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Abstract: The molecular basis of diabetes mellitus is yet to be fully elucidated. We aimed to iden-
tify the most frequently reported and differential expressed genes (DEGs) in diabetes by using
bioinformatics approaches. Text mining was used to screen 40,225 article abstracts from diabetes
literature. These studies highlighted 5939 diabetes-related genes spread across 22 human chromo-
somes, with 112 genes mentioned in more than 50 studies. Among these genes, HNF4A, PPARA,
VEGFA, TCF7L2, HLA-DRB1, PPARG, NOS3, KCNJ11, PRKAA2, and HNF1A were mentioned in
more than 200 articles. These genes are correlated with the regulation of glycogen and polysac-
charide, adipogenesis, AGE/RAGE, and macrophage differentiation. Three datasets (44 patients
and 57 controls) were subjected to gene expression analysis. The analysis revealed 135 significant
DEGs, of which CEACAM6, ENPP4, HDAC5, HPCAL1, PARVG, STYXL1, VPS28, ZBTB33, ZFP37
and CCDC58 were the top 10 DEGs. These genes were enriched in aerobic respiration, T-cell antigen
receptor pathway, tricarboxylic acid metabolic process, vitamin D receptor pathway, toll-like receptor
signaling, and endoplasmic reticulum (ER) unfolded protein response. The results of text mining and
gene expression analyses used as attribute values for machine learning (ML) analysis. The decision
tree, extra-tree regressor and random forest algorithms were used in ML analysis to identify unique
markers that could be used as diabetes diagnosis tools. These algorithms produced prediction models
with accuracy ranges from 0.6364 to 0.88 and overall confidence interval (CI) of 95%. There were
39 biomarkers that could distinguish diabetic and non-diabetic patients, 12 of which were repeated
multiple times. The majority of these genes are associated with stress response, signalling regulation,
locomotion, cell motility, growth, and muscle adaptation. Machine learning algorithms highlighted
the use of the HLA-DQB1 gene as a biomarker for diabetes early detection. Our data mining and gene
expression analysis have provided useful information about potential biomarkers in diabetes.
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1. Introduction

Diabetes mellitus is a common chronic and debilitating disease. It refers to a set of
metabolic disorders that are characterized by chronic elevation of blood glucose, which
occurs because of imperfections in insulin action and/or secretion [1]. Diabetes prevalence
has increased significantly as a result of changes in sedentary lifestyle, increased fat intake,
overweight and obesity, and an ageing population [2]. As reported by the International
Diabetes Federation (IDF) in 2019 [3], diabetes affects approximately 463 million people
worldwide and is expected to affect 700 million people by 2040.

Due to its associated macro- and microvascular complications that target various body
organs, resulting in disability, worsening of life quality and mortality, diabetes is currently
imposing a serious burden on health systems worldwide [4] and is considered one of the
fastest growing health crises with a massive global economic burden. In this context, the
estimated annual expenditure for diabetes was 760 billion USD in 2019 and it is expected to
reach 845 billion USD by 2045 [5]. Stopping the spread of the diabetes epidemic in society is
therefore critical. This can be accomplished through the development of novel strategies for
controlling hyperglycemia and managing diabetes complications, resulting in an improved
quality of life. However, a thorough understanding of the disease’s molecular basis is
required to achieve this goal.

Differential expression analysis is a powerful tool for identifying disease-related genes.
It has been used to study a wide range of human diseases, yielding detailed profiles of
up- and downregulated genes [6]. Gene expression data from microarray and whole
transcriptome sequencing experiments is now available in massive public databases. These
gene expression data-enabled medical research teams validate and re-analyze the data
by using a variety of analytical procedures to discover new key factor genes involved in
chronic diseases [7]. Furthermore, numerous attempts have been made to connect various
data types by using advanced methods in order to build multi-omics data analysis, which
could aid in understanding disease biological systems on multiple levels [8].

Various techniques are currently being used to identify diabetes-associated genes and
thus gain insights into the disease pathogenesis mechanisms. Wide application of these
techniques results in the production a large amount of core slice data. Most of these data
are already available in public databases and their re-analysis can provide significant clues
for scientific research. Therefore, sophisticated statistical and computational approaches
are commonly used to evaluate existing medical knowledge. Due to the massive expansion
of medical literature, text mining, and machine learning are two of these approaches that
have sparked a lot of interest in the analysis of medical data [9,10]. Text mining involves
several steps, including systematic extraction of information from various medical textual
resources, visualization, and evaluation [11]. Text mining has been used in medical research
to investigate chronic diseases, genetic disorders, and drug discovery [12]. Text mining is
used to assess genes linked to chronic disease to better understand their biological function
and role in disease manifestation [13].

