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(S I N

Abstract: The achievement of China’s low-carbon development and carbon neutrality depends
heavily on the decrease of manufacturing carbon emissions. From coagglomeration’s dynamic
evolution perspective, by using panel-threshold-STIRPAT and mediation-STIRPAT models, this study
examines the relationships among industrial coagglomeration, green innovation, and manufacturing
carbon emissions and explores the direct and indirect function mechanisms. Panel data of China’s
30 provinces from 2010 to 2019 are employed. The results imply that, first, the impact of industrial
coagglomeration on manufacturing carbon emissions is nonlinear and has significant threshold
effects. Industrial coagglomeration negatively affects manufacturing carbon emissions, and as the
coagglomeration level deepens, the negative effect has a diminishing trend in marginal utility. Once
the coagglomeration degree exceeds a certain threshold, the negative impact becomes insignificant.
At present, for 90% of China’s regions, an increase in industrial coagglomeration level can help
reduce manufacturing carbon emissions. Second, green innovation is a vital intermediary between
industrial coagglomeration and manufacturing carbon emissions. It is a partial intermediary when
industrial coagglomeration is at a relatively lower-level stage and a complete intermediary when
industrial coagglomeration is at a relatively higher-level stage. These findings reveal the significance
of optimizing industrial coagglomeration and the level and efficiency of green innovation to decrease
carbon emissions.

Keywords: industrial coagglomeration; green innovation; manufacturing carbon emissions; threshold
effect; mediating effect; dynamic evolution

1. Introduction

Due to the increasingly serious issue of global warming, how to cut carbon emis-
sions and eventually reach the goal of carbon neutrality has become a major concern for
countries [1]. As one of the largest carbon emitters, China has placed great emphasis on
decreasing carbon emissions and has formulated a series of industrial low-carbon growth
plans [2]. In September 2020, it solemnly pledged to the world that it would work to
reach a peak in carbon emissions by 2030 and realize carbon neutrality by 2060, namely,
“dual-carbon” goals [3]. Since China is still a developing country in the process of indus-
trialization, it needs to consider economic development while making and implementing
carbon emission reduction strategies. Meanwhile, as the manufacturing industry is the
main industrial source of carbon emissions [4], as well as China’s pillar of economic develop-
ment, to effectively realize the “dual-carbon” and economic growth goals in a coordinated
way, the low-carbon development of the manufacturing industry should thus be the top
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priority over all other industries. Based on this, the exploration of the manufacturing
carbon emission abatement effect and its driving forces have received great concern from
all walks of life [5-7].

Industrial coagglomeration, a new industrial agglomeration mode, is a crucial tool for
China to better achieve economic green transformation by building a modern industrial
system [8,9]. Its concept was initially proposed by Ellison and Glaeser in 1997 [10], which
defines the spatial agglomeration phenomenon of heterogeneous industries attracting each
other and co-locating. Different from single industrial agglomeration, it is not only relevant
to the spatial layout of industries but also to their interior links [11,12], including the
horizontal correlation formed by the sharing of the labor force and knowledge spillover
between various industries, and the vertical correlation between downstream and upstream
industries having an input-output relationship [12]. Taking the coagglomeration of manu-
facturing and producer services as an example, productive services are highly correlated
with manufacturing, and their development is often dependent on that of the manufactur-
ing sectors. The location-locking function of manufacturing attracts productive services
to have economic ties with them, thus forming a contiguous spatial layout in terms of
geographical location [13]. In the past decade, the Chinese government has released many
measures encouraging industrial coagglomeration, particularly the combined development
of manufacturing and producer services [13,14]. Effective industrial coagglomeration has
been demonstrated to significantly support regional economic growth [14]. However, is it
also conducive to reducing manufacturing carbon emissions? This is a crucial problem that
must be examined.

The majority of the pertinent studies currently available have concentrated on how
single industrial agglomeration affects carbon emissions, and rare research has involved the
link between industrial coagglomeration and carbon emissions. Lu et al. [15], Xu et al. [16],
Huang et al. [17], and Chen et al. [18] indicate that industrial agglomeration results in more
carbon emissions. By contrast, Peng et al. [19] argue that industrial agglomeration alleviates
carbon emissions through technology and knowledge spillovers, economies of scale, and
industrial structure optimization. Moreover, Sun and Liu [20] point out that how industrial
coagglomeration impacts carbon emission efficiency has industry heterogeneity. Meng and
Xu [9] and Li et al. [21] found that industrial coagglomeration has a nonlinear influence on
carbon emissions, which changes with the coagglomeration level and improper resource
allocation degree. Overall, the above research primarily concentrates on how industrial
agglomeration or coagglomeration affects the carbon emissions of the whole industry, while
no one has specifically explored how industrial coagglomeration affects manufacturing
carbon emissions. Since the manufacturing sector covers a major part of both China’s
carbon emissions and national economic output values, the low-carbon transformation
of the manufacturing industry is crucial for China to accomplish both economic high-
quality growth and “dual-carbon” goals. Therefore, exploring whether and how China’s
current industrial coagglomeration level has a significant impact on manufacturing carbon
emissions are of great importance.

