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Abstract: Many studies have shown that air pollution may be closely associated with increased
morbidity and mortality due to COVID-19. It has been observed that exposure to air pollution leads
to reduced immune response, thereby facilitating viral penetration and replication. In our study, we
combined information on confirmed COVID-19 daily new cases (DNCs) in one of the most polluted
regions in the European Union (EU) with air-quality monitoring data, including meteorological
parameters (temperature, relative humidity, atmospheric pressure, wind speed, and direction) and
concentrations of particulate matter (PM10 and PM2.5), sulfur dioxide (SO2), nitrogen oxides (NO
and NO2), ozone (O3), and carbon monoxide (CO). Additionally, the relationship between bacterial
aerosol (BA) concentration and COVID-19 spread was analyzed. We confirmed a significant positive
correlation (p < 0.05) between NO2 concentrations and numbers of confirmed DNCs and observed
positive correlations (p < 0.05) between BA concentrations and DNCs, which may point to coronavirus
air transmission by surface deposits on bioaerosol particles. In addition, wind direction information
was used to show that the highest numbers of DNCs were associated with the dominant wind
directions in the region (southern and southwestern parts).

Keywords: air pollution; PM2.5; PM10; NO2; bioaerosols; COVID-19; meteorological parameters;
atmospheric air; human health

1. Introduction

Respiratory infections are the leading cause of epidemics, causing about 5 million
deaths per year around the world [1]. In 2020, we became participants in an unprecedented
international public health challenge. As a result of the coronavirus-associated acute respi-
ratory syndrome (SARS-CoV-2), with COVID-19 disease as a symptom, both educational
and commercial systems, as well as the general well-being of societies, have suffered [2]. In
Poland, the first case of SARS-CoV-2 infection was diagnosed on March 4, while on March
12 the WHO regional director for Europe identified the region as the center of the pandemic.
On March 17, every country in Europe had at least one confirmed case of COVID-19 [3].

Poland is a country with one of the largest air pollution problems in the European
Union (EU). The Silesia voivodeship is the most polluted region in Poland, a country with
36 cities in a ranking of the 50 most polluted cities in the EU [4]. It has been estimated
that, due to exposure to air pollution, the life expectancy of the average Polish citizen
is shortened by around nine months, and 48,000 people die prematurely every year due
to air pollution [5]. Epidemiological data and pathophysiological mechanisms suggest
that ambient air pollution affects both the spread of COVID-19 disease and its severity [6].
Therefore, it is crucial to define the role that air pollutants play in the increase in morbidity
and mortality due to COVID-19 [7].
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Air pollution is known to damage many organs and systems of the human body.
Of particular importance is the reduction in immunity to bacterial or viral infections of
the respiratory system and the effect on the functioning of the cardiovascular system [8].
Moreover, after the outbreak of COVID-19, people are infected more often by SARS-CoV-2
in areas with high levels of air pollution than in less polluted areas. Air contamination
disables airway mucosal functioning, including the production of fluid that lines the airway
surface and contains respiratory host defense peptides, as well as mucus production and
the tight junctions between epithelial cells. That is why air pollution can provoke cilia
dysfunction, with changed surfactant composition and higher permeability of the airway
epithelium [9–11]. Consequently, impairment of the mucosal barrier impairs lung defense
against inhaled pathogens, such as SARS-CoV-2 [12].

Studies over the past two years on regions with high levels of air pollution have shown
correlations with COVID-19 mortality. Regions in Northern Italy, including Lombardy,
Veneto, and Emilia-Romagna, can be used as examples [13]. Similar trends have been
observed in other regions with high air pollution, such as the Wuhan region of China and
the United States, where poor air quality is correlated with a high incidence of COVID-19
and positive results of COVID-19 tests [10]. Currently, research has shown a relationship
between routinely measured air pollutants, for example, particulate matter (PM10 and
PM2.5) and nitrogen oxides (NOx), and increased numbers of COVID-19 cases [13–19]. The
impact of meteorological conditions has also been analyzed [20–24]. However, there is still
a lack of reports on the relationship between bacterial aerosols (BAs) in ambient air and
incidence of COVID-19. Worldwide studies have revealed that BA concentrations vary
among different types of outdoor environments, with considerable seasonal variations as
well [25–27]. BA concentration and composition in outdoor air can be influenced by specific
micro- and macroscale determinants, such as land use, emission sources, air humidity,
temperature, and UV radiation [26,28,29].