Machine learning (ML) is the central topic of artificial intelligence technology, which
is a rapidly evolving branch that aims to mimic human intelligence by learning from its
surroundings [14]. Machine learning is now playing a critical role in the development of
learning statistical models capable of assisting healthcare systems [15]. Many supervised
and unsupervised ML techniques have been used to identify the most significant genes in
gene expression data. These methods are extremely helpful in understanding the structure
of gene networks and developing disease risk-prediction models [16]. Several methods
for improving the interpretability of ML predictions have been developed, including
explainable artificial intelligence (XAI), which suggests relationships between various
variables required for outcome prediction [17]. Accordingly, gene expression analyses,
data mining, and machine learning were conducted in this study to shed light on the
possible controlling genes of diabetes to improve our understanding of the molecular basis
of the disease.
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2. Materials and Methods
2.1. Text Mining Analysis

Text mining is a rich resource for the acquisition of knowledge from the current
research literature. However, it requires an elevated level of data filtration and manipulation
skills [18]. The available diabetes reports were explored. The National Library of Medicine
at the National Institutes of Health (PubMed-NCBI) (https://pubmed.ncbi.nlm.nih.gov/,
accessed on 1 October 2020) was used to retrieve all abstracts of scientific articles that
reported diabetes-associated genes (Figure 1A). The query of “Diabetes mellitus + gene”
was used to download all abstracts of medical articles published from 1951 to 25 February
2021. The text mining analysis included 40,285 abstracts (Figure 1A). Data mining was
conducted through the Python programming language. Common English phrases and
word redundancy have been removed (Figure 1B). A list of human gene terminology has
been prepared by using the human genome hg38, which has been obtained from the NCBI
database. Only genes found in more than 50 articles were used for further investigation.

Figure 1. The analytical procedures used in this study. The information used to find genes related
to diabetes was obtained from the NCBI and GEO databases (A). This data was analyzed by using
two different protocols depending on the data type (B,C). Text mining was used to explore text
data that covered some diabetes literature based on gene factors (B). Several analytical steps were
performed during the text mining analysis, including the removal of repeated words from the article
data and the identification of unique gene terms (B). ImaGEO software was used to analyze the
gene expression data and identify common gene expression patterns. Only significant patterns
were reported (fdr-pvalue leq 0.001) (C). The gene factors linked to diabetes identified in previous
analyses were subjected to gene annotation analysis (D). By using gene expression data, machine
learning methods such as the R-caret package and Python-XAI were used to identify important
genetic biomarkers (E).

https://pubmed.ncbi.nlm.nih.gov/
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2.2. Gene Expression Analysis and Correlation Analysis

Several gene expression investigations have been performed recently and include
a gene expression catalog of biological system responses to diabetes. The analysis of
gene expression was used to investigate the gene regulation activity in diabetes. Three
GEO datasets (GSE15932, GSE30208, and GSE55098) comprising 44 and 57 diabetic and
healthy subjects, respectively, were retrieved from the NCBI-GEO database [19]. These GEO
datasets were analyzed by using ImaGEO [20] software. The adjusted P-value threshold
was ≤0.001 for identifying diabetes-associated gene expression profiles (Figure 1C). Corre-
lation analysis was performed on the gene expression data of the diabetes-related genes.
Pearson’s correlation [21] was calculated and plotted by using the R packages corrr0.4.4
and corrplot0.92. Correlations with r < 0.5 or p-value > 0.01 were discarded.

2.3. Enrichment Analysis and Protein–Protein Interactions

The gene profiles obtained from text mining and gene expression analysis were submit-
ted to a comprehensive computational analysis, conducted by using several bioinformatics
tools. Gene enrichment analysis was conducted by using ShinyGo [22], gprofiler [23], and
Uniprot database [24]. Protein–protein interaction (PPI) analysis for diabetes-associated
genes retrieved from text mining and GEO data analyses was conducted by using the
STRING database [25] (Figure 1D). Gene expression and text mining results were repre-
sented by using ggplot2.3.3.6 [26] and GeneSyno [27] according to the human genome data.
The text mining analysis provided us with a better understanding of the most well-known
diabetes-related genes.

