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Abstract: With the COVID-19 pandemic, the importance of home health care to manage and monitor
one’s health status in a home environment became more crucial than ever. This change raised the
need for smart home health care services (SHHSs) and their extension to everyday life. However,
the factors influencing the acceptance behavior of SHHSs have been inadequately investigated
and failed to address why users have the intention to use and adopt the services. This study
aimed to analyze the influential factors and measure the behavioral acceptance of SHHSs in South
Korea. This study adopted the integrated model of the unified theory of acceptance and use of
technology (UTAUT) and task–technology fit (TTF) to understand the behavioral acceptance of
SHHSs from users’ perceptions and task–technology fit. Multiple-item scales were established
based on validated previous measurement scales and adjusted in accordance with SHHS context.
Data from 487 valid samples were analyzed statistically, applying partial least square structural
equation modeling. The results indicated that the integrated acceptance model explained 55.2%
of the variance in behavioral intention, 44.9% of adoption, and 62.5% of the continuous intention
to use SHHSs, supporting 11 of the 13 proposed hypotheses. Behavioral intention was positively
influenced by users’ perceptions on performance expectancy, effort expectancy, social influence, and
functional conditions. Task–technology fit significantly influenced performance expectancy and
behavioral intention, validating the linkage between the two models. Meanwhile, task characteristics
were insignificant to determine task–technology fit, which might stem from complex home health
care needs due to the COVID-19 pandemic, but were not sufficiently resolved by current service
technologies. The findings implied that the acceptance of SHHSs needs to be evaluated according to
both the user perceptions of technologies and the matching fit of task and technology. Theoretically,
this study supports the applicability of the integrated model of UTAUT and TTF to the domain of
SHHS, and newly proposed the measurement items of TTF reflecting the domain specificity of SHHS,
providing empirical evidence during the pandemic era in South Korea. Practically, the results could
suggest to the planners and strategists of home health care services how to promote SHHS in one’s
health management.

Keywords: smart home health care; technology acceptance; unified theory of acceptance and use of
technology (UTAUT); task technology fit (TTF); partial least square structural equation modeling

1. Introduction

With the fourth industrial revolution and information and communication technology
(ICT) advancement, a highly intelligent home environment is being realized [1]. Along with
the industrial investments into smart home sectors, academic research has also investigated
smart homes in terms of technological capabilities, their implications on various services,
and the benefits to users’ lives [2]. Technology-wise, smart homes are characterized by
integrating technologies such as home automation, automatic control systems, communi-
cation networks, connection devices and services, remote access and control, and home
intelligence [3–5]. Service-wise, smart homes provide diverse services such as management,
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control, monitoring, and responsive assistance through technical management of home
environment [2]. Hence, the benefits that users achieve from smart homes are enhanced
security and safety, convenience and efficiency, comfort and healthcare, communication
and entertainment, and sustainability; consequently, they can experience a better quality of
home life [2–6].

Particularly, smart homes have been considered to effectively support the aging
population and those with chronic diseases [7–10]. The health-related advantages of
smart home technologies can be summarized as operational efficiency, monitoring and
management, and consultancy [2,11]. The operational efficiency of smart homes can ensure
care accessibility and availability, safety, security, and comfort [8,11,12]. Real-time and
long-term monitoring and disease management technologies can enable the detection of
users’ health emergencies and proactive actions toward them [13,14]. The consultancy
functions can promote virtual and remote medical consultations instead of physical visits to
hospitals [2,11]. Therefore, smart homes can be an effective venue for continuous and non-
intrusive health monitoring and the prevention of disease, while ensuring users’ quality of
life and independence [14,15].

Founded on those prior studies of smart homes and their implications on health care
sectors, this research inherited the term “smart home health care services (SHHSs)” and the
following operationalized definition from our previous research [14–16], which embraces
both technical and experiential perspectives:

“Smart home health care is a health care service in one’s residence incorporated with IoT
technology and ubiquitous computing, which has the characteristics of home automation
and home intelligence, communication networks, and remote access and control by
authorized health care personnel. It offers informal health care services such as real-time
or long-term health monitoring, unobtrusive activity support without interference with
daily lives, and disease prevention through anomaly detection. It can reduce care costs,
allow satisfactory service experience in a comfortable and private home environment, and
ensure the independence of residents [15,16]”.

Meanwhile, a large part of previous studies on smart homes has confined their research
scope to the technological perspective, such as the functions of devices, the development
of infrastructure and architecture, and their applications [2,3,16,17]. In addition, some
scholars pointed out that the prevailing technological focus on smart home research may
imply their low acceptance in the market [2,12]. While most studies underscored potential
benefits and challenges of smart home technologies, research on the empirical evidence of
users’ perception and acceptance of those benefits has not been sufficiently conducted [2].
Likewise, several literature reviews on SHHSs asserted that much of the research had
investigated the technological perspective including system and service development,
communication infrastructure, or algorithm models, but the users’ perspectives, such as
their experience and acceptance of SHHSs, have not been explored sufficiently [13–15].

Moreover, the COVID-19 pandemic has caused enormous changes and restrictions
in the human living environment regarding work and home-life situations associated
with digital transformation [18–20]. During lockdowns against the pandemic, digital
communication technologies and infrastructure have accelerated remote and asynchronous
ways of work and home-life [20]. Above all, home health care to manage and monitor
one’s health status in a private and safe in-home environment has become more important
than ever [21,22]. Along with technological advancement, this change brings about a rapid
increase in the need for high-tech-based SHHSs and their expansion into everyday lives.

