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Abstract: Law enforcement academies, designed to prepare recruits for their prospective career,
represent periods of high physical and mental stress, potentially contributing to recruits’ injuries.
Managing stress via monitoring training loads may mitigate injuries while ensuring adequate prepa-
ration. However, it is vital to first understand an academy’s typical training load. The aim of this
study was to profile the typical training load of law enforcement recruits over the course of 22 weeks.
Data were prospectively collected using global positioning system (GPS) units placed on recruits
during a portion of the academy training, while a desktop analysis was retrospectively applied to six
other classes. A Bland–Altman plot was conducted to assess the agreement between the two methods.
A linear mixed model was conducted to analyse the difference in distances covered per week, while
other variables were presented graphically. Adequate agreement between the desktop analysis and
GPS units was observed. Significant differences (p-value < 0.01) in distance covered (9.64 to 11.65 km)
exist between weeks during early academy stages, which coincide with increases (~6 h) in physical
training. Significant decreases in distances were experienced during the last five weeks of academy
training. Most acute:chronic workload ratios stayed between the proposed 0.8 to 1.3 optimal range.
Results from this study indicate that large increases in training occur early in the academy, potentially
influencing injuries. Utilizing a desktop analysis is a pragmatic and reliable approach for instructors
to measure load.

Keywords: academy; tactical; conditioning; police; cadet

1. Introduction

Law enforcement is a predominantly sedentary occupation by nature that is inter-
spersed with periods of high-intensity activity [1]. Occupational tasks can range from
performing deskwork to near-maximal physical exertions [2]. These shifts from sedentary
periods to bouts of high-intensity work can often occur without warning, hindering the
ability of officers to properly prepare themselves [3]. These activities may also be performed
while carrying approximately 10 kg of equipment (i.e., body armour, handcuffs, and a
firearm) [4] which negatively impacts the officer’s capabilities [5]. The physical demands
of this career predispose officers to high rates of injury and require adequate fitness to
effectively perform their unique occupational tasks.

A critical review by Lyons et al. [6] found that law enforcement officers tend to suffer
injuries at a rate of 240 to 2500 injuries per 1000 personnel per annum. For comparison, a
study of United States construction workers found an average annual injury rate of 22.10
per 1000 workers [7]. These injuries can impact individual officers by causing decreases
in occupational performance [8]. Due to law enforcement’s role in protecting the public,
decreases in performance can potentially lead to public harm or even death. At an organi-
zational level, injuries lead to higher financial costs, as seen in an annual report from the
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New South Wales Police Force showing the median cost per injury claim was AUD 9900 [9].
This same report also found that the average amount of time lost per employee due to
workplace injury was 78 h [9]. This absenteeism further increases workforce strain by
requiring other law enforcement officers to complete additional shifts to cover the missed
time of their injured peers. This could then increase their risk of injury through additional
workplace exposure [10]. As such, it is not surprising that multiple methods have been
trialled during academy training to reduce injuries, such as movement screening [11] and
ability-based training [12].

In addition to lowering an officer’s chance of injury [13], increasing physical fitness
can improve occupational performance [14]. Research conducted by Canetti et al. [14]
found a significant positive relationship between measures of anaerobic strength, such
as muscular strength, and the ability to perform occupational tasks (e.g., body drags or
fence climbs). Furthermore, research by Lockie et al. [15] reports that performance on
pull-ups, push-ups, and 2.4 km runs were predictive of performance in certain occupational
tasks, such as fence climbs and occupational task-based obstacle courses. Recruits who
have higher levels of aerobic fitness are also more likely to successfully complete academy
training [16]. Furthermore, increased physical fitness has also been found to contribute
to improved long-term health outcomes for both the physical [17] and mental [18] health
of officers.