2.4. Machine Learning Analysis and Correlation Analyses

The results of text mining and differential gene expression analyses of potential
diabetes gene biomarkers were used as attribute values for ML analysis. We extracted gene
expression data from genes that were found to be significantly expressed in gene expression
or were frequently mentioned in the literature (more than 50 articles). Their expression data
were used for machine learning analysis as training and validation sets. The decision tree,
extra-tree regressor and random forest algorithms were used in ML analysis to identify
unique markers that could be used as diabetes diagnosis tools. To perform ML, we used
both the R and Python programming languages. The gene expression of selected biomarkers
was extracted from GEO datasets (GSE15932, GSE30208, and GSE55098). Because GSE15932
and GSE55098 (group A) share the GPL570 chip array, we were able to combine their gene
expression data, whereas GSE30208 (group B) was used separately. Prior to ML analysis,
gene expression data were normalised by using the calcNormFactors function in the limma
3.50.3 [28] and edgeR 3.36.0 [29] R packages via the TMM method. RandomForest4.7-1.1,
rpart4.1.16, and caret6.0-93 packages in R programming languages were used to perform
random forest and decision tree algorithms with 70% and 30% training and test data sets
ratio, respectively. In Python, sklearn and lime0.2.0.1 packages were used to perform
extra-tree regressor, and local interpretable model-agnostic explanations algorithms. The
codes can be found in the github code repository via the following link: https://github.
com/AlsammanAlsamman/DiabetesML, (accessed on 1 October 2022).

3. Results
3.1. Diabetes-Related Genes Occurring Frequently in the Literature

Scientific publications that studied the genetic factors controlling diabetes pathogene-
sis were screened through NCBI-pubmed, and 40,225 articles were obtained. These articles
highlighted 5939 diabetes-associated genes distributed across 22 human chromosomes,
of which 112 genes were mentioned in more than 50 articles (Table S1). Among these
genes, HNF4A, PPARA, VEGFA, TCF7L2, HLA-DRB1, PPARG, NOS3, KCNJ11, PRKAA2,
and HNF1A, were mentioned in more than 200 articles (Figure 2, Table S1). Gene distribu-
tion across the human genome showed that the largest number of genes were present in
chromosomes 1, 6, 11, and 10 (Figure 3).

https://github.com/AlsammanAlsamman/DiabetesML
https://github.com/AlsammanAlsamman/DiabetesML
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Figure 2. The most frequently mentioned genes in diabetes literature, as determined by text mining.
The colour and size of the circles are proportional to the frequency of gene terms in diabetes literature.

Figure 3. The chromosomal distribution of the diabetes-associated genes in published literature.
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Enrichment analysis was performed to categorize genes that were identified through
text mining into their corresponding biological pathways. The biological pathway of
insulin sensitivity was highly associated. The enrichment analysis revealed that biological
pathways correlated with the regulation of glycogen and polysaccharide, extracellular
vesicles in the crosstalk of cardiac cells, adipogenesis, AGE/RAGE, and macrophage
differentiation were significantly associated with the studied diabetes-associated genes
(Figure 4 and Table 1). We identified that 53 diabetes-associated genes are regulated by
17 miRNAs, the most significant of which are Hsa-miR-223-3p, Hsa-miR-146a-5p, and
Hsa-miR-200c-3p (Table S3). Furthermore, the most important transcription activators are
CEBPB, PDX1, ETS1, HIF1A, and STAT3 Table S3). These genes regulate the activity of
numerous genes in the biological system [30].

Figure 4. The enrichment analysis of the most common diabetes-associated genes in the literature.
The most highly covered biological pathways, as determined by the ShinyGO software, where the
R-ggplot was used to depict the percentage covered-genes .

The PPI analysis was conducted to evaluate the protein interaction activity and to
locate the most highly interactive hub of diabetes-associated genes (Figure 5). Genes with
high interaction activity were INS, PPARG, MAPK3, VEGFA, IGF1, ADIPOQ, SIRT1. The
gene enrichment analysis (GEA) retrieved by using the STRING database revealed that
most of these genes were correlated with FoxO, cytokine, and AMPK signaling, diabetes,
and insulin sensitivity (Figure 5).
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Table 1. The analysis of gene enrichment of the most frequently found diabetes-related genes in
the literature (-log-pvalue ≥ 16). The biological pathways with false discovery rate (FDR). The
intersection ratio represents how many of the termed known genes are found within the studied list,
and the share ratio how many of the genes belong to this biological pathway.

Term Name FDR Share Intersection Term Name FDR Share Intersection

response to nitrogen compound 33.3 47.27% 4.73% positive regulation of macromolecule metabolic process 19.3 58.18% 1.85%
response to organonitrogen compound 32.6 45.45% 4.95% positive regulation of multicellular organismal process 19.3 40.00% 3.07%

regulation of multicellular organismal process 30.9 62.73% 2.59% apoptotic process 19.2 44.55% 2.63%
cellular response to chemical stimulus 30.6 65.45% 2.38% localization 19.1 76.36% 1.31%

response to endogenous stimulus 28 49.09% 3.47% signaling 19.1 76.36% 1.30%
chemical homeostasis 27.6 41.82% 4.50% cell death 19 46.36% 2.46%