Regarding the possible impact mechanism of industrial coagglomeration on man-
ufacturing carbon emissions, first, according to the theory of agglomeration economy,
industrial coagglomeration gathers various enterprises together, which can reduce infor-
mation and transaction costs, facilitate enterprises’ sharing of knowledge and technology,
and strengthen their exchanges, cooperation, and competition [22]. Effective industrial
coagglomeration is beneficial for the generation of economies of scale, knowledge spillover,
cooperation, sharing, and benign competition effects [22]. Second, as an intermediate input
sector, producer service industry runs through the entire manufacturing industry chain.
Its coagglomeration with the manufacturing industry can help refine the market division
of labor and optimize resource allocation, thus producing a specialization effect [23]. The
above effects are conducive to improving the manufacturing carbon emission efficiency;
that is, reducing the manufacturing carbon emissions of the unit production scale. However,
the improvement of manufacturing carbon emission efficiency is not always beneficial
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for total carbon emission reduction. Driven by profits, many enterprises may enlarge
their production scale, which may result in an energy rebound effect [24], thus increasing
the total manufacturing carbon emissions. Meanwhile, coagglomeration itself is usually
accompanied by a rise in the enterprise number and scale, which will also cause more
manufacturing carbon emissions in the agglomeration regions [23], namely, the carbon
emission increase effect brought by scale expansion. Third, due to resource constraints,
when the enterprise number and scale exceed the carrying capacity of the agglomeration
regions and reach a saturation state, a crowding effect will occur [22]. Due to the malignant
resource competition, production costs will rise and the benign agglomeration effects of
industrial coagglomeration in the regions will weaken, which is adverse to lowering manu-
facturing carbon emissions. Overall, the economies of scale, cooperation, sharing, benign
competition effects, carbon emission increase effect brought by scale expansion, energy
rebound effect, and crowding effect can coexist in the agglomeration regions, but whether
industrial coagglomeration helps decrease manufacturing carbon emissions is determined
by the dominant effects. Moreover, it is worth noting that industrial coagglomeration is
a complicated dynamic evolution process. Because enterprise size, resource allocation
effectiveness, technology spillover level, innovation degree, and firms’ collaboration and
competition level differ at each stage of coagglomeration, the dominant carbon emission
effects of industrial coagglomeration may be distinct at each stage [23]. Therefore, indus-
trial coagglomeration is very likely to have a nonlinear effect on manufacturing carbon
emissions, which varies with the coagglomeration level. However, such potential nonlinear
influencing mechanisms of industrial coagglomeration on manufacturing carbon emissions
from the viewpoint of coagglomeration’s dynamic evolution has been ignored by scholars.

Additionally, industrial coagglomeration may also indirectly impact manufacturing
carbon emissions via green innovation. Some studies have shown that industrial co-
agglomeration might affect green innovation, which is a critical factor for undergoing
manufacturing low-carbon transformation [25,26]. Moderate industrial coagglomeration
can pool innovation resources, make it easier for upstream and downstream enterprises in
an industrial chain to cooperate, and enhance technology spillover [22,23]. These factors are
beneficial for the improvement of green innovation. Studies by Lin et al. [27] and Wu [28]
support that industrial coagglomeration promotes green innovation. However, resource
misallocation, enterprise chain extrusion, and low-efficiency balance result from low-level
industrial coagglomeration, and the crowding effect caused by overly industrial coagglom-
eration may also hinder green innovation [23,29-31]. Zeng et al. [30] and Zhang et al. [23]
hold that, at present, China’s industrial coagglomeration is in a low-efficiency stage, which
is not conducive to enhancing green innovation. As for the connection between green
innovation and manufacturing carbon emissions, on the one hand, green innovation can
promote the improvement and application of clean energy, green technology, and energy-
saving equipment, which helps to lower manufacturing carbon emissions from the source
and production process. Studies by Lee and Min [32], Lu et al. [15], Mandal and Pal [33],
and Zhu et al. [34] all support that green innovation aids in decreasing carbon emissions.
On the other hand, some research also demonstrates that innovation is not always helpful
for manufacturing carbon emission abatement [35]. First, although green innovation can
enhance energy efficiency, it may lead to increased energy consumption by reducing the
energy cost of production, which is referred to as the rebound effect [36]. The rebound effect
will greatly diminish the emission reduction effect and even cause a rise in manufacturing
carbon emissions [23]. Second, a portion of the funds utilized for conventional innovation
will be squeezed by developing green technologies and purchasing green innovative equip-
ment, which may indirectly weaken the emission abatement effect of traditional innovation.
Hence, the improvement of green innovation is a double-edged sword to manufacturing
carbon emissions, and it remains to be tested if China’s current green innovation level
can lower manufacturing carbon emissions. As industrial coagglomeration may affect
green innovation, and both have potential to impact manufacturing carbon emissions, it is
very rational to speculate that there may exist an underlying indirect impact mechanism
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for industrial coagglomeration to affect manufacturing carbon emissions through green
innovation. Few scholars have integrated these three factors for thorough research.

Overall, relevant studies have primarily concentrated on the effect of single indus-
trial agglomeration on carbon emissions, or the relationships between two of the three
factors of industrial coagglomeration, green innovation, and carbon emissions. No one
has investigated the nonlinear link between industrial coagglomeration and manufactur-
ing carbon emissions from the dynamic evolution perspective of coagglomeration, let
alone incorporating industrial coagglomeration, green innovation, and manufacturing
carbon emissions into one framework and further investigating the potential mediating
mechanism by which green innovation affects the connection between industrial coagglom-
eration and manufacturing carbon emissions. Those research gaps provide us with space
for exploration.

Given the above research deficiencies, from the dynamic evolution perspective of
coagglomeration, this study explored whether industrial coagglomeration nonlinearly
impacts manufacturing carbon emissions and further analyzed the direct and indirect (via
green innovation) function mechanisms. Figure 1 shows the research framework. The
conclusions can enrich the related theories of agglomeration economy and environmental
ecology, fill the current research gaps, and provide empirical references for countries in
terms of industrial layout, green innovation, and carbon emission abatement.

Industrial
coagglomeration
Threshold effect

Manufacturing ( ¥ %

nduste N Industrial Manufacturing

coagglomeration carbon emissions

Producer

service industry \edﬁaﬁng effec/

Green innovation

Figure 1. The research framework.

The research contributions mainly lie in three aspects. First, we designed an extended
STIRPAT model to test the link between industrial coagglomeration and manufacturing
carbon emissions, which enriches the theoretical system relevant to agglomeration economy
and environmental ecology. Second, from the dynamic evolution perspective of coagglom-
eration, a new panel-threshold-STIRPAT model was developed to verify the nonlinear
impact of industrial coagglomeration on manufacturing carbon emissions. Those investiga-
tions help us uncover the nonlinear influencing mechanism of industrial coagglomeration
on manufacturing carbon emissions. Third, we first combined industrial coagglomeration,
green innovation, and manufacturing carbon emissions into one system, and then built
mediating-STIRPAT models to examine the different intermediary roles of green innovation
in the relationship between industrial coagglomeration and manufacturing carbon emis-
sions in the various evolutionary stages of coagglomeration. It was verified that industrial
coagglomeration affects manufacturing carbon emissions both directly and indirectly (via
green innovation).

