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Abstract: Reducing carbon emissions in cities is crucial for addressing climate change, while the city-
level emissions of different compositions and their relationships with socio-economic features remain
largely unknown in China. Here, we explored the city-level emission pattern from the industrial,
transportation, and household sectors and the emission intensity, as well as their associations with
socio-economic features in China, using the up-to-date (2020) CO, emissions based on 0.1° grid
(10 x 10 km) emission data. The results show that: (1) CO, emissions from the industrial sector
were considerably dominant (78%), followed by indirect (10%), transportation (8%), and household
(2%) emissions on the national scale; (2) combining total emissions with emission intensity, high
emission-high intensity cities, which are the most noteworthy regions, were concentrated in the
North, while low emission—low intensity types mainly occurred in the South-West; (3) cities with a
higher GDP tend to emit more CO,, while higher-income cities tend to emit less CO,, especially from

check for the household sector. Cities with a developed economy, as indicated by GDP and income, would
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have low emissions per GDP, representing a high emission efficiency. Reducing the proportion of the
secondary sector of the economy could significantly decrease CO, emissions, especially for industrial
cities. Therefore, the carbon reduction policy in China should focus on the industrial cities in the
North with high emission-high intensity performance. Increasing the income and proportion of the
tertiary industry and encouraging compact cities can effectively reduce the total emissions during the
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economic development and urbanization process.
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Global warming caused by excessive emissions of greenhouse gases such as carbon
dioxide has become one of the most important challenges facing mankind in the 21st
century [1-3]. Rising global temperatures cause sea levels to rise, intensify the frequency of
extreme climate events such as floods, droughts, and storms, and adversely affect human
health [4,5]. To address climate change and reach the “Paris Agreement” target of limiting
the global temperature increase to 1.5 °C, reducing carbon emissions has become the
fations. consensus of international communities [6]. Cities are a key contributor to climate change,

as urban activities are responsible for 75% of global CO, emissions [7]. Given the necessity
of the socio-economic development of cities, achieving low-carbon development in cities is

) of great significance to global climate change mitigation and improving human well-being.
Copyright: © 2022 by the authors. . . , . . . .

Licensee MDPL, Basel, Switzerland. As China is currently the world’s leading CO, emitter, accounting for approximately
30% of global emissions, China plays an important role in global climate change mitigation
and emission reduction [8]. China has set a series of reduction targets, such as reducing
emission intensity by 60-65% compared with 2005. However, since China is in the stage
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by energy-intensive manufacturing have caused great difficulties in achieving the carbon
reduction target [11,12]. In particular, while reducing carbon dioxide emissions, China
has to solve multiple problems such as poverty alleviation, employment, and lessening
regional differences [13,14]. Solutions to these problems rely on economic growth, but there
is a certain contradiction between reducing carbon dioxide emissions and developing the
economy [15,16]. To deal with such a dilemma, exploring the potential associations between
socioeconomic features and carbon emissions is crucial for a win-win strategy toward
socio-economic development and carbon reduction. Given the huge regional heterogeneity
in terms of economic development, size, and industrial structure, decision makers need
city-level information on the characteristics of carbon emissions to design context-specific
strategies in China.

Recently, there is a growing body of studies on the spatial characteristics of carbon
emissions in China, but due to data limitations, most of them were explored at the province
level or for individual cities [9,15-17]. In terms of spatial data on carbon emissions, the
accounting of carbon emissions in foreign studies is primarily based on gridded data, and
the accuracy is generally higher than that of domestic ones [18,19]. For instance, Oda
et al. used global point source (enterprise) data and luminous data to establish a global
1km x 1 km CO, emissions gridded map and explored the spatial characteristics of CO,
emissions at the global, regional, and city scales [20]. However, the domestic research on
the spatial characteristics of carbon emissions is mainly based on statistical data and lacks
bottom-up emission data at a high spatial resolution; thus, the city-level spatial pattern
of carbon emissions is barely explored in China [21,22]. A recent study revealed the city-
level CO; emissions and relations to GDP growth between 2005 and 2015, which mainly
focuses on the total emissions and lacks up-to-date analysis [23]. However, investigating
the current impacts of socio-economic factors on different compositions of carbon emissions
(industry, transportation, and household) and emission efficiency is necessary for adjusting
the ongoing carbon policy.