Bacterial aerosol particles are significant health risk factors, and exposure to these
particles is associated with a varied range of health effects, including three major groups:
infections, toxic reactions, and allergic reactions [30,31]. Therefore, the main aim of our
study was to determine the impact of bacterial aerosols present in ambient air on the
increase in COVID-19 cases in Gliwice in the Upper Silesia region of Poland, which is one
of the most polluted areas in the EU [31].

This research is a contribution to the public debate on whether ambient particles
can transport viruses that cause COVID-19 [16]. We believe that increasing knowledge of
the relationship between air pollution and the incidence of COVID-19 symptoms can be
beneficial in informing public health measures all around the world.

2. Materials and Methods
2.1. Sampling Sites

The study was carried out in Gliwice (50◦17′37.1′′ N 18◦40′54.9′′ E). Gliwice is a
typical representative of a city located in the industrial area of Upper Silesia, Poland, with
178.186 thousand occupants (Figure 1). It is a densely populated and highly industrialized
region of Poland and is responsible for the highest level of coal production. There are
numerous coal-fired power plants, coking plants, and steel mills. Due to high levels of air
pollution, the Silesia region has the shortest life expectancy and the highest incidence of
premature births as well as genetic birth defects in Poland [32].

2.2. Measurements of Ambient Air Pollutants

The ambient air pollutants measured included bacterial aerosols (BAs), PM2.5, PM10,
SO2, and NOx, including NO and NO2, as well as O3 and CO; various meteorological
parameters, such as relative humidity (RH), air temperature (t), atmospheric pressure (P),
and wind speed and direction, were also measured. All measurements were carried out
during March 2021 from Monday to Friday. Additionally, an analysis of the impact of PM2.5
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and PM10 concentrations on COVID-19 daily new cases (DNCs) was conducted during the
winter season (from November 2020 to February 2021).
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The data on PM10 concentrations, as well as all gaseous and meteorological parameters,
were gathered by the mobile air quality station for air pollutant emission measurements
located at the Silesian University of Technology in Gliwice. The measuring equipment
includes continuous automatic certificated monitors for PM10/PM2.5 particulate matter
(Beta Attenuation Monitor BAM1020 Met One Instruments, Inc., Grants Pass, OR, USA),
SO2 (fluorescence analyzer—T100/API-Teledyne, San Diego, CA, USA), NOx (chemilu-
minescence analyser—T200/API Teledyne, San Diego, CA, USA), O3 (UV absorption
analyzer—T400/API-Teledyne, San Diego, CA, USA), and CO (infrared energy absorption
analyzer—T300/API-Teledyne, San Diego, CA, USA), as well as the meteorological station
(Meteo set WS 500 Lufft, G. Lufft Mess- und Regeltechnik GmbH, Fellbach, Germany).
Additionally, data on PM10 and PM2.5 ambient levels were taken from the air monitoring
station nearest to the Silesian University of Technology (at a distance of about 2500 m)
at Mewy Street. The monitoring station belongs to the National Inspectorate of Environ-
mental Protection in the Upper Silesia voivodeship [33]. The BA concentrations were
measured using an Air Ideal (bioMérieux, France) one-stage impactor with an air flow
rate of 100 dm3/min, at a height of about 1.5 m to simulate aspiration from the human
breathing zone, with the same operational details as in our previous studies [34,35]. Air
pollutant levels and meteorological parameters are 24 h averages.

In addition, after a 24 h incubation, single colonies of BAs were passaged on a Biolog
Universal Growth Agar (24 h incubation at 37 ◦C). Characterization of the isolates was
performed using Gram staining and cell morphological analysis. In the next step, selected
strains were then identified using the Biolog OmniLog system (Biolog, Haward, CA, USA)
and a GEN III MicroPlate™, as in our previous research [31,35].