The main work is as follows: Section 2 represents the related theoretical and econo-
metric models. Section 3 provides the empirical results. Section 4 discusses the de-
tailed causes of the results and future research. Section 5 reports conclusions and some
policy implications.
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2. Methods and Data
2.1. Extended STIRPAT Model

The IPAT model built by Ehrlich and Holdren in 1971 has been widely adopted by
academics to explore man-made environmental influencing factors because of its simplicity
and effectiveness [23,37]. The model indicates that the environmental impact (I) is deter-
mined by population (P), affluence (A), and technical level (T), respectively. The connection
between the four variables is expressed by the following identical equation:

I=PxAXT (1)

Based on this, Waggoner and Ausubel extended the IPAT identical equation by de-
composing the technology level into the product of technology consumed per unit of GDP
(C) and the impact of each unit of technology on the environment (T) and established the
identical equation, namely [38]:

Im=PxAxXCxT 2)

This explores the leverage effect of a combination of influencing factors on environ-
mental impact. Compared with the IPAT model, the InPAC model can more clearly present
the impact of consumption and production processes on the environment in the economic
system. Nevertheless, it shares some common defects with the IPAT model. For example,
when analyzing the problem by changing one influencing factor while keeping other factors
fixed, the result obtained is the proportional effect of the changing influencing factor on
dependent variables, which is inconsistent with the actual situation [39]. To overcome that
drawback, Dietz and Rosa expressed the IPAT model as a random form and developed
a STIRPAT model, which can examine the non-proportional effect of the impact factors
on the environment; thus more effectively identifying the intricate connections between
variables [40]. The model is expressed by

Iy = o x P x Al x T} x e (3)

where 0, v, and # are estimated parameters of P, A,and T. ¢, t, i, « denote a random error
term, time, region, and a constant term, respectively. Scholars have widely employed this
model to test the driving factors of the environmental impact incorporating carbon emis-
sions [41]. Referring to previous studies [39-42], we introduced the variable of industrial
coagglomeration and developed a new model, which can be expressed as follows:

Iy = o x P x A x T} x Coaggﬁ X &t 4)

where Coagg is the industrial coagglomeration level of manufacturing and producer service
industries. B represents the elasticity of industrial coagglomeration on environmental
impact. Meanwhile, to prevent the heteroscedasticity issue, we simultaneously took the
logarithm of both sides of Equation (4) and developed the following panel data model:

Inly =Ina+ BInCoagg;, +0InPy +yIn Ay +nInTy +6In X +1Inegy (5)

In this study, the manufacturing carbon emission level (Mce) was utilized to represent
environmental impact (I). Population size (Ps), economic level (El), and green innovation
(Gi) were adopted to reflect population (P), affluence (A), and technical level (T), respectively.
Additionally, referencing prior research [9,41,43,44], we selected foreign direct investment
(Fdi), energy intensity (Ei), and cleaning index of energy consumption structure (Ecsci) as
control variables, expressed synthetically as X. Then, the model can be described as follows:

In Mcej; = Ina + B1n Coagg;, + 0 In Psj; + v In Elj; + 17 In Gij + 71 In Odj; + ¢ In Ecsciyy

+nInEi; +Inej; ©)
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2.2. Panel-Threshold-STIRPAT Model

The panel threshold model constructed by Hansen is a typical model investigating the
nonlinear links between variables [45]. To explore if the influence of industrial coagglomer-
ation on manufacturing carbon emissions is nonlinear, setting industrial coagglomeration
as the threshold variable, the following single-threshold panel model was established:

In Mcej; = Ina + B1In Coaggis - I(In Coaggi < 7v) + B21InCoaggjs - I(In Coaggir > )
n
+77 In Giit + Z 9k In Xit +1In Eit (7)
k=1

where Mce stands for manufacturing carbon emission level, Coagg represents the coag-
glomeration degree of manufacturing and producer service industries, Gi denotes green
innovation level, y is a threshold value, X reflects the control variable, n is the number of
control variables, ¢t and i indicate time and region, and 1, B2, #, and 6 represent the pa-
rameters to be estimated. The panel double- and triple-threshold models can be developed
by extending Equation (7) as follows:

In Mcejy = Ina + B1InCoaggjs - I(In Coaggir < 1) + B2InCoaggis - I(7y1 < InCoaggir < 72)

n
+B3InCoaggj - I(InCoaggis > 712) +1InGiyy + ¥ 6 In Xjy + Ineyy 8)
k=1

In Mcej; = Ina + B1InCoaggis - I(InCoaggir < 1) + B2 InCoaggis - I(7v1 < InCoaggit < v2) + B3

n
InCoaggis - I(72 < InCoaggir < v3) + BaInCoaggis - I(InCoaggir > v3) + nInGiyy + Y. 6 In Xj; + Ingyy ©)
k=1

where v; are threshold values and ;3 < 792 < 73, and other symbols have the same
meanings as those of Equation (7).

2.3. Mediation-STIRPAT Models

To further test if there is a mediating effect for green innovation between industrial
coagglomeration and manufacturing carbon emissions, we built the following mediation
models based on Wang et al. and Zhang et al.’s practices [23,46]:

Total effect model: N
In Mcejy = clnCoaggit + Y_ 0 In Xt + €1 (10)
k=1
Indirect effect model:
n
InGiy = alnCoaggy + ) _ Ok In Xy + e (11)
k=1
Direct effect model:
n
In Mcej; = ¢’ In Coaggir + bInGijy + ) _ 6 In X +e3 (12)
k=1

First, the significance of the parameter ¢ in Equation (10) needs to be assessed. If it is
significant, we then move to step two, investigating the significance of a4 and b. If they are
both significant, green innovation is an intermediary between industrial coagglomeration
and manufacturing carbon emissions. If a or b is not significant, a Sobel test should be
performed to determine if a mediation effect exists or not [23,46,47]. Next, the significance
of parameter ¢’ of Equation (12) also needs to be tested. If it is significant, industrial
coagglomeration has both direct and indirect effects on manufacturing carbon emissions
and green innovation is a partial intermediary. If not, there only exists an indirect effect via
green innovation and green innovation is a complete intermediary.
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2.4. Variables and Data
2.4.1. Dependent Variable

Manufacturing carbon emission level (InMce) is the dependent variable. As manufac-
turing emissions in China are mainly CO, emissions, this study used the CO, emissions of
the manufacturing industry to evaluate manufacturing carbon emissions. The data was
from the database of China Emission Accounts and Datasets (CEADs), which adopted the
sectoral approach of the Intergovernmental Panel on Climate Change (IPCC) to calculate
the CO, emissions of the manufacturing industry based on China’s provincial CO, emission
inventory.