In this study, we used the 0.1° grid (10 x 10 km) CO, emission data in 2020, established
by industrial point sources and other data [24,25], combined with the demographic and
economic statistics to deeply excavate the city-level emission pattern and the associations
with socio-economic features in China. Specifically, the total carbon emissions, different
sectors of direct emissions, indirect emissions, per capita carbon emissions, and emission
intensity were discussed, and the socio-economic factors include GDP, per capita GDP,
industrial structure, and population density. Our results, based on up-to-date data and
detailed carbon emissions, can guide the specific formulation of current city-level policies
to achieve carbon reduction in an efficient and targeted way.

2. Data and Methods
2.1. CO, Emission Data

The CO, emission data in 2020 used in this study cover 340 prefecture-level cities in
mainland China, excluding Taiwan Province, Hong Kong, and Macau Special Administra-
tive Regions. The city-level emissions were estimated from the gridded emission data at a
10 km resolution (CHRED), which can be accessed via http://www.cityghg.com/a/data/
(accessed on 3 June 2022). The total carbon emission of each grid is the sum of industrial
emissions, household emissions, transportation emissions, agricultural emissions, and
indirect emissions, excluding carbon emissions caused by changes in forest land and land
use types. Notably, industrial carbon emissions were collected from each industrial enter-
prise (point source) in the grid cell, and the CO, emissions of each enterprise include the
emissions from fuel combustion and production processes:

E= ZMfuel X Ffuel + Ep

where E represents the CO, emission, My, is the amount of a certain fuel, Fz, is the CO;
emission factor of this fuel, and E,, represents the CO, emission in the industrial production
process. Among them, the carbon emissions in the industrial production process mainly
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come from the manufacturing process of cement, lime, steel, and glass. During the data
collection of industrial point sources, wrong locations of enterprises have been corrected
after comparing the administrative attributes with the actual coordinates, which accounted
for about 5.7% of the enterprises.

Different from the calculation of industrial carbon emissions, agricultural, household,
and transportation carbon emissions were derived from the statistical data of provinces
and regions. More detail on this CO, emission dataset can be found in [25]. Therefore, the
carbon emission data used in this study are not only highly accurate, basically covering
all industrial point sources, but also comprehensive, which makes up for the statistical
data and low-resolution grid data used in previous carbon emission studies and further
improves the accuracy and reliability of the results.

2.2. Emission Types Based on Total Emission and Emission Intensity

We classified all the Chinese cities into four emission types based on total emissions
and emission intensity: (1) High-High, (2) High-Low, (3) Low—High, and (4) Low-Low [26].
Specifically, indicators of total emissions include total emissions, household emissions, and
industrial emissions; emission intensity was measured by per capita emissions or per GDP
emissions. The high/low was classified by the national median value, and a high emission
intensity indicates a low emission efficiency. Taking household emissions per capita as an
example, the High—High type refers to the cities with high household emissions and high
per capita household emissions, which is the worst type in our assumption, the High-Low
type refers to the cities that have high household emissions but low per capita emissions,
the Low-High type refers to the cities that have low household emissions but high per
capita emissions, and the Low—-Low type refers to the cities that have both low household
emissions and low per capita emissions, which is the best type.

2.3. Statistical Models

The IPAT model has been widely used to explore the impact of human activities
on environmental changes [27-29], where I represents the impact on the environment,
and P, A, and T represent demographic, economic, and technological factors, respectively.
However, the IPAT model is relatively simple and fails to reflect the complex impacts on
the environment. Therefore, Dietz and Rosa proposed the STIRPAT (Stochastic Impacts by
Regression on Population, Affluence, and Technology) model in 1994 [27]:

I; = aP? ASTle;

The STIRPAT model not only can be used to evaluate the impact of these three factors
on the environment but also can be further decomposed into more influencing factors.
The decomposed model is widely used in the study of influencing factors of carbon emis-
sions [30,31].

