartile3 0.791 (0.367, 1.704) 0.537 0.773 (0.358, 1.670) 0.500
Quartile4 0.660 (0.330 1.323) 0.232 0.589 (0.288, 1.204) 0.141
p-t 0.111 0.032 *

Sm-PFOS Quartile1 Ref. Ref.
Quartile2 0.816 (0.391, 1.699) 0.575 0.780 (0.342, 1.778) 0.543
Quartile3 1.006 (0.502, 2.015) 0.986 0.861 (0.426, 1.739) 0.667
Quartile4 0.648 (0.317, 1.325) 0.225 0.461 (0.200, 1.062) 0.068
p-t 0.301 0.076

Total PFAS
∑PFOS Quartile1 Ref. Ref.

Quartile2 1.06 (0.59, 1.902) 0.841 1.303 (0.762, 2.229) 0.321
Quartile3 0.563 (0.279, 1.138) 0.106 0.539 (0.261, 1.113) 0.092
Quartile4 0.677 (0.348, 1.317) 0.240 0.557 (0.281, 1.104) 0.091
p-t 0.127 0.032 *

Note: * p < 0.05; OR, Odd ratio; CI, confidence interval; p-t, p-value for trend; Model 1: unadjusted model, Model 2:
adjusted for all covariates.

3.4. The Association between Serum PFAS and Self-Reported Infertility by the GAM

Figure 3 showed the trend of each PFAS exposures. In the GAM analysis, a linear negative
association was found in n-PFOA and self-reported infertility (EDF = 1, p < 0.01 **), while
Sm-PFOS showed a “U-shaped” relationship (EDF = 2.975, p < 0.05 *). There is a potential
non-linear relationship between other PFAS and women’s infertility (EDF > 1, p > 0.05). In
total PFAS, ∑PFOS also showed a potential “U-shape” with women’s infertility (EDF = 3.673,
p > 0.05) (Figure S1). Table S2 shows the details of GAM modeling results.
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3.5. The Association between Serum PFAS and Self-Reported Infertility by the BKMR Model

BKMR revealed a linear association between individual PFAS and infertility similar to
the results of GAM (Figure S1). Posterior inclusion probabilities (PIP) in BKMR were shown
in Figure S3, in which PFNA (PIP = 0.435) played the most essential role in overall effects.
The PFAS mixtures showed a negative association with women’s infertility in the BKMR
model (Figure 4A,B). A negative trend of self-reported infertility risk and the combined
PFAS exposure was evident when co-exposure exceeded the 25th percentile (Figure 4A).
There was no evidence for interactions between PFAS (Figures S4 and S5).
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In BKMR sensitivity analysis, although the overall estimate value of three models and
original model were quite different, the trend of the overall effect was robust (Figure S6).

3.6. Stratified Analyses

Interestingly, the trend between PFAS mixed exposure and women’s infertility differed
between the under 35-year-old and over 35-year-old groups. At age under 35, a “J-shaped”
or “U-shaped” association was observed in PFDE, PFNA, n-PFOS, and Sm-PFOS and
women’s infertility. There were only negative trends observed over 35 (Figure 5). Tables
S3 and S4 show the baseline of two age-stratified groups. The multivariate linear results
stratified by age showed that for women younger than 35 years, there is no an association
between n-PFOA and self-reported infertility (p > 0.05), whereas n-PFOA for the Q4 [OR
(95% CI): 0.33 (0.12, 0.92)] were significantly associated with infertility in women older than
35 years (Figure S7).
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4. Discussion

This is the first study to explore the relationship between the mixed PFAS exposure and
women’s infertility in the representative general U.S. population. We found a non-linear
relationship between the prevalence of self-reported infertility among women and serum
concentrations of PFAS (Figure 3), suggesting that the effect of PFAS on fertility might
depend on exposure levels and/or different subtypes.