2.4.2. Explanatory Variables

Industrial coagglomeration degree (InCoagg) is an explanatory variable as well as
a threshold variable. Industrial coagglomeration measures the coagglomeration level
of the regional producer service industry and manufacturing industry. Based on the
practice of prior studies [23,30], the industrial coagglomeration level is calculated by the
following Equation:

L _ [Maggir — Saggit| , .
InCoaggis = In [ (1 Maggs + Saggi + (Maggis + Saggit) (13)

where Coagg denotes the industrial coagglomeration level, Magg is the agglomeration
degree of the manufacturing industry, Sagg is the agglomeration degree of the producer
service industry, t indicates time, and i represents region. Both Magg and Sagg are calculated
by location entropy based on the number of employed persons in urban units at year-end.
The subindustries of the producer service industry are as follows: “leasing and business
services industry”, “finance industry”, “scientific research and technical service indus-
try”, “transportation, warehousing, and postal industry”, and “information transmission,
software and information technology service industry” [48,49].

2.4.3. Intermediary Variable

Green innovation level (InGi) is the intermediary variable. Patent number, including
patent application count and patent authorization count, is the most direct reflection of
innovation level [27]. As not all applied patents can be authorized, the number of patent
authorizations can better reveal the regional innovation degree [23]. Hence, the number of
green patent authorizations (by authorization year) was employed to assess the regional
green innovation level. In 2010, the World Intellectual Property Organization issued the
international patent classification green inventory. According to that green inventory,
we acquired the number of green patent authorizations of each province by cleaning
and filtering the patent data download from the China National Intellectual Property
Administration (CNIPA).

2.4.4. Control Variables

Referencing prior research, the following variables were chosen as control vari-
ables [9,41,43,44]. (1) Population size (Ps): Population growth usually causes a rise in
domestic carbon emissions [34]; thus it is very likely that population size positively impacts
manufacturing carbon emissions. The number of permanent residents at the end of the
year in each province is utilized to assess the regional population size. (2) Economic level
(ED): Regions with greater economic levels usually have a better foundation for green inno-
vation and environmental governance [23], so the economic level tends to negatively affect
manufacturing carbon emissions. We adopted the real GDP per unit capital, measured by
the ratio of the real GDP to gross fixed capital formation in constant price (2008 is the base
period), to evaluate the economic level. (3) Open degree (Od): Foreign direct investment
(FDI) is a reflection of the open degree. The pollution halo hypothesis holds that FDI can
bring frontier technology to the host countries, which helps to enhance production effi-
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ciency; thus decreasing manufacturing carbon emissions. However, the pollution paradise
hypothesis shows that FDI is a channel for advanced countries to transfer high-carbon and
heavy-pollution industries to other countries, which intensifies the manufacturing carbon
emissions of the host countries [22]. We chose the proportion of foreign capital to the paid-
in capital of industrial enterprises to weigh the open degree. (4) Cleaning index of energy
consumption structure (Ecsci): Since the carbon emission output per unit of dirty energy
is significantly higher than that of clean energy, the cleaning index of energy consump-
tion structure negatively impacts manufacturing carbon emissions [43] and its calculation
formula is as follows: The cleaning index of energy consumption structure = 1 — (coal
consumption/total energy consumption). (5) Energy intensity (Ei): The more energy used
per unit output value means that more carbon emissions will be emitted if the output scale
remains the same. The ratio of energy industry investment to GDP was utilized to evaluate
energy intensity, and the energy intensity tends to positively affect manufacturing carbon
emissions [41].

Data for 30 provinces of China between 2010 and 2019 were utilized. Hong Kong,
Taiwan, Tibet, and Macao were not incorporated because of data collection limitations. The
data were acquired from the National Bureau of Statistics, Carbon Emission Accounts for
Emerging economies (CEADs), China Statistical Yearbook, and China Energy Statistics
Yearbook. The variables’ descriptive statistical results are displayed in Table 1.

Table 1. Variables’ descriptive statistical results.

Variables Observations  Mean Maximum Minimum Standard Deviation

InMce 300 4.324 6.171 1.126 0.909
InCoagg 300 0.952 1.387 0.584 0.167
InGi 300 7.417 10.364 3.044 1.382

InPs 300 8.201 9.352 6.333 0.736

InEl 300 0.525 2.433 —0.352 0.354
InOd 300 —2.901 —0.965 —5.467 0.987
InEcsci 300 —0.586 -0.012 —1.286 0.268
InEi 300 —3.145 —1.135 —5.538 0.873

3. Results

3.1. Unit Root Test and Multicollinearity Check

To reduce the likelihood of pseudo regression, we examined the unit root of each
variable by adopting the Levin-Lin—-Chu (LLC) approach [50], whose original hypothesis
is that there is a “unit root” for the variable. The findings in Table 2 suggest that at a 1%
significance level, the original hypotheses for all variables are rejected. It means that no
variable has a unit root. Additionally, since none of the variables’ variance inflation factor
values are larger than 10, there is also no multicollinearity issue with the variables.

Table 2. The unit root and multicollinearity test results of variables.

Variables LLC Test (Trend) VIF
InMce —9.0286 *** -
InCoagg —5.1665 *** 2.49

InGi —6.7596 *** 4.40
InPs —4.9522 *** 3.20
InE! —6.2835 *** 1.78
InOd —10.8109 *** 2.46
InEcsci —8.8136 *** 2.01
InEi —b5.6441 *** 3.58
Mean VIF - 2.85

Note: *** p < 0.01.
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3.2. Industrial Coagglomeration’s Threshold Effect Regarding Its Impact on Manufacturing
Carbon Emissions
3.2.1. Threshold Effect Tests

To clarify whether there are thresholds for the influence of industrial coagglomera-
tion on manufacturing carbon emissions, we perform threshold effect significance and
authenticity tests. The results shown in Table 3 reflect that, when setting industrial coag-
glomeration (InCoagg) as a threshold variable, the single-, double-, and triple-threshold
effects are significant at a level of at least 5%. The likelihood ratio (LR) test in Figure 2
suggests that all thresholds pass the threshold effect authenticity test. Therefore, three
thresholds exist and a panel triple-threshold regression model should be conducted.
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Figure 2. The LR graphs for the threshold assessment of InCoagg: (a) the first threshold assessment,
(b) the second threshold assessment, (c) the third threshold assessment.
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Table 3. Results of the threshold effect significance test.