Based on the summary of existing research and the spatial autocorrelation character-
istics of carbon emissions in China, we extended the STIRPAT model from the economic
perspective and chose GDP, GDP per capita (PCG), industrial structure (IS), and population
density (PD) as independent variables. Those socio-economic features were selected be-
cause previous studies have proven that the economic level, population size, and industrial
structure are related to carbon emissions in China [9,32,33]. GDP per capita is the ratio of
the total regional GDP to the local population [23], the industrial structure is the proportion
of the secondary sector of the economy [34], and population density is the ratio of the pop-
ulation to the built-up area of the city [35]. After taking the natural logarithm of variables,
the statistical model set in this study is:

Iny =y C+ o In(GDP) + &y In(PCG) + o3 In(IS) + o4 In(PD) + ¢

where y represents the indicators of CO, emissions, C represents the constant term, o
represents the corresponding regression coefficient, and ¢ is the random error of the model.
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The data on socioeconomic factors are collected from the “China Urban Statistical Yearbook”
and the “China Regional Economic Statistical Yearbook”.

3. Results
3.1. CO, Emission Structure

We first analyzed the structure of carbon emissions in China and the three largest urban
agglomerations (Figure 1). For the entire country, the CO, emissions from the industrial
sector were considerably dominant (78%), followed by indirect (10%), transportation (8%),
and household (2%) emissions. Compared to the national emission structure, indirect
emissions took a larger proportion in three megaregions, especially in the Pearl River Delta
(25%), and the proportion of transportation emissions in the Pearl River Delta (13%) and
Yangtze River Delta (10%) was larger, while the proportion of industrial emissions in the
Pearl River Delta (57%) was smaller.

China Beijing-Tianjin-Hebei Urban Agglomeration

|

|

Pearl River Delta Yangtze River Delta

’ |

u Agriculture = Service = Industrial ® Household = Transport ® Indirect

Figure 1. The proportion of CO, emissions in China and the three largest urban agglomerations. Direct
emissions consist of emissions from agriculture, services, industry, households, and transportation.

3.2. Spatial Distribution of Total Emissions and Emission Intensity

Total CO; emissions and emission intensity are combined in the spatial map (Figure 2a,b),
presenting four types of cities. Two total emission—emission intensity maps show similar
patterns: high emission-high intensity cities were concentrated in the North, while low
emission-low intensity types mainly occurred in the South-West. Cities in the North-West
part are primarily low emission-high intensity, which is also notable for the potentially large
increase in total emissions in the future. Many developed cities such as Beijing, Chongqing,
and Shanghai have high total emissions but low emission intensities. In addition, most
coastal cities emitted high total emissions but low emissions per unit of economic output
(Figure 2b).
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Figure 2. CO; emission types based on total emissions and the corresponding emission intensity.
Taking household emissions per capita (c) as an example, the ‘high emission-high intensity’ refers to
the cities with high household emissions and high per capita household emissions. The high/low
was classified by the national median value.

We further presented the emission types in terms of the major sector, industrial emis-
sions (Figure 2d), and household emissions representing residential energy-use behaviors
(Figure 2c). For household emissions, most cities with high emissions also have high
per capita emissions, indicating a low-efficient behavior of residential energy use. Such
noteworthy cities were concentrated in Northern China and Central China. Residential
people in megacities such as Shanghai and Shenzhen perform well with low per capita
emissions. For industrial emissions, the industrial cities in the North (e.g., Inner Mongolia,
Shanxi province, Anshan) primarily belong to the High-High type, but those in the South
and coastal cities (e.g., Chongqing, Guangzhou, Yangtze River Delta) were classified as the
high—low type with low emission intensities.

3.3. Relations between CO, Emissions and Socio-Economic Features

The direct CO, emissions and emission intensities of three major sectors were related
to the corresponding socio-economic factors. First, we investigated the relations between
industrial emissions and the industrial structure (proportion of the secondary sector of the
economy). The industrial structure was positively associated with both industrial emissions
and per capita emissions, indicating that a greater proportion of the secondary industry
tends to increase the industrial emissions and emission intensity (Figure 3). Second, we
explored the relationship between transportation emissions and population density. Cities
with a higher population density tend to have more transportation emissions but fewer
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per capita transportation emissions. Third, higher income levels, represented by GDP
per capita, were linked to more household emissions across cities. Overall, economic
development and population growth had negative relations to emission intensity.
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Figure 3. Scatter plots between CO, emissions and socio-economic factors in Chinese cities.