Strategies aimed at reducing injury risk while improving fitness are of vital impor-
tance to this population, positively benefiting both organizations and individuals. Training
academies, due to their safe, supervised, and controlled environment, are an ideal envi-
ronment to implement such strategies when compared to the unpredictable nature of the
occupation [19]. One potential methodology to be researched in academies and to impact
both injury risk and fitness is the optimization of training load (TL). Though indirectly
affected through concepts such as ability-based training, the optimization of TL has not
been studied in depth within tactical populations despite success in the sporting realm [20].

The optimization of TL has recently grown in popularity in the sporting world and is
used as a strategy to decrease injury risk while improving fitness and performance [21].
This approach employs a wide variety of tools to measure TL [21]. Approaches to mea-
suring TL can be organized into external and internal loads, and in sports are typically
measured via technology such as global positioning system (GPS) units or subjective well-
ness questionnaires [20–22]. Measures of external loads include variables such as distance
runs, the volume of weight lifted, or the number of accelerations, while internal loads
include variables such as heart rate or ratings of perceived exertion (RPE) [20,21]. Rapid
changes in external or internal loads may be indicative of future injury risk or performance
change. For example, Piggott [23] found that 40% of injuries in Australian football followed
a change in the TL in the previous week. The acute:chronic workload ratio (ACWR) is
one approach designed to capture an individual’s cumulative load by comparing their
most recent TL (acute) to their prior TL (chronic) [20]. The ACWR has been related to
injury risk in the literature [24,25], with ratios of 0.80–1.30 theoretically resulting in the
lowest risk of injury [20]. The ACWR quickly gained popularity in sports and has been
used across a variety of research studies [24,26,27]. Despite this initial popularity, recent
research has suggested that the ACWR may not predict injury due to conceptual faults [28]
and methodological flaws [29]. Although the ACWR may not be an effective means of
predicting injury risk, it may be able to be used to provide a snapshot of workload over
time through which to inform overall TL and progression. Optimizing TL may prove to
be a beneficial strategy to reduce injuries and improve fitness in a law enforcement recruit
population. Prior to making recommendations, however, it is vital to first profile typical
TLs experienced by recruits. Therefore, the aim of this study was to profile the typical TL
of a law enforcement recruit class undergoing academy training.
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2. Materials and Methods
2.1. Subjects

Training and schedule data were provided from seven recruit classes from one United
States law enforcement agency. All classes took place in the same location but under the su-
pervision of various staff members. Course length did differ between classes, with one class
lasting 20 weeks, and the six retrospective classes being 22 weeks in length. GPS data were
prospectively collected from a subsample of 24 recruits, 9 female (age = 29.9 ± 6.4 years,
height = 163.4 ± 6.5 cm, body mass = 68.2 ± 11.2 kg) and 15 male (age = 35.5 ± 11.9 years,
height = 176.1 ± 9.8 cm, body mass = 82.6 ± 11.9 kg) recruits, randomly selected from one
class. Informed consent was provided by the recruits and ethical approval was given by the
Bond University Human Research Ethics Committee and by the California State Fullerton
Institutional Review Board under HSR-17-18-370.

2.2. Procedures
2.2.1. GPS and Desktop Analysis

This study profiled the TL of seven classes undergoing academy training. In order to
gain an understanding of the typical TL within this population, the first class was profiled
using data collected via Polar Team Pro sensors (Polar Electro Inc. Bethpage, New York, NY,
USA) collected for four weeks (19 days) in an academy training facility in the United States.
Academy training typically lasts 20 to 22 weeks at this facility and consists of classroom
lectures as well as physical and skills training sessions. Training typically occurred five
days a week, 8 h a day for a total of 40 h of training per week.

Using these data and information obtained from the academy staff, a desktop analysis
of the remaining 16 weeks was performed. The desktop analysis was constructed from
course schedules and physical training descriptions collected as part of the standard
operating procedure provided by academy staff. The TLs of the remaining six classes were
retrospectively assessed using this same methodology. The desktop analysis method has
previously been utilized in research, albeit in a military population [30].