PFAS are common endocrine disrupting chemicals (EDCs) detected in 99–100% of
pregnant women [46]. Non-monotonic dose responses (NMDR) in EDCs were widely
observed, and a curve slope changes direction within the range of tested doses [47,48].
As typical EDCs, PFAS has been reported the effect of NMDR. Mancini et al. revealed an
inverse U-shaped association between PFOA dietary exposure and the risk of developing
type 2 diabetes [49]. A Swedish cohort study also reported a NMDR relationship between
PFOS and overweight/obesity in children [50]. A U-shaped association between PFOA
and cognitive function in older adults was identified [51]. In addition, PFAS followed a
prevalent inverted U-shaped distribution across patients in declining stages of glomerular
function [52].

Although it is challenging to present plausible explanations with limited evidence,
several potential mechanisms were proposed to explain the NMDR effects of PFAS, including
estrogen-like effects, low-dose stimulation effects, and cytotoxicity. PFAS may promote
modifications of endogenous hormone regulation in humans and in wildlife [19,53–55]. PFAS
showed weak estrogenic effects in animal experiments, which manifested in increased estrogen
and progesterone concentrations or mimicked the effect of endogenous estrogen [56–58].
PFAS can modulate the endocrine system by up- or downregulation of the expression of
proteins responsible for cholesterol transport and ovarian steroidogenesis [53,59,60]. PFOA-
treated ovary-intact mice had significantly increased serum progesterone (P) levels [56].
Cytological findings suggest that PFOS inhibits the conversion of P to testosterone by inhibiting
CYP17 [61]. PFOA, PFNA, PFDA, and PFOS are all efficiently combined with estrogen
receptors alpha (ERα) in different species [57]. Meanwhile, PFOS induced E2 production
and reduced testosterone (T) production in a concentration-dependent manner in the H295R
cells [61]. Previous studies have confirmed that estradiol/progesterone and its substitution
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could improve pregnancy rates in the luteal phase [62–64]. Hence, we speculate that exposure
to PFAS in a specific range of concentrations might benefit fertility.

Our result presented a negative trend of exposure to low-dose PFAS on women’s
infertility, which has also been observed for a wide variety of EDCs (e.g., bisphenol A
(BPA), phthalates) [47,65–67]. The median and IQR of ΣPFOA and ΣPFOS in our research
(NHANES 2014–2016) were 1.27 (0.77 to 22.59) ng/mL and 3.30 (1.20 to 5.30) ng/mL,
respectively, which were lower than those studies that reported positive associations
(Table S5) [13,68–70]. Additionally, studies that reported lower concentrations than our
study did not find associations between PFAS and infertility [69]. Low levels of EDCs
exposure may cause a hormesis effect [71,72], which describes a biphasic dose response
to an environmental agent with a low-dose stimulation showing beneficial effects and
a high-dose stimulation leading inhibitory or toxic effects [73,74]. A low concentration
(33 ng/L) of ethinylestradiol (EE2) could induce hormesis (immune enhancement), enable
adaptation (restored reproduction), and even boost fish resistance to the bacterial challenges
after abatement of EE2. As our previous study, low-dose PFOA and PFOS might present a
hormesis-effect, which shows a positive trend on cognitive function [26]. Evidence on the
hormesis effects of PFAS on reproductive function is currently lacking, and we encourage
researchers to explore this in greater depth longitudinally.

Although it is well known that age plays a vital role in fertility [75,76], the differences
between serum PFAS levels and infertility in the age-stratified analysis are of great interest,
especially in PFDE, PFNA, n-PFOS, and Sm-PFOS (Figure 5). Women enter perimenopause
between the ages of 35 and 50, hormone levels change significantly [77]. We consider that
sex hormone levels in young women are relatively stable and even low-level PFAS exposure
might cause more pronounced physiological changes. Moreover, previous studies have shown
that serum PFAS concentration appears to be age-specific [55,78]. Women of younger age
have lower concentrations of PFAS [55], and due to the short exposure period and vigorous
metabolism, PFAS is relatively easier to exclude. As they age, PFAS accumulates in their
bodies, resulting in relatively higher serum PFAS levels in older women [10]. Therefore,
we could hypothesize that the accumulation of PFAS in perimenopausal women might
occasionally result in a negative trend between PFAS and infertility, making the reproductive
toxicity in same exposure levels of PFAS less sensitive in perimenopausal women than in
non-perimenopausal women. However, our results still need to be interpreted with caution.