2.3. Measurements of SARS-CoV-2 Cases

The official data for SARS-CoV-2 infections in Poland are published daily by the Polish
Ministry of Health [36]. All cases are diagnosed as positive based on polymerase chain
reaction tests for SARS-CoV-2. We collected the cumulative number of cases for the district
of Gliwice in Upper Silesia, Poland, from 23 November 2020 (the first day of available data)
up to 31 March 2021. The data on the daily new cases (DNCs) due to COVID-19 were
obtained from publicly available databases; hence, ethical approval was not required.

2.4. Statistical Analyses

The data were analyzed using Statistica software (TIBCO Software Inc. Palo Alto,
CA, USA), version 13.3 for Windows, and a p-value < 0.05 was considered statistically
significant. To determine whether a small data set (n < 50) was normally distributed, two
tests were used: the Lilliefors test and the Shapiro–Wilk test. Table 1 presents the results of
the normality tests of the random distributions of the measured parameters. Normality
was revealed for total bacteria levels, daily new SARS-CoV-2 cases, concentrations of NO2
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and O3, as well as all meteorological parameters, except ambient temperature. In the case
of these parameters, linear regression could be used. For the other parameters, Spearman’s
rank correlation was used to test whether there was concordance (strength and direction)
between the total bacteria levels, ambient air pollutants, meteorological parameters, and
SARS-CoV-2 cases. Spearman correlations, not Pearson correlations, were used due to the
non-normal distribution of the obtained variables (PM fractions, SO2, NO, NOx, CO, and
temperature) generated from the daily time series data.

Table 1. Mean, median, minimum, and maximum values of parameters for daily new cases (DNCs)
and all variables included in the analysis for March 2021.

Parameters Mean Median SD Min Max Lilliefors Test W Shapiro–Wilk Test

SARS-CoV-2 cases 112 100 74 14 279 p < 0.1 0.92 0.07
BAs, CFU/m3 703 690 161 410 980 p > 0.2 0.97 0.73
PM2.5

1, µg/m3 33.1 24.2 20.9 10.9 76.1 p < 0.01 0.87 0.01
PM10

1, µg/m3 45.3 36.6 25.8 17.2 102.9 p < 0.15 0.89 0.02
PM10

2, µg/m3 38.9 28.1 26.5 11.4 106.0 p < 0.01 0.85 0.01
SO2, ppb 3.0 2.2 2.4 0.5 9.1 p < 0.01 0.79 <0.01
NO, ppb 5.0 4.3 3.6 1.5 15.5 p < 0.05 0.85 <0.01
NO2, ppb 10.8 9.5 5.6 2.9 23.2 p < 0.15 0.93 0.09
NOx, ppb 14.8 14.3 7.9 5.0 35.1 p < 0.2 0.91 0.05
O3, ppb 22.5 23.6 5.9 5.5 31.4 p > 0.2 0.94 0.15
CO, ppm 0.4 0.3 0.2 0.2 0.9 p < 0.05 0.86 <0.01
t, ◦C 4.4 3.4 3.9 −0.3 13.3 p < 0.15 0.91 0.03
RH, % 73.3 71.5 6.9 61.5 88.8 p > 0.2 0.97 0.58
P, hPa 996.9 995.6 7.4 985.9 1013.4 p < 0.1 0.94 0.17
Wind speed, m/s 1.5 1.3 0.7 0.5 2.8 p > 0.2 0.95 0.34
Wind direction, ◦ 185.8 195.4 69.4 17.8 324.5 p < 0.05 0.94 0.19

1 Monitoring station. 2 Mobile air quality station at the sampling site.

3. Results and Discussion
3.1. Particulate Matter (PM) Concentrations and SARS-CoV-2 Daily New Cases (DNCs)

Long-term chronic exposure to air pollutants might play a significant role in the
spread of COVID-19 [37]. In addition, short-term exposure to high levels of ground PM
concentrations found in ambient air is associated with reduction in lung function and
induction of respiratory symptoms, including cough, shortness of breath, and pain on
deep inspiration [38,39]. New systematic reports have emphasized a possible association
between the transmission of the virus in exposed populations and the level of PM in the
atmosphere. However, confounding effects may be present, such as gender, age, smoking
status, and high population density, as potential risk factors for higher morbidity and
mortality due to COVID-19 [40,41]. Therefore, caution has to be taken in translating values
of conventional indicators, such as PM2.5 and PM10 levels, into measures of vulnerability
to COVID-19.