The Polar Team Pro sensors (Polar Electro Inc. Bethpage, New York, United States)
used to measure distance in this study were reported to have less than 5% error when
measuring total distance at various speeds [31]. Sensors were applied upon entry to the
locker room first thing in the morning and removed upon leaving the classroom at the end
of each working day. The distance that recruits covered to and from their parking lot was
not collected. Due to the limitations in the data collection process, such as being able to use
the Polar Team Pro sensors for only four weeks, total distance was the only variable used
for comparison in this study.

For the desktop analysis conducted on the seven classes, all estimates were based
on a cohort rather than an individual level. Outliers who did not participate in specific
activities were excluded from that specific activity. In situations where the class split into
multiple groups, one group was followed and analysed. While this procedure may affect
the timings of the load experienced by recruits, the overall load experienced should be
similar. This protocol has been used in previous research investigating military recruit
training [30]. Distances covered for the desktop analysis were either measured on-site, or
retrospectively using the Google Maps measuring tools, and accounted for the distance
that recruits needed to cover to reach their respective parking lots. Total distances per week
were calculated as well as weekly changes in the distance covered. This was calculated
by subtracting the current week’s total distance from the total distance of the preceding
week. Data analyses were performed separately to the collection and analysis of the Polar
Team Pro (Polar Electro Inc. Bethpage, New York, United States) data to ensure minimal
risk of bias.

2.2.2. Calculation of ACWR

Upon completion of the desktop analysis both the ACWR, based on rolling averages, as
well the EWMA ACWR were calculated and compared against the proposed 0.80 to 1.30 op-
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timal range [20]. The rolling average ACWR was calculated using a 1:4 week acute:chronic
ratio, with one week representing the acute workload and four weeks representing the
chronic ratio. Calculating the EWMA ACWR for a given day has previously been described
by Williams et al. [32] and is presented in Equation (1).

Equation (1). Exponentially Weighted Moving Average Calculation

EWMATODAY = LoadTODAY × λa+(1 − λa) × EWMAYESTERDAY (1)

where λa is between 0 and 1 and represents the degree of decay. Higher values of λa will
discount older observations at a faster rate. The calculation of λa can be seen in Equation (2).

Equation (2). Degree of Decay Calculation

λa = 2/(N + 1) (2)

where N is the chosen time decay constant.
The same one-week acute workload and four-week chronic workload were used for

the EWMA ACWR leading to an N value of 7 days for the acute workload and 28 days
for the chronic workload. To calculate the EWMA ACWR value itself, an EWMA was
calculated for both the acute and chronic workload using the above formulas. The EWMA
ACWR value was then calculated by dividing the EWMA acute workload by the EWMA
chronic workload. To begin the calculation, the first observation in the series was arbitrarily
recorded as the first workload in the series.

2.2.3. Physical Training Modalities

Times spent training or completing various activities were calculated and split into the
following categories: anaerobic, aerobic, muscular conditioning, multi-modal, classroom,
and skills training. This analysis was completed via a desktop analysis and informed by the
lead author based on time spent on location and expertise of the training staff. Anaerobic
training was defined as high intensity, intermittent bouts of training and aerobic training
as of low intensity, but long duration. Muscular conditioning was defined as periods of
training that emphasized weightlifting and other activities focusing on increasing muscular
strength, while multi-modal training was activities that encompassed a combination of
some or all of the aerobic, anaerobic, and muscular conditioning, such as circuit training.
Skills training encompassed a variety of activities, such as weapons handling, evasive
driving, or practising real-world scenarios (e.g., pulling over a suspect), while time spent
in class was any time spent receiving a lecture (Table 1). Generally, on any day, recruits
participated in a mixture of classes, skills training, and physical training sessions. Physical
training sessions generally occurred two to four times a week and lasted for one to two
hours in duration with programs varying between classes, though this varied with some
weeks not containing any planned physical training [33].