To further explore the impacts of socio-economic features on CO, emissions, we built
multiple regression models on diverse emission sectors and emission efficiency indicators
(Table 1). The dependent variables in the regression equation are the logarithm of CO,
emissions, and the independent variables are the logarithm of socio-economic features,
including GDP, per capita GDP, industrial structure, and population density. Those models
were tested significantly, indicating a linear regression relationship between socio-economic
features and CO, emissions. According to the fitness reflected by the adjusted R square,
socio-economic features can better explain the total emissions and household emissions
compared to other emission indicators.
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Table 1. Linear regression models for CO, emissions and emission intensity.

Total Industrial Household Indirect Per Capita Per GDP
Emissions Emissions Emissions Emissions Emissions Emissions
Constant 1.98 *** 0.62 —1.73 ** 1.487 1.98 *** 1.97 **
GDP 0.74 *** 0.63 *** 0.97 *** 0.866 *** —0.26 *** —0.26 ***
GDP per capita —0.54 *** —0.56 ** —1.24 *** —0.58 0.46 *** —0.54 ***
Industrial structure 0.46 ** 1.01 *** 0.24 —0.28 0.46 ** 0.46 **
Population density —0.36 *** —0.48 *** —0.26 ** —0.24 —0.36 *** —0.36 ***
Adjusted R? 0.42 0.27 0.44 0.31 0.22 0.24

Note: *** and ** indicate significance levels of 1% and 5%, respectively.

Specifically, cities with a higher GDP and a larger proportion of secondary industry
tend to have more total emissions, but those with a higher GDP per capita and population
density tend to have fewer emissions. Such effects are also reflected in different sectors
of total emissions, i.e., industrial emissions and household emissions, as well as emission
efficiencies in terms of population and GDP. Some exceptions exist for the indirect emissions,
which consist of the electricity consumption produced in external cities, as they are majorly
promoted by GDP. In addition, cities with a higher GDP tend to emit less CO, per capita,
and CO; per GDP represents a higher emission efficiency, whereas those with a higher
GDP per capita tend to emit more CO; per capita.

Our models also show trade-offs between economic development and CO, emissions,
as well as between CO, emissions and emission efficiency. For example, a higher GDP could
promote CO, emissions and emission efficiency; higher incomes can reduce emissions but
increase per capita emissions. Meanwhile, synergies include more secondary industries
associated with higher emissions and a lower emission efficiency, and a higher population
density is associated with fewer emissions and a higher emission efficiency.

4. Discussion
4.1. Complex Relationships between Socio-Economic Development and CO, Emissions

Previous studies have revealed that GDP and industrial structure have a certain role
in promoting total CO, emissions [36-38]. We investigated more detailed CO, emissions
from different sectors and found similar promoting impacts of GDP growth on the indus-
trial, household, and indirect emissions (Table 1). The industrial structure has suppressed
industrial carbon emissions to a larger extent than total emissions, indicating that re-
ducing the proportion of secondary industry would play a certain role in alleviating the
growth of industrial emissions, which is the major component of total carbon emissions
(Figures 1 and 2). For industrialized cities, the improvement of the economic level may lead
to an increase in carbon emissions. However, economic development is often accompanied
by technological progress and the optimization of the industrial structure [39,40]. This
can be implied by the negative correlation between GDP and per GDP emissions that we
found. Therefore, developing the economy in a sustainable manner, such as increasing the
proportion of tertiary industry and improving technological progress, could contribute to
carbon reduction effectively.

Economic development in a city is reflected not only in the GDP growth but also
in the rising income level [41]. We found positive impacts of GDP on carbon emissions,
which is consistent with previous research [16]. In contrast, our models detected negative
impacts of the income level, represented by GDP per capita, on CO, emissions, especially
on household emissions (Table 1), implying that a higher income would lead to fewer CO,
emissions. Although the EKC curve presents a non-linear relationship between environ-
mental degradation and GDP per capita [42,43], our models show positive correlations
between per capita emissions and GDP per capita, which is consistent with the previous
long-term research in Chinese cities [23]. This might imply that developed Chinese cities are
about to reach the peak of GDP per capita, which is the inflection point towards a negative
relationship [23]. Such positive relationships may be due to the increase in the income level
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being related to the improvement of consumption capacity and living standards, which
would increase the load on resources and the environment [44,45]. Overall, an improved
income level is beneficial for total carbon reduction, whereas the high per capita energy
consumption by high-income groups is noteworthy.