In our study, we observed a relationship between PM concentrations and daily new
cases (DNCs). Figures 2 and 3 present the similarity in the daily course of PM10 and PM2.5
levels and DNCs during the winter season (from November 2020 to February 2021). The
plots are consistent with other results showing a relationship between higher air pollution
levels and COVID-19 cases [4,7,16,42].
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In Poland, just as in many other countries in Central and Eastern Europe, high levels
of two PM fractions (PM10 and PM2.5) are observed every winter season. This is due to
the high share of solid fuels in the primary energy source structure and the large share of
low communal emissions [43,44]. However, what interested us and became an inspiration
for further research was that we observed that the relationship between PM and DNCs
had been weakening since March (spring season, end of the heating season), despite the
continuous increase in the number of cases of SARS-CoV-2. Table 1 presents the means,
medians, and ranges (min–max) of parameters monitored in March 2021.

Following the newest WHO global air quality guidelines [45], the recommended 24 h
concentration of PM2.5 is 15 µg/m3, that of PM10 is 45 µg/m3, that of sulfur dioxide (SO2)
is 40 µg/m3, that of nitrogen dioxide (NO2) is 25 µg/m3, and that of carbon monoxide
(CO) is 4 µg/m3, while, for ozone (O3), the recommended 8 h average concentration is
100 µg/m3. All gaseous pollutants were found to be below the level recommended by the
WHO, while PM fractions exceeded recommended levels. The highest concentrations of
major air pollutants monitored during the selected month were observed for both PM2.5
and PM10. These two fractions determined overall air quality in March 2021.
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Figure 4 shows that the contribution of the air quality index (AQI) during March 2021
was mainly moderate. The correlation matrix (Table 2) for SARS-CoV-2 daily new cases
(DNCs), ambient air pollutant concentrations, and bacterial aerosol concentrations during
March 2021 suggests that, in moderate ambient air conditions, DNCs are significantly
correlated with bacterial aerosols (BAs) and NO2. The correlation coefficients (r) were 0.903
and 0.724, respectively.
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Table 2. Correlation matrix for SARS-CoV-2 daily new cases (DNCs), bacterial aerosol concentrations,
and ambient air pollution levels during March 2021.

Parameters DNCs BAs PM2.5
1 PM10

1 PM10
2 SO2 NO NO2 NOx O3 CO

DNCs 1 0.903 −0.060 0.062 −0.205 0.377 0.477 0.724 0.595 −0.325 0.266
BA

CFU/m3 1 −0.014 <0.01 −0.237 0.384 0.319 0.632 0.479 −0.247 0.207

PM2.5
1

µg/m3 1 0.869 0.891 0.513 0.086 0.072 −0.007 −0.344 0.614

PM10
1

µg/m3 1 0.868 0.708 0.329 0.320 0.245 −0.491 0.828

PM10
2

µg/m3 1 0.527 −0.244 −0.005 −0.324 −0.226 0.602

SO2 1 0.460 0.622 0.556 −0.517 0.776
NO 1 0.853 0.925 −0.809 0.506
NO2 1 0.970 −0.607 0.521
NOx 1 −0.681 0.465
O3 1 −0.637

Correlation coefficients with p < 0.05 are in bold. 1 Monitoring station. 2 Mobile air monitoring lab at the
sampling site.

3.2. Meteorological Conditions and SARS-CoV-2 Daily New Cases (DNCs)

Table 3 shows the results of a correlation analysis of meteorological parameters and
DNCs as well as BAs. Interestingly, the analysis revealed a significant negative correlation
between wind direction and DNCs (r = −0.477), as well as between BAs and atmospheric
pressure. Figure 5 presents a wind rose diagram for March 2021 derived from the monitor-
ing by a mobile air quality station located in Gliwice. The results of the study indicated
that the wind in the studied area dominantly blew towards the south and southwest, and
the wind speed values were low, in a range from 0.5 to 2.8 m/s (Table 1). As can be seen,
the highest numbers of COVID-19 cases correspond to wind directions.
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Table 3. Correlation matrix for SARS-CoV-2 daily new cases (DNCs), bacterial aerosol (BA) concen-
trations, and meteorological conditions during March 2021.