Table 1. Training modality definitions.

Training Modality Definition

Anaerobic High-intensity, intermittent bouts of training

Aerobic Low-intensity, long training

Muscular conditioning Training periods focused on weightlifting and other
activities to increase muscular strength

Multi-modal Training that encompasses a combination of anaerobic,
aerobic, and muscular conditioning

Skills training Training sessions focused on occupational skills such as
weapons handling or evasive driving

Classroom Time spent receiving a lecture
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2.3. Statistical Analysis

Data are reported as mean ± standard deviation (SD) unless otherwise specified.
Descriptive methods of data normality were completed (i.e., distribution plots, skewness,
kurtosis, and outliers) before analysis to determine the appropriateness of parametric or
non-parametric analyses. A Bland–Altman plot was produced to determine the agreeability
of the desktop analysis against the mean distance data from the Polar Team Pro sensors. A
Bland–Altman was chosen due to its improved ability to demonstrate agreement compared
to correlation [34,35]. The Bland–Altman allows for the assessment of bias (encompassing
fixed, proportional, and systematic bias) and precision (the closeness of the limits of
agreement as measured by +/−1.96 SD) [34,35]. Assumptions (normal distribution of
differences, no correlation between differences and means, and heteroscedasticity) were
checked and met.

The Bland–Altman was conducted utilising only data captured during outdoor train-
ing sessions. This was selected due to a decreased indoor accuracy from the Polar Team
Pro sensors and the potential for the signal to be dropped and picked up in a different
location while the recruits were sitting in class (‘geographical drift’). Therefore, the points
of comparison for the Bland–Altman plot were the mean distance covered by participants
wearing the Polar Heart Rate Monitor, and the expected distance covered during these
same sessions as identified by the desktop analysis. This resulted in nine data points
from the sensors for the production of the Bland–Altman plot. It was expected that the
Polar Team Pro sensors would consistently demonstrate higher measures of distance than
the desktop analysis due to the sensors being able to gather data on incidental distances
covered. Absolute percentage error (absolute mean difference/mean) was also calculated
for the means of both the Polar Team Pro sensors and the Bland–Altman plot.

Due to the differing class lengths, a linear mixed effects model was conducted to
analyse the distance covered across various weeks. This was accomplished by using weeks
as a predictor of distance and specifying weeks as a random effect nested within separate
classes [36]. Post hoc analysis was conducted using Tukey’s method to correct for multiple
comparisons. This comparison was completed across all weeks, with corrections for p-
values performed for all iterations. To make the results more practical, comparisons are only
shown between six adjacent weeks. For example, week one was compared to weeks two,
three, four, five, six, and seven. This timeframe was chosen based in part on periodization
principles outlined by Issurin [37]. Significance was set at p-value < 0.05 a priori. All
statistical analyses were conducted using RStudio (RStudio, Public Benefit Corporation,
version 1.25.042) with packages blandr, nlme, ggplot2, multcomp, pastecs, and reshape.

3. Results

A mean difference of 0.27 km (95% CI 0.20–0.34 km) for the distance covered during
outdoor training sessions existed between the Polar Team Pro sensors and desktop analysis,
indicating fixed bias was present as the Polar Team Pro sensors consistently measured
higher than the desktop analysis, as expected. There does not appear to be a proportional
bias as the mean difference was consistent across the range of mean distances covered
(Figure 1). This is reflected by a slope of 0.019 when calculating a regression equation
between the differences and means of the measures. There is also no systematic bias
(correlation between the difference scores and the mean scores) (r = 0.38, p-value = 0.31).
The absolute percentage error was 7.7% and 8.3% of the average estimated distance by the
Polar Team Pro sensors and desktop analysis.

Though the timeframes varied between classes, the average distance covered per
week during the 20-week program was within one standard deviation of the overall mean
(Table 2). This suggests that the difference in distances between the programs was likely
mainly due to the difference in duration, and that the seven classes can be reasonably
compared together.
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Table 2. Average distance per week per class during academy training.