To sum up, the necessity of this research was established from (1) the increased need
for home health care since the COVID-19 pandemic, and (2) the market expansion of SHHSs
associated with rapid technological development, and (3) the continued lack of empirical
evidence of user acceptance of SHHSs. Namely, it is necessary to investigate users’ attitudes
and technology acceptance of SHHSs in the pandemic era. With these backgrounds, this
study aims to analyze the user acceptance of SHHSs particularly in the South Korean
context, investigating the influential factors for users’ acceptance behaviors of SHHSs,
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and to examine the relationships of external constructs influencing users’ intention to use
and adoption.

Several studies have investigated user acceptance of home health care services such
as mobile health applications and devices in Europe or China [23–27]. However, the
primary target of those studies was mobile application services, and research on health
care particularly focused on smart home environments was not sufficiently conducted.
Therefore, among the various versions of technology acceptance models, this study adopts
an appropriate model for technology-intensive SHHSs and establishes the measurement
items reflecting the domain specificity of SHHSs. Consequently, the findings of this research
could contribute to providing empirical evidence and offering additional insights into the
technology acceptance of SHHSs specified in the South Korean context at the time of the
pandemic era.

2. Theoretical Framework and Research Hypotheses

To assess the acceptance of technologies, researchers have established several mod-
els such as the technology acceptance model (TAM) [28], its well-known extensions of
TAM 2 [29], and the unified theory of acceptance and use of technology (UTAUT) [30].
Notably, Venkatesh et al. proposed the UTAUT model that integrated eight models and
theories of prior studies (i.e., the theory of reasoned action (TRA), TAM, the motivation
model, the theory of planned behavior (TPB), a combined model of TAM and TPB, the
innovation diffusion theory, the model of personal computer utilization, and the social
cognitive theory) [30]. Therefore, UTAUT has been considered to have a comprehensive
understanding of the acceptance procedure and a robust predictive power compared with
other models [31]. It presents four determinants of behavioral intention: (1) performance
expectancy (PE, adapted from the perceived usefulness of TAM), (2) effort expectancy
(EE, adapted from the perceived ease of use of TAM), (3) social influence (SI, adapted
from the subjective norm of TRA), and (4) facilitating conditions (FC, adapted from the
perceived behavior control of TPB) [32]. Many researchers have employed the UTAUT to
explain the technology acceptance behavior across diverse domains, including information
technologies [24,32,33] and medical informatics [34,35].

Meanwhile, Goodhue and Thomson suggested the task technology fit (TTF) model
comprehends the association between information system and individual performance; this
model illustrates how the fit between technologies and users’ tasks influences individual
performance in information technology systems [36]. The task–technology fit is the level
to which the technology features or functions match the task requirements, and both task
characteristics (TAC) and technology characteristics (TEC) are the determinants of task–
technology fit [36–38]. In other words, when the task requirements exceed the capabilities
of technologies, or when technology features demonstrate unsatisfactory performances to
complete the task, the task–technology fit would decline [24]. The TTF model has been
widely applied to various contexts of information systems, including online services [39,40]
and mobile technologies [41,42].

Although the UTAUT has been evaluated in diverse industry contexts and can de-
scribe around 70% of the users’ usage intention [30], some limitations still exist. Even if a
user considers specific information systems useful and easy to use, (s)he will not use the
system when it cannot fit requirements or improve performance [43]. While the UTAUT
underscores a user’s perceptions of technology, the TTF elucidates a user’s acceptance
from the perspective of task–technology fit. In that sense, TTF can compensate for the
limitation of UTAUT by explaining the fit between the task requirements and technical
characteristics. Accordingly, several studies have combined the UTAUT and TTF models to
explain user adoption behavior of advanced technology services such as mobile banking,
online education, and wearable device services [24,33,43,44]. In that research, the factors of
both TTF and UTAUT models significantly influenced the user’s adoption behavior [43].

As mentioned earlier, SHHS is a technology-intensive service incorporating diverse
home intelligence technologies to support real-time and long-term health monitoring,
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unobtrusive activity support, and disease prevention [14,15]. Thus, users’ perceptions of
the smart home and health care technologies are basically influential to their adoption
behaviors. However, whether the technologies of SHHSs can satisfy users’ requirements
and support their tasks sufficiently would be at a different level to the perception of
technologies. In other words, the acceptance of SHHSs needs to be approached considering
both the technical complexity of smart homes and the task pertinence of home healthcare.
Therefore, to establish a comprehensive understanding of the users’ adoption behavior of
SHHSs, embracing the TTF perspective as well as the typical UTAUT model is critical.

Accordingly, this study adopted the integrated model of UTAUT and TTF from previ-
ous research [24,35,43,44]. The integrated research framework was established as illustrated
in Figure 1, and the hypotheses are listed in Table 1.
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Figure 1. Theoretical framework (TTF: task technology fit, UTAUT: unified theory of acceptance and
use of technology).

Table 1. Hypotheses list.

Label Hypotheses

H1 The task characteristics of SHHSs * positively affect task–technology fit.
H2 The technology characteristics of SHHSs positively affect task–technology fit.