Threshold o o o 95%
Models Estimates F-Value p-Value 1% 5% 10% Confidence Interval
Single-threshold 1.256 35.286 *** 0.000 21.064 9.322 5.596 [1.139, 1.256]
1.176 - [1.139, 1.201]
Double-threshold 1956 18.066 0.030 24.306 14.080 7.092 [1.245, 1.256]
Triple-threshold 0.762 10.844 ** 0.040 19.276 10.271 6.376 [0.732, 0.893]

Notes: ***p < 0.01, ** p < 0.05; bootstrap = 500, min = 10, seed = 22,689.

3.2.2. Results of Panel Threshold Regression

According to the panel triple-threshold regression results in Table 4, the influence of
industrial coagglomeration on manufacturing carbon emissions varies with the coagglom-
eration’s dynamic evolution. There are three threshold values for InCoagg, namely, 0.762,
1.176, and 1.256, respectively. As InCoagg is no more than 0.762, industrial coagglomeration
significantly and negatively impacts manufacturing carbon emissions and the regression
coefficient is —0.980. When industrial coagglomeration hits the first threshold value of
0.762, the effect remains significantly negative, but the regression coefficient decreases to
—0.728. Meanwhile, as InCoagg further rises to the second threshold value of 1.176 and
even the third threshold value of 1.256, the coefficients decrease further and the effects
become insignificant. These results reveal that industrial coagglomeration helps lower
manufacturing carbon emissions, but the effect has a diminishing trend in marginal utility.
Only when the industrial coagglomeration is below a certain threshold (InCoagg < 1.176)
can its manufacturing carbon emission abatement effect be significant.

Table 4. Regression on the threshold effect.

Variable Model (1) Variable Model (1)
InCoagg < 0.762 *(0_928;){;** nOd (:% %%3;
0.762 < InCoagg < 1.176 —(9522% ;* InEesci _(O; ﬁ);;*
1.176 < InCoagg < 1.256 _ 013122) InEi 2)%122)
InCoagg > 1.256 (: 00(;9145 Constant 1%’25.25;*
InGi 0'(2‘.‘61 6*;* Obs 300
InPs Z_l 1()% R-sq 05457
InEl 7(228171; ! F statistics 11.54 ***

Notes: the t values are in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1; bootstrap = 500, min = 10, seed = 22,689.

As for the control variables, green innovation does not help decrease manufacturing
carbon emissions. The causes are twofold: first, green innovation can enhance energy
efficiency and raise carbon productivity, but rising energy efficiency also drives enterprises
to expand their production scale to boost profits. Consequently, more energy will be
consumed, which results in an energy rebound effect and raises the total manufacturing
carbon emissions [24]. Second, part of the funds allocated for traditional innovation may
be diverted to the research of green technologies and the acquisition of green innova-
tive equipment, which cuts the emission reduction effect of traditional innovation and
indirectly causes more manufacturing carbon emissions. The growth of population size
helps cut manufacturing carbon emissions, which is different from Li’s finding [43]. This
might be because, although rising populations result in higher household carbon emis-
sions, they also enable cluster areas to gather more talents. Increased talents, particularly
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InCoagg2010
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high-end innovative talents, considerably improve regional innovation potential, which
aids in the abatement of manufacturing carbon emissions [23]. A rise in economic level
helps to decrease manufacturing carbon emissions, confirming that regions with higher
economic levels often have a better foundation for green innovation and environmen-
tal governance [23], thus promoting the manufacturing carbon emission reduction. The
open degree has an insignificant negative impact on manufacturing carbon emissions,
which means that, in China, the pollution halo and pollution paradise hypotheses might
coexist and their impacts on the manufacturing carbon emissions offset each other [51].
The cleaning index of energy consumption structure significantly and negatively affects
manufacturing carbon emissions. This is because the usage of clean energy can emit fewer
carbon emissions than dirty energy [43]. Energy intensity has a positive yet insignificant
influence. It may be because higher energy consumption per unit output value will cause
higher carbon emissions if the scale remains the same, but the rise in carbon emissions may
also stimulate enterprises to improve their energy efficiency via using intelligent devices or
advanced technologies, expanding scale, and realizing economies of scale, etc., which in
turn offsets some of the manufacturing carbon emission increase effect caused by the rise
in energy intensity. These factors cause the effect of energy intensity to be insignificant.

3.2.3. The Regional Distribution of the Industrial Coagglomeration Level

To know whether or not the effect of industrial coagglomeration on manufacturing
carbon emissions differs in various regions, this study further explored the regional distri-
bution of industrial coagglomeration (InCoagg). The results of model (1) reveal that only
when InCoagg is within the interval of [0, 1.176] can InCoagg significantly lower manufac-
turing carbon emissions. Meanwhile, when InCoagg is within the interval of [0, 0.762], the
manufacturing carbon emission effect of InCoagg is greatest. Figure 3 reflects, from 2010 to
2019, that the distribution of InCoagg in China has marginally improved. The proportion of
regions whose industrial coagglomeration level is significantly conducive to decreasing
manufacturing carbon emissions increased from 83% to 90%, and the proportion of regions
whose industrial coagglomeration level is within the interval having the greatest emission
reduction effect rose from 10% to 20%. At present, the effect of industrial coagglomera-
tion on manufacturing carbon emissions for 10% of provinces is not significant. For the
remaining 90% of provinces, an increase in industrial coagglomeration level is conducive
to decreasing manufacturing carbon emissions.