Class Number and Duration Average Distance per Week (km) # of SD from Mean

Class 1—22 weeks 17.99 0.45
Class 2—22 weeks 17.12 −0.68
Class 3—22 weeks 18.72 1.4
Class 4—22 weeks 18.44 1.03
Class 5—22 weeks 16.64 −1.30
Class 6—22 weeks 17.56 −0.11
Class 7—20 weeks 17.04 −0.79

Total mean (SD) 17.64 (0.77)
Key: # of SD—number of standard deviations.

3.1. Distance Covered

There was an approximately 10 km increase in total distance covered from Week 1
to 2 (Figure 2). Results of the linear mixed effect model show significant differences be-
tween Week 1 and Weeks 2 (difference = 9.65 km; p-value = <0.01), 3 (difference = 9.64 km;
p-value = <0.01), 4 (difference = 11.65 km; p-value = <0.01), 5 (difference = 9.69 km;
p-value = <0.01), and 6 (difference = 10.07 km; p-value = <0.01). Overall, the model shows
that week was a significant predictor of distance (χ2(21) = 88.41, p-value < 0.001), suggesting
that the distance covered changes significantly across weeks.

Between Weeks 7 and 14, the distances covered plateaued, remaining between ap-
proximately 15 and 20 km per week. At Week 17, the total distance covered began to
decline to less than 10 km during the last two weeks. This decrease was also reflected in
the linear mixed effect model, with significant differences between Week 15 and Weeks
18 (−8.96 km; p-value = <0.01) and 21 (−13.16 km; p-value = <0.01); Week 16 and Weeks
21 (−9.82 km; p-value = <0.01) and 22 (−9.69 km; p-value = <0.01); and Week 17 and
Weeks 18 (−7.99 km; p-value = 0.049), 21 (−12.19 km; p-value = <0.01), and 22 (−12.07 km;
p-value = <0.01). For full results of the linear mixed effects model including p-values, please
refer to Supplementary Table S1.

As per the weekly total distance covered, there was an increase of approximately
10 km in distance covered during Week 2 (Figure 3). No other large changes appeared to
occur during most of the academy. However, over the last five weeks, larger fluctuations
could be seen, ranging from approximately −9 to 4 km changes from week to week.
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3.2. Acute:Chronic Workload Ratios

The average ACWR showed few spikes and consistently remained between the
0.80–1.30 range through most of the program (Figure 4). The highest ratio of approxi-
mately 1.20 occurred during Week 4. From Week 16 on, the ACWR began to decrease, with
intermittent increases between Weeks 18 and 20 (0.70 to 1.00), and Weeks 21 and 22 (0.60 to
0.70). Due to the methodology of the ACWR, results cannot be reported until Week 4, but
the impact of large, early increases in distance covered could be seen as the acute load is
still higher than the rolling average.

While the ACWR is unable to display data during the first four weeks, the EWMA
ACWR can begin tracking from Week 2 (Figure 5). The EWMA ACWR shows an increase to
approximately 1.40 during the first six weeks. After this period, the EWMA ACWR begins
to consistently decline, ending at about 0.90 during Week 22.
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3.3. Class, Skills Training, and Physical Training

The hours completed in class and skills training are shown in Figure 6, which suggests
an inverse relationship between the two training types. Overall, except for Weeks 8 and
18, recruits were more likely to spend time in class than completing skills training. There
was a higher proportion of time spent in class, particularly at the beginning and end of the
academy, with the middle time period during academy training showing increases in the
time spent training various skills.