H3a Task–technology fit positively affects the performance expectancy of SHHSs.
H3b Task–technology fit positively affects the behavioral intention to use SHHSs.
H3c Task–technology fit positively affects the adoption of SHHSs.
H4 Performance expectancy positively affects the behavioral intention to use SHHSs.
H5 Effort expectancy positively affects the behavioral intention to use SHHSs.
H6 Social influence positively affects the behavioral intention to use SHHSs.

H7a Facilitating conditions positively affect the behavioral intention to use SHHSs.
H7b Facilitating conditions positively affect the adoption of SHHSs.
H8 Behavioral intention to use SHHSs positively affects the adoption of SHHSs.
H9 The adoption of SHHSs positively affects the continued intention to use SHHSs.

H10 The technology characteristics of SHHSs positively affect effort expectancy.
* SHHSs: smart home health care services.

The proposed model consists of ten constructs contextualized in the SHHS context.
We included behavioral intention (BI), adoption (ADT), and continued intention (CI) to
measure the progress of user acceptance as they are widely adopted predictors of the actual
acceptance of technology-intensive services [24,33,43–46].

The influence of TAC on TTF (H1) and that of TEC on TTF (H2) were adopted from
the TTF model [36,37]. The influences on BI from PE (H4), from EE (H5), from SI (H6), and
from FC (H7a) were adopted from the UTAUT model [30].

The relationship between the two models was hypothesized by referring to previous
studies. Several scholars [24,33,43,44] have reported that TTF positively influences PE
(H3a), BI (H3b), and ADT (H3c). Likewise, in the context of SHHSs, users can perceive
that a SHHS could enhance their home health care performance only when the functions
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of SHHS can match well with home health care tasks (i.e., task–technology fit). Moreover,
the characteristics of SHHSs (e.g., ubiquitous and real-time services) can support users’
continuous health monitoring and thus diminish their effort cost. Based on this, the
hypothesis that the technology characteristics of SHHSs positively affect effort expectancy
(H10) was settled [24,33].

Meanwhile, in the original UTAUT model [30], demographic variables such as gender,
age, experience, and voluntariness of use were included as moderators. However, due
to the complexity of the unified model with many constructs, most of the previous studies
adopting the unified model of UTAUT and TTF focused on the link between two models
without moderators to explore the validity and applicability of the unified model [24,33,43,44].
Likewise, this study also aims to test the applicability of the unified model in the SHHS
domain, thus any moderating variable was not considered in this research framework.

3. Materials and Methods
3.1. Measurement

Multiple-item scales were established to measure the constructs. Measurement items
were adopted from pertinent previous studies and adjusted to be suitable for the SHHS
context, as shown in Table 2. Keywords to represent the meaning of each measurement
item were defined as properties. Notably, the properties of TAC and TEC were developed
from literature to delineate the characteristics of SHHSs comprehensively. The tasks of
SHHSs embrace the needs of real-time (TAC1) and long-term health monitoring (TAC2),
disease prevention by detecting anomalies (TAC3), emergency management (TAC4), unob-
trusive activity assistance (TAC5) [13,14], continuous customization in adaptive systems
(TAC6), connection with diversified stakeholders (TAC7) [47,48], and finally improved
privacy and life independence (TAC8) [49]. The technology characteristics for SHHSs in-
clude the technological requirements of smart homes such as ubiquitous (TEC1), real-time
(TEC2), and reliable services (TEC3) [24,33], home intelligence (TEC4), home automation
(TEC5), data communication based on IoT technologies (TEC6), and remote control and
access (TEC7) [3,50–53]. The properties of task–technology fit involve the sufficiency and
appropriateness of SHHS functions and the fulfillment of user needs, function-wise and
quality-wise [24,33,43,45,54].

The measurement items of UTAUT model constructs (i.e., PE, EE, SI, FC, BI, ADT, and
CI) were adapted from the validated scales in the relevant studies [24,30,33,36,43,44,55,56].
All the items were measured with an 11-point Likert scale (0, strongly disagree; 5, indecisive;
10, strongly agree). Some research in social studies recommended an 11-point scale, as
it enhanced scale sensitivity, normality, and understandability [57,58]. Accordingly, this
study also adopted such a scale to capture the level of user perception in fine granularity.

Table 2. Measurement items and the sources of constructs.

Construct Items Properties Measures References

Task characteristics
(TAC)

TAC1 Real-time health monitoring In my home environment, I need to monitor my health
status in real-time.

[13,14]

TAC2 Long-term health monitoring In my home environment, I need to monitor my health
status in the long term.

TAC3 Disease prevention by
detecting anomalies

In my home environment, I need to prevent disease by
detecting anomalies in my health status.

TAC4 Emergency management In my home environment, I need to deal with
emergencies by detecting anomalies in my health status.

TAC5 Unobtrusive activity
assistance

In my home environment, I need services to assist my
health care activities unobtrusively.

TAC6 Continuous customization
(adaptive system)

In my home environment, I need services to be
continuously customized according to my health status.

[47,48]
TAC7 Connection with diversified

stakeholders
In my home environment, I need to be connected to

diverse stakeholders who will support my health care.

TAC8 Improved privacy and
independence

I need to improve privacy and life’s independence
through home health care. [49]
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Table 2. Cont.