InCoagg2019
[[InCoagg=<0.762 (--—-)

[ 0.762<InCoagg=1.176 (---)
B 1.176<InCoagg=1.256 (--)
M InCoagg>1.256 (-)

0 150 300 800 500 1200 2 =
[ = T FLE

(a) (b)

Figure 3. The regional distribution of industrial coagglomeration (InCoagg) relative to the negative

ugrou o ou 7

effect of industrial coagglomeration on manufacturing carbon emissions. , ,“—", and “—-

”

represent the influence degree. The larger the number of “-”, the greater the effect. (a) 2010, (b) 2019.
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3.3. Green Innovation’s Mediating Effect between Industrial Coagglomeration and Manufacturing
Carbon Emissions

The evaluation results for mediating effect models are displayed in Table 5. Model (2)
investigated the total effect of industrial coagglomeration on manufacturing carbon emis-
sions. The outcomes verify the significance of the parameter ¢ and demonstrate that
when InCoagg is lower than 1.256, the total effect of industrial coagglomeration on man-
ufacturing carbon emissions is significantly negative. Once InCoagg exceeds 1.256, the
effect becomes insignificant. Meanwhile, the impact has a diminishing trend in marginal
utility. Then, we move on to step two, testing the significance of parameters a and b in
Equations (11) and (12), thus Model (1) and Model (3) were conducted. According to the
outcomes of the Hausman test, chi2(6) = 158.38 and p = 0.0000, Model (3) should adopt
the fix-effect form. The panel fix-effect regression results for Model (3) indicate, at a 1%
significance level, industrial coagglomeration negatively impacts green innovation, which
is in line with Zeng's research [30]. Meanwhile, the outcomes of Model (1) reflect that green
innovation positively affects manufacturing carbon emissions at a 1% significance level.
Overall, when InCoagg is lower than 1.256, both parameters a and b are significant, thus
green innovation is an intermediary between industrial coagglomeration and manufactur-
ing carbon emissions. When InCouagyg is less than 1.176, as the parameter ¢’ is significant,
green innovation is a partial intermediary. When InCoagg is between 1.176 and 1.256, as the
parameter ¢’ is not significant, green innovation is a complete mediator. Additionally, a
Sobel test was also carried out in this test. The Sobel z statistic is 0.002 and significant at a
5% level, which further confirms green innovation’s mediating effect.

Table 5. Regression on the mediating effect.

Total Effect Direct Effect Indirect Effect
Variable (DEPVAR = InMce) Variable (DEPVAR = InMce) Variable (DEPVAR = InGi)
Model (2) Model (1) Model (3)
—0.814 *** —0.980 *** —3.055 ***
InCoagg < 1.139 (—2.62) InCoagg < 0.762 (—2.71) InCoagg (—5.45)
—0.542 * —0.728 **
1.139 < InCoagg < 1.256 (—1.77) 0.762 < InCoagg < 1.176 (—2.23) - -
—0.226 —0.362
InCoagg > 1.256 (=0.77) 1.176 < InCoagg < 1.256 (—1.14) - -
—0.094
- - InCoagg > 1.256 (—031) - -
. . 0.141 ***
InGi - InGi (4.66) - -
—6.905 * 12.592 ** —105.509 ***
Constant (—1.78) Constant (2.55) Constant (14.12)
Control variables Yes Control variables Yes Control variables Yes
Obs 300 Obs 300 Obs 300
R-sq 0.6171 R-sq 0.5457 R-sq 0.8025
F statistics 8.36 *** F statistics 11.54 *** F statistics 178.81 ***

Note: the t values are in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1; bootstrap = 500, min = 10, seed = 22,689.

3.4. Robustness Tests

To guarantee the stability of the findings, we additionally ran some robustness tests.
The robustness test methods commonly utilized by scholars include changing evaluation
indicators of core variables, lagging key variables, and deleting control variables. First,
referencing the research of Zhang et al. [23], we carried out the first robustness test by
reassessing the intermediary variable (InGi) with the application count of green patents
and re-estimated the regression results of models (1)—(3). The test outcomes are replicated
in Table 6. Second, according to the practices of Zeng [30], Wang and Luo [51], and
Zhang et al. [23], the second robustness test was performed by deleting control variables
and lagging the explanatory variable InCoagg by one year, which can effectively alleviate
the possible endogenous problems between variables [44,52]. The re-estimated findings
of models (1)-(3) are demonstrated in Table 7. The outcomes of robustness tests 1 and 2
reflect that the threshold effect of industrial coagglomeration and the mediating effect of
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green innovation still exist. Meanwhile, the significance and symbols of the coefficients for
key variables, and the threshold number and values for InCoagg, change slightly but not

considerably. Hence, the conclusions of our study are stable.

Table 6. Results of robustness test 1.

Total Effect Direct Effect Indirect Effect
Variable (DEPVAR = InMce) Variable (DEPVAR = InMce) Variable (DEPVAR = InGi)
Model (4) Model (5) Model (6)
—0.814 *** —1.085 *** —2.945
< <0.
InCoagg < 1.139 (—2.62) InCoagg < 0.762 (—3.02) InCoagg (—4.67)
—0.542 * —0.829 **
1.139 < InCoagg < 1.256 (—1.77) 0.762 < InCoagg < 1.176 (—2.57) - -
—0.226 —0.446
InCoagg > 1.256 (—0.77) 1.176 < InCoagg < 1.256 (—1.42) - -
—-0.178
- - InCoagg > 1.256 (—0.59) - -
. . 0.120 ***
InGi - InGi (4.44)
—6.905 * 10.834 ** —107.878 ***
Constant (—1.78) Constant (2.26) Constant (—12.83)
Control variables Yes Control variables Yes Control variables Yes
Obs 300 Obs 300 Obs 300
R-sq 0.6171 R-sq 0.5133 R-sq 0.7940
F statistics 8.36 *** F statistics 11.28 *** F statistics 169.54 ***

Note: the t values are in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1; bootstrap = 500, min = 10, seed = 22,689.

Table 7. Results of robustness test 2.