The hours spent completing various types of physical training each week are presented
in Figure 7. An increase of approximately six hours is seen between Week 1 and Week 2.
Time spent training remained relatively consistent for the rest of the program, around three
to four hours per week, before tapering off during the last five weeks. Aerobic conditioning
and multi-modal training were the two most common forms of training, with less time
spent on anaerobic and muscular conditioning.
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4. Discussion

This study profiled the typical TL of a law enforcement recruit class during academy
training by analysing the total distance covered (inclusive of weekly changes and ACWR),
and hours spent in class, conducting skills training, and completing physical training. The
results of this study showed an increase in the total distance covered during the early
stages of the academy, especially between Weeks 1 and 2 (approximately 10 km). The effect
of this almost twofold increase is also reflected in the higher early values of the ACWR
and EWMA ACWR. The data also highlighted that recruits often completed aerobic and
multi-modal based training, as opposed to anaerobic and strength-based training, echoing
previous findings in this population [38].

Results from the Bland–Altman plot showed that a desktop analysis could be used to
gauge the total distance covered by recruits during the academy, though it may underesti-
mate the true distance covered. The tendency for the desktop analysis to underestimate
prospective and observed measures has been previously acknowledged in the literature [30].
These differences are likely due to incidental movements that would be registered on a GPS
device but not a desktop analysis (e.g., recruits getting up and moving around during a
class session) [30].

The desktop analysis of this population showed an increase of 10 km in total distance
covered per week after the first week and remained between approximately 15 and 22 km
until Week 17. These results are similar to a study by O’Leary et al. [39] who reported
weekly distances between 10 and 18 km in British military recruits, as measured using
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GPS technology. This increase in distance corresponded to an increase in hours spent
performing physical training, potentially resulting in a higher training intensity. Results
from the linear mixed effect model showed significant differences between Week 1 and
Weeks 2–6, with differences ranging from 9.65 to 11.65 km. Previous research in law
enforcement populations has suggested that injuries occur, in part, due to the increase in
physical demand as recruits begin academy training [40]. In fact, a profile of injuries in
this same law enforcement population found that injuries often occur to the lower limb
during physical training, with the majority of injuries occurring between Weeks 2 and 5,
and Week 2 specifically having the largest injury total [41]. In military academies, which
employ similar training strategies as law enforcement [12], research has found a similar
trend where the increase in physical training is related to injuries, particularly those that
are overuse in nature [40]. Research by Booth et al. [42] has even shown that physiological,
biochemical, and psychological evidence of overtraining can be seen as early as in the
first five weeks of training in these populations. This overall increase in TL may be a
contributing factor to the overtraining and high rates of injuries seen in recruits [40,42].
Though TL may be a contributing factor to the injuries seen in recruits, it is important to
note that injuries are the result of a complex interaction of factors such as age, sex, and
weight, among others [43].

Previous research on elite Australian Football League (AFL) players has shown that
exposure to week-to-week changes of >30% in distance may increase the risk of injury but
had poor predictive ability (area under curve = 0.55–0.56) [44]. Additional research on
AFL players found that three-weekly cumulative distances between 73.72 and 86.66 km
increased the risk of injury (OR = 5.49; 95% CI = 1.57–19.16) [22]. In this study’s population,
week-to-week changes of over 30% were recorded, particularly from Week 1 to Week 2
where distances covered almost doubled, as well as large three-weekly cumulative distances
(Weeks 2–4 showed approximately 60 km in distance covered). These variables may be
contributing to injury risk in this recruit population. Caution does need to be applied
when comparing a sporting population to law enforcement recruits. The distance covered
by athletes, particularly AFL players, may be at a higher average intensity which could
contribute more to injuries. Additionally, elite AFL players have previously been found
to have a VO2Max of 63.40 mL/kg/min [45], while the average recruit in this population
has an estimated VO2Max of 35.42 to 41.08 mL/kg/min [33]. Given the beneficial impact of
physical fitness on injury risk in both of these populations [13,46], elite AFL players may
be able to tolerate a higher TL than recruits. Due to differences between sporting and law
enforcement recruit populations, further research will need to be conducted specifically on
recruits to study the relationship between the TLs experienced and associated injuries.