Construct Items Properties Measures References

Technology
characteristics (TEC)

TEC1 Ubiquitous service Smart home health care technologies provide ubiquitous
health care services.

[24,33]TEC2 Real-time service Smart home health care technologies provide real-time
health care services.

TEC3 Reliable service/security Smart home health care technologies provide reliable
health care services.

TEC4 Home intelligence Smart home health care technologies provide intelligent
health care services.

[3,50–53]

TEC5 Home automation Smart home health care technologies provide automated
health care services.

TEC6 Communication network &
IoT technology

Smart home health care technologies provide health care
data and information based on the communication

network and IoT technologies.

TEC7 Remote control and access
Smart home health care technologies provide health care
services with remote control and access through various

smart devices.

Task–technology
Fit (TTF)

TTF1 Sufficiency In my health care, the functions of SHHSs are
sufficient (enough).

[24,33,43,45,54]
TTF2 Appropriateness In my health care, the functions of SHHSs are appropriate.

TTF3 Meeting needs of function The functions of SHHSs fully meet my health
care requirements.

TTF4 Meeting needs of quality The quality of SHHSs can fully meet my health
care requirements.

Performance
expectancy (PE)

PE1 Perceived usefulness I feel SHHSs are useful in my health care.

[24,30,33,43,56]

PE2 Extrinsic motivation Using SHHSs accelerates the process of health care
service provision.

PE3 Relative advantage Using SHHSs increases my chances of managing
my health.

PE4 Outcome expectation Using SHHSs enables me to ameliorate my health status.

Effort expectancy

EE1 Perceived ease of use Skillfully using SHHSs is easy for me.

EE2 Complexity I find SHHSs difficult to use. (reverse)

EE3 Learnability Learning how to use SHHSs is easy for me.

EE4 Understandability My interactions with SHHSs are clear
and understandable.

Social influence

SI1 Subjective norm People who are important to me think that I should
use SHHSs.

SI2 Social factors People who influence my behavior think that I should
use SHHSs.

SI3 Image I find that using SHHSs is a fashionable and popular way
of health care.

Facilitating conditions

FC1 Perceived
behavioral control

I have the necessary resources (system, tools,
circumstances) to use SHHSs.

FC2 Perceived
behavioral control I have the necessary knowledge to use SHHSs.

FC3 Facilitating conditions If I have difficulty using SHHSs, there will be support
from the system to help me.

FC4 Compatibility SHHSs are compatible with other technologies or systems
I use.

Behavioral intention

BI1 Consideration I will consider using SHHSs for my health care.

[24,30,44,56]

BI2 Intention I have the intention of using SHHSs for my health care.

BI3 Want I would like to use SHHSs for my health care if I have
an opportunity.

BI4 Plan I have a plan to use SHHSs for my health care.

Adoption

ADT1 I use SHHSs to monitor my health status.

[30,33,36,44]
ADT2 I use SHHSs to prevent disease and to deal

with emergencies.

ADT3 I use SHHSs for customized health care.

ADT4 I use SHHSs for my overall health care.
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Table 2. Cont.

Construct Items Properties Measures References

Continued intention

CI1 I will continue using SHHSs to monitor my health status.

[40,43,45,46,55]
CI2 I will continue using SHHSs to prevent disease and to

deal with emergencies.

CI3 I will continue using SHHSs for continuously customized
health care.

CI4 I can develop a habit of using SHHSs regularly.

3.2. Data Collection

Screening questions were introduced at the beginning of the survey, asking about
users’ experiences relevant to SHHSs. Five categories (personal health care devices, wear-
able devices, health information app services, customized health care app services, and
telemedicine services [59]) were represented, together with each one’s sample products
or services. A user who did not check any experience with the suggested SHHSs was
automatically dropped from the survey. Demographic questions followed at the end of the
survey including gender, age, residential district, marital status, and household members.
Moreover, two redundant but reverse-coded questions were added in the middle of the
measurement questionnaire (TTF5 and BI5) to exclude inattentive respondents.

As sampling methods, stratified sampling for gender (i.e., the same quota for men and
women) and random sampling techniques were adopted. Data collection was conducted
with an online survey method through a web-based platform. The survey was randomly
distributed by Macromill Embrain Inc. (one of the biggest online survey companies in
South Korea) using the company’s respondent panels. The response data were collected
between 1 February 2021 and 5 February 2021. Inattentive responses were eliminated at
the data collection stage by the company according to the reverse-coded questions. The
initial responses totalled 503; then, eight outliers were removed according to a normality
test. Probably due to the web survey method, the number of participants aged in their
20s and 30s took up a large share (77.2%), and the number of those aged 60 or over was
deficient (5 in their 60s and 3 in their 70s). So, those in their 60s and older were excluded
because of insufficient samples to represent that age group. Finally, the data for analysis
was reduced to 487. Table 3 represents the demographic characteristics of participants.

Table 3. Participants’ demographic characteristics.