Total Effect Direct Effect Indirect Effect
Variable (DEPVAR = InMce) Variable (DEPVAR = InMce) Variable (DEPVAR = InGi)
Model (7) Model (8) Model (9)
—1.253 *** —0.816 ** —7.825 ***
InCoaggi—1 < 0.762 (—3.42) InCoaggi—1 < 0.762 (—2.18) InCoaggi—1 (—7.48)
—0.996 *** —0.541
0.762 < InCoaggi_1 < 1.237 (-3.15) 0.762 < InCoagg ¢—1 < 1.237 (—1.64) - -
—0.654 ** —0.206
InCoagg 1 > 1.237 (—2.13) InCoagg;—1 > 1.237 (—0.64) - -
. . 0.061 ***
InGi - InGi (3.84) - -
5.267 *** 4.383 *** 14.905 ***
Constant (17.29) Constant (11.66) Constant (14.89)
Control variables No Control variables No an trol No
variables
Obs 300 Obs 300 Obs 300
R-sq 0.0592 R-sq 0.0168 R-sq 0.1724
F statistics 13.10 *** F statistics 14.01 *** F statistics 56.02 ***

Note: the t values are in parentheses; *** p < 0.01, ** p < 0.05; bootstrap = 500, min = 10, seed = 22,689.

4. Discussion

This research puts industrial coagglomeration, green innovation, and manufacturing
carbon emissions into the same system and examines the connections among them from
the dynamic evolution perspective of coagglomeration. First, we introduced industrial
coagglomeration and green innovation into the STIRPAT framework and established an
extended STIRPAT model. By combining that model with the panel threshold model,
we then built a panel-threshold-STIRPAT model to investigate the nonlinear impacts of
industrial coagglomeration on manufacturing carbon emissions in coagglomeration’s var-
ied evolution stages. Second, utilizing the mediation-STIRPAT models, we verified the
intermediary role of green innovation between industrial coagglomeration and manufac-
turing carbon emissions. The conclusions enrich the related theories of agglomeration
economy and environmental ecology, fill the current research gaps, and provide empirical
references for countries in terms of industrial distribution, green innovation, and carbon
emission abatement. The causes for the results are further discussed for a deeper un-
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derstanding of the direct and indirect (via green innovation) influencing mechanism of
industrial coagglomeration on manufacturing carbon emissions.

4.1. The Causes of Industrial Coagglomeration’s Threshold Effect

The results of the panel-threshold-STIRPAT model suggest that industrial coagglomer-
ation nonlinearly affects manufacturing carbon emissions and the impact has significant
threshold effects in terms of industrial coagglomeration level. This is because the dominant
effects alter as the coagglomeration degree increases. At the relatively low-level stage
of industrial coagglomeration, the gathering of enterprises in the industrial chains and
their resources enables enterprises to save their information search, transportation, and
transaction costs, and promotes the generation of the economies of scale, cooperation,
sharing, benign competition effects, etc. [22,23], which helps increase manufacturing car-
bon productivity, thus lowering the manufacturing carbon emissions. Meanwhile, the
enterprises of producer services in the agglomeration area can assist the manufacturing
enterprises to realize more specialized market division and efficient resource allocation [53],
which are advantageous for increasing their production efficiency and cutting down the
manufacturing carbon emissions per unit of resources. Hence, when InCoagg is lower than
0.762, industrial coagglomeration can significantly decrease manufacturing carbon emis-
sions. As industrial coagglomeration deepens, production efficiency gradually increases.
Many enterprises might enlarge their production scale to obtain additional profits, which
results in an energy rebound effect [24], increasing total manufacturing carbon emissions.
Meanwhile, an increase in the regional enterprise number and scale will also produce more
manufacturing carbon emissions [23]. The carbon emission increase impact resulting from
the energy rebound effect and the growth in scale weakens the carbon emission abatement
impact resulting from the enhancement of production efficiency. Consequently, as the
industrial coagglomeration level increases, although industrial coagglomeration helps
to lower manufacturing carbon emissions, the influencing degree decreases. Moreover,
due to resource constraints, once the industrial coagglomeration exceeds a certain thresh-
old, the enterprise number will reach saturation, and a crowding effect will occur in the
agglomeration regions [23]. Production costs will rise as a result of malignant resource
competition [22]. The economies of scale, cooperation, sharing, and benign competition
effects will weaken and the resulting manufacturing carbon emission abatement effect will
also decrease. When the gap between the manufacturing carbon emission abatement effect
and the manufacturing carbon emission increase effect results from the energy rebound
effect, the increase of scale and the crowding effect is not large, and the negative influence
of industrial coagglomeration on manufacturing carbon emissions becomes insignificant.
Hence, as industrial coagglomeration deepens, although it helps to lower manufacturing
carbon emissions, the function effect has a decreasing trend in marginal utility. Mean-
while, when InCoagg surpasses 1.176, the negative impact of industrial coagglomeration on
manufacturing carbon emissions becomes insignificant.

4.2. The Causes of Green Innovation’s Mediating Effect

The findings of the mediation-STIRPAT models reveal the vital intermediary role of
green innovation between industrial coagglomeration and manufacturing carbon emissions.
First, enhancing green innovation is not aided by a rise in industrial coagglomeration. The
causes are twofold. On the one hand, manufacturing green innovation is characterized
by large-scale investment, a protracted return period, and significant uncertainty. To ef-
fectively stimulate enterprises’ enthusiasm for green innovation, it needs to be embedded
with perfect intellectual property rights, a complete legal system, and other productive
services [54]. However, China’s industrial coagglomeration is mainly government-guided
with low coagglomeration efficiency [30]. Many enterprises move into the agglomeration
regions for policy rent-seeking and have superficial cooperation with other enterprises. As
a result, industrial coagglomeration’s externalities to green innovation through the knowl-
edge spillover effect or enterprises” deep cooperation cannot be successfully played. On
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the other hand, for enterprises just entering the agglomeration regions, their infrastructure,
such as equipment and plants for green innovation, need to be repurchased or rebuilt,
which raises their green innovation costs [23]. The high innovation costs further hinder the
improvement of enterprises’ green innovation. Second, green innovation leads to increased
manufacturing carbon emissions. This is primarily caused by the energy rebound effect
and the crowding out of traditional innovation investment by that of green innovation,
which reduces traditional innovation’s impact on manufacturing emission abatement. As
such reasons have been explained in detail in Section 3.2.2, they will not be repeated here.
Overall, green innovation intensifies manufacturing carbon emissions. However,
industrial coagglomeration is not beneficial for green innovation, thereby indirectly de-
creasing manufacturing carbon emissions. Hence, green innovation serves as a vital
intermediary between industrial coagglomeration and manufacturing carbon emissions.
Moreover, at the relatively low-level stage of industrial coagglomeration (InCoagg < 1.176),
as the gap between the manufacturing carbon emission decrease effect brought about by
the economies of scale, cooperation, sharing, and benign competition effects is significantly
greater than the manufacturing carbon emission increase effect resulting from the energy
rebound effect and the increase of scale, industrial coagglomeration has both significant
direct and indirect (via green innovation) impacts on manufacturing carbon emissions.
Therefore, green innovation is a partial mediator. At the relatively high-level stage of in-
dustrial coagglomeration (1.176 < InCoagg < 1.256), with the intensification of the energy’s
rebound effect, the gaps between the above increase effect and decrease effect gradually
weaken and become insignificant. In this stage, the negative impact of industrial coag-
glomeration on manufacturing carbon emissions plays its role only via its disadvantageous
influence on green innovation; therefore, green innovation is a complete mediator.