In research conducted by Trank et al. [47], military recruits who ran more than 25 miles
(40.23 km) over the course of an eight-week training program had an increased risk of
injury, with no resultant improvement in 1.5-mile (2.4 km) performance. Recruits in this
current population were likely to undergo training programs with an emphasis on long-
distance running [33,38,48]. This type of training may be predisposing recruits to higher
rates of injury (due to increased exposure [49]) with little benefit to performance. While
cardiovascular fitness is crucial to occupational performance in law enforcement [50], it is
unlikely that officers will be required to perform long-distance running as an occupational
task [2]. Improving cardiovascular fitness through means that are more closely related to
occupational tasks may be of greater benefit to law enforcement officers. The utilisation of
high-intensity interval/intermittent training (HIIT) may be an effective way to improve
physical fitness with a reduction in distance covered (thus decreasing exposure to injury)
that more closely relates to occupational tasks. Research has suggested that HIIT training
can significantly improve physical fitness in the general population [51]. Though this
may decrease the distance covered, HIIT training may impact injury risk due to higher
intensities. The relationship between intensity and injury risk will need to be studied in
this population to fully understand how HIIT may impact injury risk.
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Due to the nature of the ACWR, calculations could not be made during the first
four weeks of the academy when the total distance increased significantly. The impact
of this sudden increase was better presented in the EWMA ACWR, which resulted in an
increase over the course of the first five weeks above the proposed 1.30 optimal range,
suggestive of the large increases seen in the total distance covered. In a population of rugby
league athletes, an ACWR using a total distance of less than 0.30 and a two-week average
greater than 1.31–1.51 was likely to increase injury risk [25]. Similarly, in a cohort of AFL
players, an EWMA ACWR greater than 2.00 was associated with increased injury risk when
compared to a ratio between 1.00 and 1.49 [27]. Both ACWRs never reached these values in
the studied population, possibly due to the calculation utilizing an average across seven
classes. Multiple limitations in the ability of the ACWR to predict injury risk have been
discussed in the literature. Common criticisms of the ACWR include no physiological
underpinning for the recommended safe range to be applied across a variety of sports and
TL variables [28], mathematical coupling (due to the same value being included in both the
acute and chronic variables) that can lead to spurious correlations [29], and potentially a
high false discovery rate due to research analysing the ACWR by splitting a continuous
variable into discrete categories, which is known as discretisation [52]. Other limitations
have been proposed in the literature, but a whole review of the ACWR is beyond the scope
of this article. Thus, readers are directed to other published works for further information
regarding the potential limitations of the ACWR [28,29,52,53]. Practitioners should exercise
caution when considering utilising ACWRs to adjust training programs with the intent to
reduce injuries.

The results of this study suggested that anaerobic and muscular conditioning were
the least utilized forms of physical training, with a large focus on aerobic and multi-modal
training. These findings are consistent with previous research in this population which
suggests a focus on long-distance runs and body weight circuits [48]. It has been found in
law enforcement populations that higher levels of anaerobic fitness led to improved perfor-
mance in occupational tasks [14,54]. Despite this relationship, academies often engage in
physical training programs focused on muscular endurance and aerobic fitness [33,48,55].
This training focus is typically due to competing demands for time from other necessary
activities, such as defensive tactics or range sessions [16], as well as lacking the necessary
resources and equipment to safely and effectively implement programs aimed at devel-
oping anaerobic fitness and strength in a large body of recruits [16]. Recent research has
highlighted certain options for law enforcement academies to pursue in order to improve
these measures of fitness such as the use of unconventional equipment (e.g., body armour
or ammunition cans) and the incorporation of unilateral exercises [12,55].