Characteristics Values, n (%)

Gender
Men 241 (49.5)

Women 246 (50.5)

Age group

20s 184 (37.8)
30s 192 (39.4)
40s 72 (14.8)
50s 39 (8.0)

Residential district

Capital area—Seoul 160 (32.9)
Capital area—Incheon, Gyeonggi-do 151 (31.0)

Metropolitan cities 80 (16.4)
Other districts 96 (19.7)

Marital status
Single 313 (64.3)

Married 174 (35.7)

Household members

1 person 87 (17.9)
2 people 80 (16.4)
3 people 141 (29.0)
4 people 135 (27.7)
5 or more 44 (9.0)

SHHS experiences (multiple answers)

Personal health care devices 275 (56.5%)
Wearable devices 294 (60.4%)

Health information app services 313 (64.3%)
Customized health care app services 334 (68.6%)

Telemedicine services 60 (12.3%)
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3.3. Statistical Procedure

Data were analyzed using SPSS (version 25, IBM Corp., Armonk, NY, USA) and Smart-
PLS (version 3, SmartPLS GmbH, Oststeinbek Germany) software. This study adopted
the partial least square structural equation modeling (PLS-SEM) technique to examine the
theoretical framework and test the ten hypotheses. Generally, covariance-based SEM is se-
lected when a research goal is theory testing and confirmation or comparison of alternative
theories [60]. Meanwhile, the partial least square method, a variance-based SEM, is a good
alternative to covariance-based SEM in cases of studies in the early stage of theory building
or an extension of an existing structural theory [60–63]. Moreover, the PLS methods are
especially convenient for large and complex research models to test both formative and
reflective constructs compared to covariance-based SEM methods [26,62]. Therefore, the
PLS technique was appropriate for our research context because the SHHSs are still under-
explored from the perspective of task–technology fit and technology acceptance. Moreover,
the combination of UTAUT and TTF models generated a complex research framework with
many constructs. For these reasons, most of the previous studies introducing the unified
model of UTAUT and TTF adopted the PLS-SEM technique due to the complexity of the
research model [24,33,44,56,64], so this study also followed the proven method appropriate
for this unified model.

Above all, descriptive statistics were conducted on the measurement items. Next,
the model was evaluated in two stages: measurement model (i.e., outer model) and
structural model (i.e., inner model) evaluation. The measurement model was evaluated by
(1) internal consistency reliability, (2) convergent validity, and (3) discriminant validity of
measurements [65,66]. Then, the structural model was evaluated by (1) multicollinearity,
(2) effect size (f 2), (3) coefficient of determination (R2), (4) predictive relevance (Q2), and
(5) path coefficients and their significance [65,66].

Lastly, path coefficients and their significance were estimated by bootstrapping
5000 subsamples [61,67]. Resampling techniques, such as bootstrapping, are necessary to
gain the parameters’ standard errors because PLS does not assume a particular data distri-
bution [66], and the resample size of 5000 is most frequently adopted for the bootstrapping
setting [61]. Finally, path coefficient, t values, and p values were examined to distinguish
the relationships between constructs in the structural model. Accordingly, the hypotheses
were statistically proven with t values greater than 1.96 and p values lower than 0.01.

4. Results
4.1. Descriptive Statistics

Table 4 demonstrates descriptive statistics of the measurement items. The mean values
ranged from 5.21 (ADT2) to 7.27 (BI3). Overall, TTF and ADT showed a relatively low
level of mean values, and TEC and BI included the variables with comparatively high
mean values. All measurement items followed a normal distribution with all their absolute
values of skewness and kurtosis indicating less than 1.

Table 4. Descriptive statistics of the measurement items.

Construct Item Mean (SD) 95% CI Skewness Kurtosis

Task characteristics (TAC)

TAC1 6.26 (2.68) [6.02, 6.50] −0.67 −0.01
TAC2 6.50 (2.55) [6.27, 6.73] −0.76 0.35
TAC3 7.02 (2.39) [6.81, 7.24] −0.88 0.77
TAC4 6.98 (2.61) [6.74, 7.21] −0.88 0.31
TAC5 6.05 (2.69) [5.81, 6.29] −0.52 −0.22
TAC6 6.32 (2.64) [6.08, 6.55] −0.68 0.07
TAC7 6.03 (2.62) [5.79, 6.26] −0.45 −0.25
TAC8 6.61 (2.46) [6.39, 6.83] −0.59 0.18
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Table 4. Cont.

Construct Item Mean (SD) 95% CI Skewness Kurtosis

Technology characteristics (TEC)

TEC1 7.02 (1.89) [6.85, 7.19] −0.33 0.46
TEC2 6.87 (1.88) [6.70, 7.03] −0.28 0.59
TEC3 6.57 (1.96) [6.40, 6.75] −0.09 0.14
TEC4 6.72 (1.96) [6.55, 6.90] −0.32 0.46
TEC5 6.66 (2.02) [6.48, 6.83] −0.35 0.32
TEC6 6.80 (1.93) [6.63, 6.97] −0.32 0.49
TEC7 6.97 (1.90) [6.80, 7.14] −0.31 0.26

Task-technology Fit (TTF)

TTF1 5.72 (2.08) [5.53, 5.90] 0.02 0.05
TTF2 5.94 (1.94) [5.76, 6.11] 0.14 0.01
TTF3 5.50 (2.07) [5.31, 5.68] 0.05 0.12
TTF4 5.46 (1.99) [5.28, 5.64] 0.05 0.36

Performance expectancy (PE)

PE1 6.30 (1.86) [6.14, 6.47] −0.12 0.41
PE2 6.16 (1.90) [5.99, 6.33] −0.15 0.76
PE3 6.80 (1.87) [6.63, 6.96] −0.40 0.75
PE4 6.79 (1.83) [6.63, 6.96] −0.30 0.66