regulation of biological quality 27.2 68.18% 1.99% positive regulation of cell communication 19 42.73% 2.75%
positive regulation of biological process 27 82.73% 1.46% cellular response to peptide 18.9 23.64% 7.45%

regulation of cell communication 26.7 64.55% 2.13% positive regulation of signaling 18.9 42.73% 2.74%
cellular response to organic substance 26.5 56.36% 2.59% regulation of cell differentiation 18.9 40.91% 2.90%

cellular response to oxygen-containing compound 26.2 42.73% 4.03% programmed cell death 18.7 44.55% 2.55%
positive regulation of cellular process 24.1 77.27% 1.49% hormone secretion 18.4 21.82% 8.39%

response to peptide hormone 24 28.18% 7.79% negative regulation of cellular process 18.2 66.36% 1.50%
glucose homeostasis 23.2 23.64% 10.83% hormone transport 18.1 21.82% 8.14%

regulation of developmental process 23.2 53.64% 2.43% small molecule metabolic process 18.1 42.73% 2.62%
carbohydrate homeostasis 23.1 23.64% 10.79% regulation of molecular function 18 53.64% 1.93%

multicellular organismal process 23 84.55% 1.26% Late onset 17.9 23.38% 41.86%
positive regulation of metabolic process 22.4 63.64% 1.85% positive regulation of biosynthetic process 17.9 44.55% 2.45%

regulation of response to stimulus 22.4 64.55% 1.82% regulation of phosphate metabolic process 17.9 38.18% 3.03%
Abnormal waist to hip ratio 22 24.68% 54.29% regulation of phosphorus metabolic process 17.9 38.18% 3.03%
Increased waist to hip ratio 22 24.68% 54.29% regulation of response to stress 17.8 37.27% 3.13%

response to insulin 21.1 22.73% 9.88% regulation of hormone secretion 17.6 20.00% 9.32%
response to external stimulus 20.9 54.55% 2.15% macromolecule localization 17.4 53.64% 1.89%

developmental process 20.6 77.27% 1.35% regulation of intracellular signal transduction 17.3 40.91% 2.66%
cellular developmental process 20.5 64.55% 1.70% cell surface receptor signaling pathway 17.2 50.91% 1.99%

regulation of cell population proliferation 20.5 43.64% 2.90% positive regulation of cellular metabolic process 17.2 54.55% 1.83%
regulation of signal transduction 20.5 55.45% 2.07% negative regulation of multicellular organismal process 17 32.73% 3.60%
regulation of apoptotic process 20.4 40.91% 3.17% intracellular signal transduction 16.9 49.09% 2.05%

cellular response to nitrogen compound 20.3 30.91% 4.98% cellular response to endogenous stimulus 16.8 36.36% 3.04%
cellular response to organonitrogen compound 20.3 30.00% 5.27% anatomical structure development 16.7 70.00% 1.34%

regulation of cell death 20.3 42.73% 2.95% organic substance transport 16.7 49.09% 2.03%
cell population proliferation 20.2 46.36% 2.60% protein secretion 16.7 21.82% 7.08%

regulation of programmed cell death 20.1 40.91% 3.11% establishment of protein localization to extracellular region 16.6 21.82% 7.06%
Insulin resistance 20 29.87% 29.87% multicellular organismal homeostasis 16.5 25.45% 5.23%

cellular response to stimulus 19.9 81.82% 1.22% positive regulation of cellular biosynthetic process 16.5 42.73% 2.39%
animal organ development 19.8 59.09% 1.85% protein localization to extracellular region 16.4 21.82% 6.92%

cell differentiation 19.8 63.64% 1.68% regulation of small molecule metabolic process 16.4 21.82% 6.92%
regulation of transport 19.8 43.64% 2.78% regulation of protein localization 16.3 30.00% 3.91%

cell communication 19.7 77.27% 1.31% multicellular organism development 16.2 63.64% 1.47%
response to hormone 19.6 32.73% 4.29% negative regulation of biological process 16.1 70.00% 1.31%

Figure 5. The protein–protein interaction network of the most common genes in the diabetes literature
and their associated biological pathways.
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3.2. Differential Gene Expression and Correlation Analyses

A set of three GEO datasets (GSE15932, GSE30208, and GSE55098) were studied by
using differential gene expression bioinformatics to classify the most important diabetes-
associated genes and to determine their regulation status in healthy and diabetic individuals.
The differential gene expression analysis revealed a consistent differential expression
between healthy and diabetic individuals in a specific set of genes (Figure 6). The analysis
revealed 135 DEGs, of which CEACAM6, ENPP4, HDAC5, HPCAL1, PARVG, STYXL1,
VPS28, ZBTB33, ZFP37, and CCDC58 were significantly differentially expressed (Table S2).
The gene enrichment analysis revealed that a considerable number of these genes were
correlated with aerobic respiration, T-cell antigen receptor (TCR) pathway, tricarboxylic
acid metabolic process, vitamin D receptor pathway, toll-like receptor signaling, and
endoplasmic reticulum (ER) unfolded protein response (Figure 7 and Table S3).