4.3. Limitations and Future Research

Several shortcomings still exist due to the limited research time and available data. Fur-
ther research can be improved in the following areas. First, owing to the different pollution
degrees of manufacturing subindustries and their distinct relevance to the subindustries
of producer services, there may be industry heterogeneity in the connection between in-
dustrial coagglomeration and manufacturing carbon emissions. Subsequent research can
distinguish the coagglomeration of different subindustries of producer services and manu-
facturing, and further examine whether the coagglomeration of distinct subindustries has
different impacts on manufacturing carbon emissions. Meanwhile, it can further explore
the coagglomeration of which subindustries of producer services and manufacturing has
the most significant effect on the carbon emissions of the manufacturing industry or its
subindustries. Second, a more comprehensive indicator can be explored to better measure
the industrial coagglomeration level. Third, considering the fluidity of manufacturing
carbon emissions, future studies can take the spatial autocorrelation issue into account
and explore whether the influence of industrial coagglomeration on manufacturing carbon
emissions has a spatial spillover effect.

5. Conclusions and Policy Implications

Based on panel data from 30 provinces of China between 2010 and 2019, the relation-
ships between industrial coagglomeration, green innovation, and manufacturing carbon
emissions were examined. From coagglomeration’s dynamic evolution perspective, by
using panel-threshold-STIRPAT and mediation-STIRPAT models, this study investigated if
industrial coagglomeration has a nonlinear influence on manufacturing carbon emissions
and further analyzed the direct and indirect (via green innovation) function mechanisms.
The following are the detailed conclusions and policy recommendations:

5.1. Conclusions

First, from the dynamic evolution perspective of coagglomeration, industrial coag-
glomeration has a nonlinear impact on manufacturing carbon emissions. Three threshold
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values for InCoagg exist, namely, 0.762, 1.176, and 1.256. Industrial coagglomeration nega-
tively affects manufacturing carbon emissions, but the effect has a diminishing trend in
marginal utility as the coagglomeration level increases. Only when the industrial coagglom-
eration is below a certain threshold (InCoagg < 1.176) can its manufacturing carbon emission
abatement effect be significant. Once it exceeds that threshold, the emission reduction effect
becomes insignificant. At present, for 90% of regions in China, an increase in industrial
coagglomeration level is conducive to decreasing manufacturing carbon emissions.

Second, green innovation serves as a vital intermediary between industrial coagglom-
eration and manufacturing carbon emissions. Green innovation intensifies manufacturing
carbon emissions. However, industrial coagglomeration is not beneficial for green inno-
vation, thereby indirectly decreasing manufacturing carbon emissions. Moreover, when
InCoagyg is less than 1.176, green innovation is a partial intermediary. When InCoagg is
between 1.176 and 1.256, green innovation is a complete intermediary.

Third, the growth of population size, economic level, and cleaning index of en-
ergy consumption structure is beneficial for lowering manufacturing carbon emissions,
whereas the effects of open degree and energy intensity on manufacturing carbon emissions
are insignificant.

5.2. Policy Implications

Several policy recommendations for lowering manufacturing carbon emissions
are proposed.

First, policymakers need to adopt differentiated industrial coagglomeration strate-
gies according to the evolution stages of coagglomeration in each region. For provinces
such as Tianjin, Shanghai, and Guangdong, the industrial coagglomeration level can be
appropriately controlled or reduced to prevent excessive industrial coagglomeration in
the future. Meanwhile, partial high-carbon manufacturing industries can be eliminated to
make the industrial structure green. For other regions, the government should attach more
importance to moderately increasing the level and efficiency of industrial coagglomeration.
For example, based on the development needs of manufacturing sectors, modern producer
service chains can be developed around the manufacturing industry chains to improve the
matching between the producer services and the manufacturing industry; thus enhancing
the efficient cooperation and interaction between them and maximizing the carbon emission
reduction effect of industrial coagglomeration.

Second, the innovation-driven strategy can be further promoted to support the devel-
opment of regional green innovation. For one thing, government departments can work to
build information service platforms more effectively, which helps lower communication
barriers between related departments of producer services and the manufacturing industry
and promote the spillover and sharing effects of knowledge and technologies. Meanwhile,
it is also beneficial for the construction of a supply—demand relationship network and the
deepening of the division of labor and industry collaboration, which contributes to the
improvement of the innovative resources’ utilization efficiency and regional green inno-
vation level. Additionally, the authorities should optimize the innovation infrastructure
construction and related services in the existing industrial clusters, and create a favor-
able environment for enterprises to engage in green innovation. By offering incentives or
subsidies, authorities can lessen the economic pressure that green innovation places on
manufacturing enterprises, igniting their enthusiasm for the research and utilization of
green technologies and effectively decreasing manufacturing carbon emissions.

Third, talent introduction should be vigorously encouraged so that the manufacturing
carbon emission abatement effect brought by a rise in population size can be strengthened
due to the increase in gathered high-end talents. The promotion of firms’ joint production is
also encouraged to increase the economic level and its emission abatement effect. Moreover,
enterprises are encouraged to use more energy with higher cleanliness to lower carbon
emissions at the source.
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