Effort expectancy (EE)

EE1 6.58 (1.96) [6.40, 6.75] −0.20 0.03
EE2 6.63 (1.97) [6.46, 6.81] −0.05 −0.36
EE3 6.76 (1.96) [6.59, 6.94] −0.19 −0.08
EE4 6.24 (1.83) [6.08, 6.40] 0.21 −0.11

Social influence (SI)
SI1 5.72 (2.54) [5.49, 5.94] −0.30 −0.12
SI2 5.56 (2.51) [5.34, 5.79] −0.27 −0.05
SI3 6.64 (2.06) [6.46, 6.83] −0.39 0.48

Facilitating conditions (FC)

FC1 5.83 (2.25) [5.63, 6.03] −0.36 0.22
FC2 6.07 (2.10) [5.89, 6.26] −0.40 0.49
FC3 6.21 (1.95) [6.03, 6.38] −0.14 0.09
FC4 6.14 (2.03) [5.96, 6.32] −0.26 0.45

Behavioral intention (BI)

BI1 7.07 (1.93) [6.90, 7.25] −0.27 −0.35
BI2 7.16 (1.98) [6.98, 7.33] −0.50 0.10
BI3 7.27 (2.03) [7.09, 7.45] −0.53 −0.09
BI4 7.05 (2.10) [6.86, 7.24] −0.55 0.16

Adoption (ADT)

ADT1 5.45 (2.55) [5.22, 5.67] −0.50 −0.09
ADT2 5.21 (2.62) [4.98, 5.44] −0.37 −0.34
ADT3 5.62 (2.52) [5.40, 5.84] −0.50 0.04
ADT4 5.73 (2.53) [5.51, 5.96] −0.56 0.07

Continued intention (CI)

CI1 6.41 (2.27) [6.20, 6.61] −0.48 0.26
CI2 6.20 (2.38) [5.99, 6.41] −0.56 0.22
CI3 6.47 (2.30) [6.27, 6.68] −0.57 0.31
CI4 6.44 (2.32) [6.23, 6.64] −0.58 0.44

4.2. Measurement Model Evaluation

The measurement model was evaluated by (1) internal consistency reliability, (2) con-
vergent validity, and (3) discriminant validity of measurements [65,66].

First, internal consistency reliability requires Cronbach’s α, Dijkstra–Henseler’s rho,
and composite reliability with each value larger than 0.70 for good reliability [68,69]. Table 5
exhibits the analysis of the measurement model. In terms of internal consistency, all values
of Cronbach’s α, Dijkstra–Henseler’s rho, and composite reliability for each construct were
larger than 0.70, ensuring good reliability.

Second, convergent validity is determined satisfactory when the outer loading value
of each measurement item exceeds 0.70, indicator reliability is greater than 0.50, and the
average variance extracted (AVE) of each construct surpasses 0.50 [60,67]. For this model,
as shown in Table 5, the outer loading value of each item surpassed 0.70; the indicator
reliability of each item was greater than 0.50; the AVE of each construct exceeded 0.50.

Third, discriminant validity is examined using the Fornell–Larcker criterion when
the square root of AVE is greater than the highest value among the correlations between
construct items [70]. Discriminant validity is also acceptable when the outer loading of
each measurement item is higher on its corresponding construct than the cross-loadings on
other constructs [67]. Discriminant validity was determined satisfactory using the Fornell–
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Larcker criterion (Table A1); the square root of AVE of each construct was larger than its
correlation coefficients with other constructs. Discriminant validity was also verified as
acceptable since the outer loading of each item was higher on its corresponding construct
than the cross-loadings on other constructs (Table A2). Accordingly, the measurement
model passed the tests of consistency and validity with satisfactory results.

Table 5. The measurement model evaluation.

Construct Item

Convergent Validity Internal Consistency Reliability

Outer Loading Indicator
Reliability AVE Cronbach α Rho Value Composite

Reliability

(>0.70) (>0.50) (>0.50) (>0.70) (>0.70) (>0.70)

Task characteristics (TAC)

TAC1 0.839 0.703 0.733 0.948 0.952 0.956
TAC2 0.870 0.757
TAC3 0.870 0.758
TAC4 0.836 0.699
TAC5 0.859 0.738
TAC6 0.879 0.772
TAC7 0.887 0.787
TAC8 0.807 0.652

Technology characteristics (TEC)

TEC1 0.861 0.741 0.795 0.957 0.958 0.964
TEC2 0.903 0.815
TEC3 0.882 0.779
TEC4 0.912 0.832
TEC5 0.900 0.810
TEC6 0.890 0.792
TEC7 0.892 0.795

Task–technology Fit (TTF)

TTF1 0.903 0.816 0.852 0.942 0.944 0.958
TTF2 0.925 0.856
TTF3 0.938 0.880
TTF4 0.924 0.854

Performance expectancy (PE)

PE1 0.885 0.783 0.803 0.918 0.920 0.942
PE2 0.884 0.781
PE3 0.923 0.851
PE4 0.893 0.797

Effort expectancy (EE)