Population growth is another trend associated with economic development [46]. We
observed that a higher population density was associated with fewer CO, emissions and a
lesser emission intensity. Similarly, previous research for 154 countries yielded a significant
negative correlation between population density and carbon dioxide emissions. This is a
piece of evidence supporting the building of compact cities. In contrast, a previous study
found positive impacts of population density on per capita emissions for the 30 provinces in
China during the period 1995-2012. This contradiction might be explained by the different
spatial and temporal scales. Recently, many urban scientists have claimed that compact
cities are sustainable [47,48], and our results also indicate that compact cities represented
by a higher population density tend to emit less CO, and have a lower emission intensity.
We also observed that fewer transportation emissions per capita are associated with a
higher population density (Figure 2), indicating low carbon emission transportation in
compact cities [49]. Thus, compact forms of cities might be an effective way to achieve
carbon reduction during urbanization in China.

There are several limitations in our statistical models explaining CO, emissions by
socio-economic features. The STIRPAT model used in this study only concerns the linear
relations, and, thus, future research could consider nonlinear regression and the interaction
between independent variables, as well as stepwise regression models or principal com-
ponent analysis to obtain the major influencing factor. Additionally, the trade structure
in which exports are dominated by energy-intensive products and imports are domi-
nated by high-value-added products is another economic factor that influences carbon
emissions [11,12]. Despite the economic side, the characteristics of CO, emissions are
largely determined by the natural resource endowment and the structure of cooking energy
consumption [50,51]. Future research can involve more control variables such as energy
structure, heating days in the winter, and cooling days in the summer in order to explore
more accurate impacts of economic development on CO, emissions.

4.2. Implications for Carbon Reduction Policy

Our study provides essential and detailed information on CO; emissions from spe-
cific sectors and spatial distributions in order to inform policymakers of effective carbon
reduction actions in China. First, our maps of CO, emissions and emission efficiency
detected the most noteworthy cities for carbon reduction, which are those with both high
emissions and a high emission intensity (Figure 2). We found that these high emission-high
intensity cities are mostly located in regions with geographical advantages and energy
advantages such as abundant coal, mines, or oil field resources, but they have a low degree
of economic development due to traditional industry. In particular, the cities with high per
capita emissions excessively depend on natural resources, and they are important bases for
resource production in China.

Second, our models reveal how to reduce CO, emissions from a specific sector and
improve emission efficiency. Specifically, decreasing the proportion of secondary industry
can significantly lessen industrial emissions, and this can be achieved by developing diverse
tertiary sectors of the economy such as tourism, financial, and real estate activities based
on the existing geographical advantages of industrial cities [52]. To reduce household
emissions, high-income groups are worthy of attention, since income levels can increase
household emissions. The extensive utilization of energy can result in a waste of energy
and a large increase in carbon emissions [45]. Additionally, enhancing emission efficiency
by reducing secondary industry and compacting population distribution is crucial for
controlling carbon emissions in long-term urban sustainable development [53]. Thus,
developing the economy in a sustainable manner, such as increasing the proportion of
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tertiary industry and improving technological progress, could contribute to both carbon
reduction and economic growth.

5. Conclusions

In this study, we analyzed the characteristics of CO, emissions and emission efficiency
for 340 Chinese cities and further explored their associations with socio-economic features
in order to recognize the most effective way to reduce CO, emissions by targeting specific
sectors and cities. We found that industrial emissions are the dominant component of
total CO, emissions for the country and large urban agglomerations. The spatial maps
indicate that industrial cities in the North with both high emissions and a high intensity
are the most noteworthy regions, highlighting the importance of considering the total
emissions and efficiency simultaneously when designing carbon reduction policies. The
GDP, GDP per capita, industrial structure, and population density were significantly related
to CO, emissions and emission intensity. Although a higher GDP was related to more CO,
emissions, a higher GDP and a higher income were related to lower per GDP emissions.
A higher income is also related to fewer CO, emissions but could increase per capita
emissions. Reducing the proportion of the secondary sector of the economy and increasing
population density could significantly decrease CO; emissions and emission intensity.
These findings suggest that encouraging the tertiary sector of the economy and developing
compact cities are effective actions that can both achieve the carbon reduction target and
not hinder the economic development and urbanization process in China.
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