Previous studies showed inconsistent associations between PFAS exposures and women’s
infertility and infertility-related diseases [68,70,79]. A case-control study (n = 240) in China
showed that exposure to PFOA and PFOS increased the risk of premature ovarian insufficiency
(POI) at the age of around 30 (Mean ± SD: 28.9 ± 5.6). A case-control study (n = 97) in
Australia showed the links between PFAS exposures and increased risk of infertility factors
like endometriosis and POS [79]. Women with higher PFOA (≥4.20 ng/mL) and PFNA
(≥1.50 ng/mL) serum levels were less likely to become pregnant than those with lower levels
in a prospective study [80]. PFOA (≥3.91 ng/mL) and PFOS (≥26.1 ng/mL) exposure may
reduce fecundity in Danish women [81]. PFNA, PFOA, and PFOS were also associated
with endometriosis in a study of U.S. women aged around 20 to 50 years from NHANES
2003–2006 [82]. However, In a survey from Zhejiang, China (n = 335), relatively lower levels
of plasma PFAS (PFHpA, PFHxS, PFNA) were inversely associated with endometriosis-
related infertility [70]. Our findings add the negative association of PFAS with women’s
infertility to the current literature, and more academic exploration should be made to clarify
further reasons.

Three statistical methods explored the relationship between PFAS exposure and
women’s infertility in different dimensions, which is very important for interpreting the
consistency of the results. The GLM method was generally used in traditional health
impact and risk investigation. GLM revealed an inverse association between individual
PFAS and women’s infertility, but it cannot identify the NMDR and the overall effect of
mixed exposure. Therefore, this study employed a non-linear model, GAM, for further
analyses. GAM is widely used in the non-linear exploration of exposure and health out-
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comes due to its flexible fitting. The non-linear relationship was detected in Sm-PFOS
(EDF > 1, p < 0.05), and potential non-linear relationships were also revealed in PFDE,
PFHxS, PFNA, n-PFOS. To assess the joint effect of PFAS exposure, the BKMR model can
evaluate the relationships between mixed exposures and health outcomes, allowing for the
nonlinear and non-additive exposure-response function. We found that PFNA have the
highest PIP in mixed exposures. Sensitive analysis of BKMR indicated a negative trend
of the overall effect, which proved the stability of negative associations. Three statistical
methods examined the relationship between PFAS and women’s infertility from different
dimensions, which validated the results’ stability and reduced the possibility of accidental
errors. However, the effect of PFAS on women’s infertility cannot be fully explained, and
more in vitro/in vivo experiments and population experiments are needed to confirm
their relationship.

This study has some obvious advantages. First, this is the first study to determine the
impact of PFAS mixture exposure on U.S. women’s general infertility, which may provide
new perspectives on infertility. Secondly, we used three different statistical methods to
assess the relationship between PFAS and infertility. Notably, we revealed a “U-shaped”
dose–response relationship in this research, further supporting the hypothesis of a non-
linear relationship between low-dose exposure to PFAS and infertility. However, we cannot
conclude the causal relationship between PFAS exposure and women’s infertility due
to the cross-sectional study design. One-time measurement of serum PFAS levels is not
representative of the long-term exposure of this population, and self-reported infertility is
also not representative of obstetric examination results. Even if we included reproductive
history as a covariate, the impact of pregnancy on women’s serum PFAS concentrations
could not be ruled out. Meanwhile, the number of participants who had reported infertility
is relatively low. We cannot conduct an age-stratified analysis in more specific age groups.
Reverse causality might not be avoided. More research is needed.

5. Conclusions

We highlighted a controversial result that negative associations with PFAS and women’s
infertility varied according to types of PFAS and age. GAM revealed a prevalent non-linear
association between PFAS and women’s infertility. Mixed PFAS exposure might influence
infertility negatively as revealed in the BKMR model. Our study indicated that further
profound studies are needed to address the impact of low-dose PFAS exposure on women’s
infertility. Future longitudinal studies are required to confirm the exact relationship between
PFAS and women’s infertility and the basic mechanisms.
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