EE1 0.924 0.853 0.771 0.901 0.930 0.931
EE2 0.779 0.607
EE3 0.923 0.851
EE4 0.879 0.773

Social influence (SI)
SI1 0.875 0.766 0.754 0.845 0.889 0.902
SI2 0.878 0.771
SI3 0.852 0.725

Facilitating conditions (FC)

FC1 0.867 0.751 0.765 0.897 0.898 0.929
FC2 0.897 0.804
FC3 0.854 0.730
FC4 0.880 0.775

Behavioral intention (BI)

BI1 0.949 0.901 0.912 0.968 0.968 0.976
BI2 0.974 0.948
BI3 0.950 0.903
BI4 0.946 0.894

Adoption (ADT)

ADT1 0.953 0.908 0.898 0.962 0.964 0.972
ADT2 0.917 0.841
ADT3 0.964 0.929
ADT4 0.956 0.914

Continued intention (CI)

CI1 0.956 0.913 0.879 0.954 0.955 0.967
CI2 0.908 0.825
CI3 0.965 0.931
CI4 0.920 0.846
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4.3. Structural Model Evaluation

The structural model was evaluated by (1) multicollinearity, (2) effect size (f 2), (3) co-
efficient of determination (R2), (4) predictive relevance (Q2), and (5) path coefficients and
their significance [65,66].

First, the model is assessed as acceptable without multicollinearity when the variance
inflation factor (VIF) between constructs is less than 5 [60]. Multicollinearity of this model
was tested with inner variance inflation factor (VIF) values between constructs, as shown
in Table 6. All VIF values were less than 5, so the structural model was acceptable without
multicollinearity.

Table 6. Structural model evaluation and hypothesis test results.

Hypothesis (Path) VIF f 2 Path Coefficient (β) t Value p Value Support

H1 (TAC→ TTF) 1.504 0.000 −0.007 0.125 0.900 No
H2 (TEC→ TTF) 1.504 0.241 0.517 10.052 0.000 Yes
H3a (TTF→ PE) 1.000 0.764 0.658 18.723 0.000 Yes
H3b (TTF→ BI) 1.875 0.052 −0.209 4.542 0.000 Yes

H3c (TTF→ ADT) 1.440 0.009 0.085 1.843 0.065 No
H4 (PE→ BI) 2.664 0.183 0.468 7.654 0.000 Yes
H5 (EE→ BI) 1.721 0.021 0.127 2.662 0.008 Yes
H6 (SI→ BI) 1.923 0.047 0.201 4.046 0.000 Yes

H7a (FC→ BI) 2.227 0.052 0.227 4.059 0.000 Yes
H7b (FC→ ADT) 1.906 0.152 0.400 6.933 0.000 Yes
H8 (BI→ ADT) 1.553 0.101 0.293 5.405 0.000 Yes
H9 (ADT→ CI) 1.000 1.666 0.790 26.935 0.000 Yes
H10 (TEC→ EE) 1.000 0.239 0.440 9.918 0.000 Yes

Second, the effect size between constructs means the relative impact of exogenous
variables on endogenous variables. It is assessed as low-level with the f 2 value around
0.02, middle-level with its value around 0.15, and high-level with its value around 0.35 [65].
Table 6 shows the effect size (f 2) between constructs of this structural model. The value
between TAC and TTF and that between TTF and ADT were assessed insufficient with the
values under 0.02, while other values satisfied more than the low-level effect size.

Third, the coefficient of determination (R2) values of endogenous variables show
low-level explanation with its value around 0.25, middle-level with its value around 0.5,
and high-level with its value over 0.75. In this model, R2 values of endogenous variables
showed an acceptable level except EE (TTF: R2 = 0.263; PE: R2 = 0.433; EE: R2 = 0.193;
BI: R2 = 0.552; ADT: R2 = 0.449; CI: R2 = 0.625).

Fourth, the predictive relevance of the PLS-SEM model is evaluated by Stone–Geisser’s
Q2 value; when its values of endogenous variables are over 0, the model is considered to
have predictive relevance on those variables [71]. In this model, Q2 values of all endoge-
nous variables represented an acceptable level (i.e., Q2 > 0) (TTF: Q2 = 0.221; PE: Q2 = 0.340;
EE: Q2 = 0.142; BI: Q2 = 0.497; ADT: Q2 = 0.398; CI: Q2= 0.544). Accordingly, the struc-
tural model was generally evaluated acceptable to determine pass coefficients and to test
hypotheses.

4.4. Hypothesis Testing

The results of hypothesis testing with path coefficients are exhibited in Table 6 and
depicted in Figure 2. Task characteristics of SHHSs exerted a slightly negative impact on the
task–technology fit, but H1 was not supported with insufficient significance. Technology
characteristics of SHHSs had a positive influence on the task–technology fit and supported
H2. Task–technology fit of SHHSs directly affected performance expectancy and behavioral
intention, thus H3a and H3b were supported. However, the impact of task–technology fit on
the adoption of SHHSs was not significant, and H3c was rejected. Performance expectancy,
effort effectiveness, social influence, and facilitating conditions had a direct impact on
the behavioral intention to use SHHSs, supporting H4, H5, H6, and H7a. The positive
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impacts of facilitating conditions and behavioral intention on the adoption of SHHSs
were significant, thus H7b and H8 were supported. The adoption positively affected the
continued intention to use SHHSs, supporting H9. Lastly, technology characteristics of
SHHSs positively affected effort expectancy, and H10 was supported.
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5. Discussion
5.1. Principal Findings