A hub of highly active genes was discovered during a correlation analysis of the sig-
nificant genes associated with diabetes (Figure 8). Genes with a large number of correlated
links to other diabetes-related genes in all study data included NCK1, HIGD1A, VRK3,
KBTBD8, ZBTB33, TMTC4, MRPS28, DYNLT3, and SMARCAD1 (Figure 8).

Figure 6. The heatmap depicting the top 100 differentially expressed genes in three previously
released GEO diabetes datasets.
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Figure 7. The enrichment analysis of diabetes-related genes in gene expression analysis.

Figure 8. The correlation network of the expressed genes by using GSE15932 and GSE55098 (group A)
and GSE30208 (group B). Positive (blue) or negative (red) correlations are indicated by links between
genes. Correlations with r < 0.5 or with p-value > 0.01 were disregarded.

3.3. Text Mining versus Gene Expression

We compared gene lists associated with diabetes derived from text mining and gene
expression analysis (Figure 9). The protein–protein interaction analysis revealed a high
level of interaction for genes identified through text mining compared to gene expression
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analysis, which is expected given that these genes have been extensively studied in the
literature and there is a plethora of data about their biological activity. Furthermore, it
was found that there is some interaction between the two lists that was initiated between
genes from both sides (Figure 9A). Only two genes have been shared between the two
analyses, including TIMP1 and POMC (Figure 9B). The small number of shared genes
between the two lists could be attributed to the stringent conditions we used for gene
identification in both techniques. Text mining and gene expression, on the other hand,
share other genomic aspects, such as 25 chromosomal loci that contain genes from both
methods. There were 47 genes from each list that are close to each other (less than 1 Mbp),
and these genes are spread across 11 chromosomes, with chromosomes 1 and X having
four genes each. Chromosome X included TIMP1, FOXP3, GATA1, OTUD5, and PRAF2
genes (Figure 9C). Additionally, the two lists shared 15 biological pathways, 75 gene
ontology terms, and 4 KEGG terms (Figure 9D–F). Most of the shared biological pathways
were related to glucose metabolic processes, secretion, leukocyte migration, and immune
response. Immune response, growth, leukocyte homeostasis, and cell motility were among
the gene ontology terms shared by both lists. Citrate cycle, metabolic pathways, chemical
carcinogenesis, and glycolysis were all KEGG terms that were shared.

Figure 9. A comparison of genes linked to diabetes detected through gene expression and text
mining. (A) Protein–protein interaction between diabetes-related genes identified through text
mining (yellow), gene expression (green), or both (red), with the interaction link coloured according
to the group of the interaction-source gene. The intersection of gene lists based on gene name (B),
chromosomal location (genes with inter-space region less than 1 Mbp) (C), biological pathway (D),
gene ontology (E), and KEGG pathway (F) .

3.4. Machine Learning Analysis

The expression data of 1160 biomarkers associated with the expression of 274 genes
were extracted, normalised, and fed into three different machine learning algorithms. By
using ML and across the dataset, DecisionTree and RandomForest revealed prediction
models with accuracy of 0.6364 and 0.81, and 0.7222 and 0.88, respectively, by using group
A and B data. The overall confidence interval (CI) was 95%. There were 39 biomarkers
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linked to distinguishing diabetic and non-diabetic patients, 12 of which were repeated
multiple times. These markers were linked to 36 genes, where HLA-DQB1 was found
four times (Table 2 and Figure 10). The majority of these genes are associated with crucial
biological processes like response to stress, signalling regulation, locomotion, cell motility,
growth, and muscle adaptation, based on the gene ontology analysis. According to decision
tree algorithm 209480_at (HLA-DQB1), and ILMN_1720311 (SLC25A46) biomarkers were
the most important in differentiating disease status in data A and B, respectively (Table 2).
Extra-tree regressor and local interpretable model-agnostic explanation algorithms revealed
that the most important biomarkers were 209342_s_at (IKBKB), and ILMN_1670576 (IRF5)
groups A and B, respectively.

Table 2. The most significant gene expression biomarkers associated with diabetes that were found
by using various machine learning techniques and the gene expression data of GSE15932, GSE55098
(A), and GSE30208 (B).