Parameters DNCs BAs Temperature RH Atmospheric
Pressure Wind Speed Wind

Direction

Temperature 0.387 0.251 1 −0.309 0.278 −0.089 −0.024
RH −0.377 −0.386 −0.309 1 0.007 0.194 0.409

Atmospheric pressure −0.148 −0.426 0.278 0.007 1 −0.367 −0.010
Wind speed 0.016 0.041 −0.089 0.194 −0.367 1 0.005

Wind direction −0.477 −0.288 0.024 0.409 −0.010 0.005 1

Correlation coefficients with p < 0.05 are in bold.
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3.3. Bacterial Aerosol (BA) Concentrations and SARS-CoV-2 Daily New Cases (DNCs)

To our knowledge, no research has previously been carried out to evaluate the link
between concentrations of bacterial aerosols (BAs) in the outdoor air and numbers of
cases of SARS-CoV-2. These results seem even more interesting given that, for a 10-year
period in Poland, we recorded the maximum average concentration of BAs in the spring
season (the time these analyses were conducted) and the lowest in the winter. During
winter, extreme conditions, such as decreases in temperature and the heaviest rainfall and
snowfall of the year, might contribute to the decrease in BA levels. On the other hand, in
the summer, it would seem that the most favorable conditions for the growth of bacteria
that we observed decreased BA concentrations. The reason for this decline may be the
extremely high temperatures and strong UV radiation from the sun noted at this time.

The median BA concentration was 690 CFU/m3 and varied in a range from 410 to
980 CFU/m3 (Table 1). Figure 6 shows that the BA concentrations were linked to increased
numbers of new SARS-CoV-2 cases. Table 2 presents a matrix of correlation coefficients (r)
for daily new cases (DNCs) and all variables included in the analysis, which suggests that
BA concentrations during March 2021 were highly correlated with DNCs (r = 0.903) and
that the relationship was linear (R2 = 0.758).
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We suggest that bacterial infections may cause increases in the numbers of COVID-
19 patients. However, the collection of respiratory samples from this type of patient is
complicated because of the elevated risks associated with aerosol generation procedures.
Consequently, bacterial respiratory tract infections are likely to be under-detected in pa-
tients hospitalized with COVID-19. There are only a limited number of papers that have
reported species identities or sampling times, making it impossible to determine whether
patients had bacterial infections at the time of hospital admission [46].

A significant correlation (p < 0.05) was found between BA concentrations and SARS-
CoV-2 in a hospital in Iran, where the obtained results implied that contact with bioaerosols
generated through COVID-19 patients’, healthcare workers’, and visitors’ exhalations in
hospital wards may pose a serious health threat, especially to susceptible individuals [47].
Zhou et al. found that bacterial infections (bacteraemia and pneumonia) were more com-
mon in fatal COVID-19 cases compared with recovered cases in Wuhan, China [48].

There is a suspicion that pollen bioaerosols can also affect coronavirus survival [49,50].
Considering the summer incidence of coronavirus during June 2022, under suitable environ-
mental conditions, simultaneous or co-exposure to SARS-CoV-2 (via other infected human
carriers) and airborne aerosols might promote viral infection. Therefore, we must detect
the seasonal patterns of bioaerosols and airborne viruses, including COVID-19, based on
environmental factors.

The most commonly isolated bacterial group in our research was that of the Gram-
positive rods that form endospores, among which Bacillus was the most frequently isolated
genus (Table 4).

Table 4. Bacterial species identifications.

Species of Isolated Bacteria

Bacillus cereus
Bacillus subtilis
Bacillus flexus

Bacillus licheniformis
Paenibacillus barengoltzii

Micrococcus luteus
Macrococcus equipercicus

Macrococcus brunensis
Nocardia alba

Lactobacillus crispatus
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The spores of Bacillus have remarkable resistance to chemical and physical factors.
This genus of bacteria is commonly found in soil and water and is a component of the
normal flora of the skin and mucous membranes of humans and animals [51]. This result
corresponds with our previous findings [26,35] and is common to other studies [52–54].