It should be noted that portions of skills training in this population, such as defensive
tactics, do contain periods of anaerobic conditioning. However, an earlier study in this
same population has found that over the course of the academy, greater improvements were
seen in measures of aerobic fitness and muscular endurance when compared to anaerobic
fitness, muscular strength, and muscular power [33]. An increase in anaerobic-based
training may lead to further improvements in these fitness components and potentially
lead to greater occupational effectiveness upon graduation due to the relationship between
these measures and occupational tasks [14,15,54]. There was also a decrease in hours
spent completing physical training during the last five weeks of the academy. Aerobic
performance has previously been linked to occupational assessments such as fence climbs
and obstacle courses [15], while eccentric strength has also been linked to occupational
tasks (e.g., grappling and landing from jumps) [56]. Therefore, it is vital to ensure that
recruits are receiving enough training stimuli prior to joining the workforce to at least
retain the improvements experienced during the academy and ensure adequate levels of
occupational performance.

There are limitations present in this paper. First, the Polar Team Pro units were
only used during the first four weeks of a 20-week academy as researchers were limited
in their ability to spend time on location. While training staff may have been able to
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facilitate further use of these units, it is unlikely they would have had the time needed
to consistently download data from the units, recharge the units, clear storage on the
units, and reissue the units. The collection of these data is often a full-time role in sports
teams and adding this task to training staff would likely detract from their goal of teaching
and training recruits to become effective law enforcement officers. This would be in
addition to their regular tasks which require an excess of 40 h per week, tending to a
multitude of academy duties. Another option is the utilisation of a research team that
is sufficiently equipped to provide the technology and human resources to implement
a tracking program. A research team would likely need to be contracted to do so, thus
representing a large financial cost to the law enforcement institution. The use of desktop-
based analysis, compared to individualized load monitoring, especially on a variable such
as distance, may be a more practical application given these current barriers (e.g., number
of recruits and resource requirements including time and financial) and the typical training
performed, though this strategy may be influenced by bias. The absolute percentage error
was within 10% of the two methodologies. This was deemed acceptable by the authors
based on population expertise and previous experience validating desktop analyses [30].
Fixed biases that have a greater than 10% error should require further investigation into the
desktop analysis. Further research will be necessary to understand the validity of a desktop
analysis performed by law enforcement staff compared to other measurements such as
GPS devices. This study was also not able to provide information on internal TL through
the use of heart rate or perceived stress over the full duration of the academy. Further
research will need to be conducted using these variables to improve the information on
the TL and intensity experienced by law enforcement recruits and how these may relate
to injury risk and physical fitness. Additionally, this study was not able to compare the
differences between male and female recruits. Previous research in military training has
shown significant differences in internal TL variables between male and female trainees,
which may affect the injury risk between the two sexes [39]. Injury data are not presented
in this article. This limits the ability to draw further conclusions about the relationship
between TL and injuries. Future research is needed to understand TL and injuries in a law
enforcement recruit population. Lastly, the findings from this study are based off of one
United States law enforcement agency and it cannot be assumed that these results will be
applicable to other agencies, either within the United States or internationally.

5. Conclusions

The use of a desktop analysis may be an appropriate method to track the TL in law
enforcement populations, especially with current barriers to individualised load moni-
toring. The results of this research showed increases in distances covered of more than
10 km weekly, particularly during the beginning of the academy training period. There
was also a concurrent increase in the time spent undergoing physical training of approxi-
mately six hours from Week 1 to Week 2. These increases in both physical stress, distance
covered, and physical training can contribute to the injury risk of law enforcement recruits.
Optimizing the training of recruits, particularly during the early stages, may be a valid
method to mitigate this risk of overtraining and injury. Staff members currently working in
law enforcement academies should also explore the use of anaerobic and strength training
strategies to provide a varied stimulus and increase fitness components that are vital to
working in law enforcement. The addition of internal TL measures will be necessary for
the future to examine the role that exercise intensity has on injury risk. Prior to analysing
the relationship between these factors, it is essential to profile the typical fitness changes
and injuries experienced by this population.
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