ML Algorithm Data Marker Code Marker Name Importantance Gene

DecisionTree

A

M313 209480_at 8.54 HLA-DQB1
M399 212999_x_at 6.83 HLA-DQB1
M398 212998_x_at 5.98 HLA-DQB1
M710 238996_x_at 5.98 ALDOA
M370 211654_x_at 5.12 HLA-DQB1
M417 214631_at 5.12 ZBTB33

B

M148 ILMN_1720311 13.07 SLC25A46
M302 ILMN_1790797 9.44 VPS28
M61 ILMN_1672899 9.44 POMC
M161 ILMN_1726470 7.99 OTUD5
M41 ILMN_1666192 7.99 DCTN5
M88 ILMN_1684802 7.99 TAF5

RandomForest

A

M667 233510_s_at 0.53 PARVG
M710 238996_x_at 0.41 ALDOA
M313 209480_at 0.40 HLA-DQB1
M546 223016_x_at 0.25 ZRANB2
M203 205025_at 0.19 ZBTB48
M141 202462_s_at 0.18 DDX46
M399 212999_x_at 0.16 HLA-DQB1
M636 230031_at 0.15 HSPA5
M140 202455_at 0.15 HDAC5
M80 1569150_x_at 0.15 PDLIM7

B

M51 ILMN_1670576 2.08 IRF5
M41 ILMN_1666192 1.97 DCTN5
M148 ILMN_1720311 1.68 SLC25A46
M345 ILMN_1813746 1.19 CORO2A
M333 ILMN_1806408 1.00 ACADVL
M61 ILMN_1672899 0.86 POMC
M146 ILMN_1718822 0.82 STYXL1
M239 ILMN_1762095 0.81 TMTC4
M136 ILMN_1709800 0.64 POMZP3
M265 ILMN_1771697 0.52 VRK3
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Figure 10. The importance score of the top 10 diabetes-related biomarkers derived from gene
expression data from GSE15932, GSE55098 (A), and GSE30208 by using extra-tree regressor and local
interpretable model-agnostic explanation algorithms (B). The colours represent the feature values
from low to high (from blue to red).

4. Discussion

In this study, a systematic methodology was followed to investigate the most common
diabetes-related genes. We used three different techniques, including gene expression
analysis, text-mining, and ML. Each of these techniques was useful in revealing important
aspects of diabetes pathogenicity as well as important markers for early disease diagnosis.

Based on text mining, most of the highly common diabetes-related genes in the lit-
erature were correlated with glucagon and AMPK signaling pathways such as HNF4A,
PCK2, and SIRT1, which were among the most interactive genes in the PPI analysis. Hepa-
tocyte nuclear factor 4 alpha (HNF4A) is a highly conserved transcription factor expressed
in pancreatic beta cells and required by islet beta and liver cells to maintain glucose
hemostasis [31]. HNF4A crucially performs hepatic gluconeogenesis regulation and insulin
secretion, and the corresponding gene was shown to be linked to type 2 diabetes (T2DM)
in several studies [32]. Its loss-of-function mutations have been linked to young-onset
diabetes and lipid disorders, and some mutations have been identified in several popula-
tions as risk loci for T2DM [33]. Additionally, some studies have assessed the impact of
HNF4A gene variations on preventing and treating coronary artery disease complications.
HNF4A gene variants may modify and modulate hepatic lipase and lipid metabolism,
resulting in a beneficial effect on atherosclerosis progression and event occurrence [34].
Diabetes and coronary artery disease share many genetic key elements, owing to the fact
that diabetes is considered to predispose to diabetic cardiomyopathy and atherosclerotic
cardiovascular disease [35]. PCK1 and PCK2 have been proposed as potential diabetes and
obesity-associated genes [36]. PCK1 and PCK2 are phosphoenolpyruvate carboxykinase
(PCK or PEPCK) gene isoforms that are found in the cytosol and mitochondria, respec-
tively. PEPCK is a cataplerotic enzyme which removes citric acid cycle anions for either the
biosynthetic process or the subsequent complete oxidation of these substances to carbon
dioxide inside the citric acid cycle [37]. PCK plays an important role in cell homeostasis
and in cell development, including physiological processes such as glucose metabolism
and the tricarboxylic acid cycle (TCA) [38]. Because insulin suppresses the expression of
these enzymes, it has long been assumed that patients with T2D have increased expression
of PCK due to hepatic insulin resistance [39,40]. Silent information regulator 1 (SIRT1)
was the first member of the silent information regulator 2 (SIR2) family to be discovered,
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and it catalyzes the deacetylation of both histone and non-histone lysine residues [41].
SIRT1 exerts its anti-oxidative effects by activating NRF2, a transcription factor that binds
to antioxidant-responsive element genes associated with the scavenging of oxygen free
radicals [42]. Recent research has shown that Sirt1 protein expression and downstream
signaling were downregulated in diabetes [43]. The enrichment analysis of these genes
highlighted the role of several biological pathways such as macrophage differentiation,
FoxO, and adipogenesis. FoxO proteins play a significant role in mediating the impact of
insulin on metabolism, including their effects on hepatic glucose production [44].