3.4. Nitrogen Dioxide (NO2) Concentrations and SARS-CoV-2 Daily New Cases (DNCs)

Nitrogen dioxide (NO2) is another important air pollutant toxic to human respiratory
systems when present at higher concentrations in the atmosphere [55]. In our study, the
median NO2 concentration was 9.5 ppb (Table 1). Figure 7 shows that NO2 concentrations
were linked to increased numbers of SARS-CoV-2 cases. The relation was linear (R2 = 0.597),
as shown by regression analysis, and the correlation was high (r = 0.724); on the other
hand, NO and NOx concentrations (0.477 and 0.595, respectively) were linked to increased
numbers of SARS-CoV-2 cases to a lesser extent.
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Similar results were found in Wuhan, China, where Li et al. (2020) found a signifi-
cant linear correlation between SARS-CoV-2 DNCs and NO2 concentrations (R2 = 0.329,
p < 0.001) [56]. In Spain, Italy, France, and Germany, it was observed that out of 4443 fatali-
ties observed at the beginning of the pandemic of COVID-19, 3487 deaths, accounting for
78% of the total deaths, were confined to areas where NO2 pollution was predominant [57].

4. Conclusions

Understanding the airborne route of SARS-CoV-2 transmission is essential for infection
prevention and control, and improvements in terms of air pollution, lifestyle, and the
environment will help to prevent future viral pandemics.

Our study found that the role of ambient air pollution given moderate air quality is
largely unknown, necessitating further epidemiological studies. Although the current study
was conducted only in Gliwice, Poland, it points to the as yet unrepresented implication
that bacterial aerosol (BA) concentrations in the period characterized by moderate air
quality were significantly associated with SARS-CoV-2 daily new cases (DNCs).

In conclusion, we think that our analyses of the correlations between bacterial aerosol
(BA) concentrations and new COVID-19 cases are foundations for further, wider research.
However, the drastic mutational nature of the virus makes it difficult to predict which
mechanisms and ecological parameters will affect its growth and prevalence.

Author Contributions: Conceptualization, E.B.; methodology, E.B.; formal analysis, E.B.; investiga-
tion, E.B.; resources, E.B. and A.M.; data curation, A.M.; writing—original draft preparation, E.B.
and A.M.; writing—review and editing, E.B. and A.M.; visualization, A.M.; supervision, E.B.; project
administration, E.B.; funding acquisition, A.M. and E.B. All authors have read and agreed to the
published version of the manuscript.
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26. Brągoszewska, E.; Pastuszka, J.S. Influence of Meteorological Factors on the Level and Characteristics of Culturable Bacteria in
the Air in Gliwice, Upper Silesia (Poland). Aerobiologia 2018, 34, 241–255. [CrossRef] [PubMed]

27. Woo, A.C.; Brar, M.S.; Chan, Y.; Lau, M.C.Y.; Leung, F.C.C.; Scott, J.A.; Vrijmoed, L.L.P.; Zawar-Reza, P.; Pointing, S.B. Temporal
Variation in Airborne Microbial Populations and Microbially-Derived Allergens in a Tropical Urban Landscape. Atmos. Environ.
2013, 74, 291–300. [CrossRef]

28. Ruiz-Gil, T.; Acuña, J.J.; Fujiyoshi, S.; Tanaka, D.; Noda, J.; Maruyama, F.; Jorquera, M.A. Airborne Bacterial Communities of
Outdoor Environments and Their Associated Influencing Factors. Environ. Int. 2020, 145, 106156. [CrossRef]

29. Šantl-Temkiv, T.; Gosewinkel, U.; Starnawski, P.; Lever, M.; Finster, K. Aeolian Dispersal of Bacteria in Southwest Greenland:
Their Sources, Abundance, Diversity and Physiological States. FEMS Microbiol. Ecol. 2018, 94, fiy031. [CrossRef]

30. Chegini, F.M.; Baghani, A.N.; Hassanvand, M.S.; Sorooshian, A.; Golbaz, S.; Bakhtiari, R.; Ashouri, A.; Joubani, M.N.; Alimoham-
madi, M. Indoor and Outdoor Airborne Bacterial and Fungal Air Quality in Kindergartens: Seasonal Distribution, Genera, Levels,
and Factors Influencing Their Concentration. Build. Environ. 2020, 175, 106690. [CrossRef]
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