Gene expression analysis revealed a consistent differential expression between healthy
and diabetic individuals in a specific set of genes. Such findings support the fact that
diabetes is a multi-locus disorder with many genes controlling its pathogenesis [45]. Several
genes were found to be significantly differentially expressed across diabetes gene profiles in
our analysis. Most genes have been related to diabetes and cancer, with most of them being
linked to pancreatic cancer (CEACAM6, HDAC5, HPCAL1, PARVG, and STYXL1). CEA cell
adhesion molecule 6 (CEACAM6) is a key gene for pancreatic adenocarcinoma. CEACAM6
is a cancer biomarker that regulates anoikis resistance as well as the metastatic process of
pancreatic adenocarcinoma cells [46]. Histone deacetylase 5 (HDAC5), a key mediator of
hepatic fatty acid oxidation, was identified as a major component of the fasting glucagon
signalling pathway and is reported to be increased in the kidneys of diabetic patients
and animals [47,48]. T2DM can cause hypothalamic-pituitary-ovarian (HPO) dysfunction,
which is accompanied by increased circulating/hypothalamic HDAC5. Some findings
suggest that acetate restores HPO function in T2DM by suppressing HDAC5 and increasing
insulin sensitivity [49]. Furthermore, HDAC5 is involved as a common pathogenic factor
in both type 1 and type 2 in vivo animal models of diabetes [49]. STYXL1 is one of three
known STYX pseudophosphatases, a group of genes for which research is currently being
conducted to better understand their role in disease [50]. A correlation analysis of the
important genes linked to diabetes revealed a cluster of highly active genes (Figure 8). The
genes with many correlated links to other diabetes-related genes included NCK1, HIGD1A,
VRK3, KBTBD8, ZBTB33, TMTC4, MRPS28, DYNLT3, and SMARCAD1 (Figure 8). Most
of these genes are a part of the biological regulatory system [51,52]. Furthermore, some
of these genes, such as NCK1, play an important role in diabetes by modifying PERK
activation and signalling. NCK1 deficiency increases pancreatic cell survival in response to
diabetes-related stresses [53].

Additionally, the PPI analysis showed several highly interactive genes including
nuclear-encoded mitochondrial genes, such as MDH1, and NDUFB5. Malate dehydro-
genase 1 (MDH1) produces the human cytosolic malate dehydrogenase. This latter is
vital in transporting nicotinamide adenine dinucleotide (NADH) equivalents through the
mitochondrial membrane, and therefore controlling TCA cycle, which is highly linked to
diabetes pathogenesis [54]. The gene-enrichment analysis of the diabetes-associated ex-
pressed genes revealed that a significant number of these genes were correlated with T-cell
antigen receptor (TCR) pathway, vitamin D receptor pathway, toll-like receptor signaling,
and ER unfolded protein response. The association of TCR and diabetes development
has been reported in several studies, where the use of anti-TCR has been studied in the
therapeutic strategy for diabetes [55]. Vitamin D deficiency increases the risk of type 1 and
type 2 diabetes, and receptors for the active form of the vitamin have been found in both
beta and immune cells. Protein-folding stress in the ER is a prominent feature of specialised
secretory cells and has been linked to the pathogenesis of several human diseases.

The comparison of diabetes gene lists derived from text mining and gene expression
analysis revealed some shared genomic aspects at different levels (Figure 9). It demon-
strated that text-mining genes have a more biological interaction than gene expression
analysis genes (Figure 9A). The biological relationship between the two lists may suggest
the significance of both lists in presenting the variable genes involved in diabetes. We
should broaden our scope to include more genes that may be important in understanding
the disease structure. The two genes shared between text-mining and gene expression



Int. J. Environ. Res. Public Health 2022, 19, 13890 14 of 18

analyses are TIMP1 and POMC (Figure 9B). TIMP metallopeptidase inhibitor 1 (TIMP1) is a
naturally occurring inhibitor of matrix metalloproteinases (MMPs), a class of peptidases
involved in the degradation of extracellular matrix. TIMP1 levels were significantly higher
in the serum of T2DM patients, and raises the possibility that it plays a role in T2DM
bone fragility [56]. Proopiomelanocortin (POMC) encodes a preproprotein that under-
goes tissue-specific post-translational processes. Increases in food consumption and body
weight can result from POMC mutations. White adipose tissue undergoes a phenotypic
switch in response to weight gain and obesity, which causes it to release proinflammatory
cytokines that contribute to the emergence of insulin resistance and type 2 diabetes [57].
The significance of specific loci, including those on chromosome X, was brought to light
by examining the genomic locations of genes derived from the two methods. Previous
reports have emphasised the connection between the pathogenesis of diabetes and genes on
chromosome X [58,59]. There were several of these genes, including TIMP1, FOXP3, GATA1,
OTUD5, and PRAF2 (Figure 9C). Some of these genes are known to be correlated with sex
and age, such as TIMP1 [60], and FOXP3 [61]. The two methods shared many expected
KEGG terms, biological pathways, and gene ontology terms, including citrate cycle [62],
leukocyte migration [63] and other pathways with a known association with diabetes.

We chose the expression of a few specific genes in the datasets under study by using
text mining, and we used well-known machine learning techniques on the selected data to
find biomarkers that distinguish between the two disease states. A significant proportion of
the potential biomarkers were linked to HLA-DQB1 Table 2 and Figure 10. The HLA-DQB1
gene belongs to a group of genes known as the human leukocyte antigen (HLA) complex.
This group of genes is a major component of familial clustering in both type 1 diabetes and
celiac disease, where subjects carrying specific mutations in this group are at a high risk of
developing T1D [64]. Recently, the tenth article highlights the importance of HLA-DQB1 in
diabetes and suggests its function in this disease [65–67]. Furthermore, machine learning
highlighted the significance of biomarkers associated with (SLC25A46), (IKBKB), and (IRF5)
Table 2. SLC25A46 is a mitochondrial carrier protein that is found in the outer mitochondrial
membrane and is the closest human homolog to a yeast protein involved in mitochondrial
fusion [68]. The detailed function of SLC25A46 is still unknown, and it may facilitate
transport across the mitochondrial membrane or act as a molecular adaptor protein [69].
SLC25A46 loss can cause neurodegeneration in mice by affecting mitochondrial dynamics
and energy production [70]. Several studies have recently suggested a link between it and
diabetes phenotypes in mice and humans [71,72]. Both IKBKB and IRF5 function in immune
response, apoptosis, and toll-like receptor signalling pathways. In type 2 diabetes and
obesity, IRFs play a crucial role as metabolic transcriptional regulators. The polarisation of
macrophages toward the inflammatory M1-phenotype has been associated with IRF5. In
line with the inflammatory signatures, the increased IRF5 expression in the adipose tissue of
diabetic obese patients has been suggested as a potential marker for metabolic inflammation
in obesity/T2D [73]. IKBKB is a crucial upstream modulator of the NF-kB pathway and
a pro-inflammatory response regulator. When it is inhibited, lipopolysaccharide-induced
inflammation and the production of pro-inflammatory cytokines are reduced [74]. IKBKB
was discovered to play a role in the development of T2DM, and studies have shown
that its deletion inhibited the production of inflammatory cytokines that increase insulin
resistance [75,76]. These findings suggest that the machine learning analysis was essential
for broadening viewpoints, enabling the observation of some hidden figures in genes
related to diabetes, and aiding in the improvement of text-mining and gene expression
analysis results.

5. Conclusions

Three different bioinformatics approaches were used to identify genes that are strongly
linked to diabetes pathogenesis. Every one of these methods show different aspects of the
gene structure of diabetes. The 40,225 abstracts of diabetes articles published show that
there are only a few genes that are highly concerned by the medical community. These genes
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contain a wealth of information regarding their molecular function, PPI, and gene ontology.
Among these genes, HNF4A, PPARA, VEGFA, TCF7L2, HLA-DRB1, PPARG, NOS3, KCNJ11,
PRKAA2, and HNF1A were mentioned in more than 200 articles. This could imply that the
number of genes that have been extensively studied and may have a positive impact on
our understanding of the diabetes gene network is decreasing. Three different diabetes
gene expression datasets were studied by using gene expression analysis. The analysis
revealed 135 significant DEGs, of which CEACAM6, ENPP4, HDAC5, HPCAL1, PARVG,
STYXL1, VPS28, ZBTB33, ZFP37, and CCDC58 were the top ten DEGs. The TCR pathway,
the vitamin D receptor pathway, and the ER-unfolded protein response were all enriched in
these genes, which were linked to the development of diabetes. Machine learning analysis
provided innovative strategies for ranking the significance and potential utility of genes
related to diabetes as biomarkers. ML algorithms highlighted the use of the HLA-DQB1
gene as a biomarker for diabetes early detection and provided several prediction models
with moderate accuracy. A number of prediction models with fair accuracy were provided
by ML algorithms, which also highlighted the use of the HLA-DQB1 gene as a biomarker
for diabetes early detection. Our research offers fresh information on the crucial genes
and metabolic processes involved in diabetes, which could be used to identify potential
research targets in the future.
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