Concerning the TTF model, the insignificant and negative relationship between TAC
and TTF (H1, β = −0.007) and the positive relationship between TEC and TTF (H2,
β = 0.517 **) are consistent with previous research in the case of MOOC service accep-
tance [43]. In several studies on the adoption of mobile banking or wearable devices,
the task properties showed a lower significance level of impact on TTF than technol-
ogy [24,44]. Other studies presented a significant but negative relationship between TAC
and TTF [36,72]. Those researches interpreted that TTF decreases as task requirements
increase; tasks can become too complex and extensive for technology to support the appro-
priate level of performance; if technology functionality increases enough to support the task
expectations, the TTF increases [36,72]. Likewise, home health care tasks can become too
diverse and complex, particularly due to the COVID-19 pandemic. Task characteristics such
as real-time and continuous health monitoring and emergency management are critical
issues in self-quarantine systems. Meanwhile, SHHS technologies, despite their current
advancement, might not sufficiently meet users’ expected performance levels. This is also
supported by the result that the average value of all TTF measurement items (5.66) was
lower than that of TAC (6.47) and TEC (6.80).

Regarding the UTAUT model, the analysis results proved that PE, EE, SI and FC
significantly affected BI, explaining 55.2% of BI variances, consistent with the previous
evidence of UTAUT studies [24,30,33,43,73]. Remarkably, the most influential factor that
affects users’ behavioral intention is PE (H4, β = 0.468 **). When SHHS functions meet the
users’ expected level of performance (i.e., usefulness, relative advantages, and outcome
expectation), users’ intention to use SHHSs can be influenced. Meanwhile, EE had a
relatively low impact on the intention of SHHS acceptance (H5, β = 0.127 **). The reason
might be that users have become familiar with using high-tech services, and they may think
that adopting SHHS does not require much effort [24]. Additionally, they might accept
more effort-cost when SHHS technologies offer expected functions (H10, β = 0.440 **) [40].
The influence patterns of high PE and low EE are also supported by previous studies in the
cases of mobile banking [33] and health care wearable devices [24]. Moreover, FC such as
the technological infrastructure to ensure a seamless experience of SHHSs (e.g., compatible
tools and system circumstances) positively leads to BI (H7a, β = 0.227 **) and the adoption
(H7b, β = 0.400 **), in line with previous mobile banking cases [33,44].

The relationship between TTF and UTAUT models is primarily exhibited by the
influence of TTF on PE. In this study, the TTF has a strong positive impact on PE (H3a,
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β = 0.658 **), and TTF explains 43.3% of PE variation; it is also congruent with similar
studies’ results [33,43,44]. Hence, the fit between users’ requirements on home health care
and SHHS technologies would directly influence users’ expectations of home health care
performance. The higher the TTF level is, the more useful the users perceive the SHHS.

Meanwhile, the linkage between the two models is also presented by the influence
of TTF on BI and ADT. TTF had a significant but negative effect on the intention to use
SHHSs (H3b, β = −0.209 **), and it had an insignificant impact on the adoption of SHHSs
(H3c, β = 0.085). Users might agree that smart home technologies for home health care are
highly developed, and the requirements for home health care services have become diverse
and complex. However, the public might consider that those technologies have not been
sufficiently popularized for the home health care services to address their needs and to
be adopted. This is also supported by Gartner’s hype cycle for emerging technologies in
2018; SHHS relevant technologies (i.e., connected home, IoT platform, and blockchain for
data security) was anticipated to reach a mainstream market in five to ten years [74]. So,
the insufficient TTF could lead to a negative influence on BI or an insignificant impact on
the adoption of SHHS. In a similar instance, the previous two studies on mobile banking
adoption, which integrated UTAUT and TTF models, were conducted in 2010 [33] and
2014 [44]. Though the mobile banking technology developed further in 2014, the significant
influence of TTF on the adoption in the former was changed as insignificant in the latter. It
might be considered that the maturity and popularization of the market service have not
been sufficiently achieved compared to technological development and advanced needs.

5.2. Contributions and Implications

This research has both theoretical and practical implications. On a theoretical level,
firstly, this study supports the applicability of the integrated model of UTAUT and TTF,
which recently was explored in technology-intensive industries, to the domain of SHHS. As
mentioned in the introduction, the acceptance of SHHS needs to consider both the technical
complexity of smart homes and the task pertinence of home healthcare. Therefore, the inte-
grated model of TTF and UTAUT was adapted to establish a comprehensive understanding
of the users’ adoption behavior of SHHS. A limited number of previous studies combining
UTAUT and TTF models engaged with mobile banking, online education, and wearable
devices [24,33,43,44], and the relationships between the two models were differently exam-
ined by service. Our research model included the possible links from the previous research
(i.e., TTF to PE, BI, and ADT; TEC to EE; ADT to CI) and examined their validity in the
SHHS case. Hence, the findings explained behavioral acceptance from the perspective of
users’ perception of task–technology fit and assured the importance of integrating TTF
elements into acceptance theories when assessing determinants of user acceptance towards
SHHS [24,43].

Second, this study establishes the measurement items reflecting the domain speci-
ficity of SHHS. The constructs of task characteristics and technology characteristics should
reflect the specificity of relevant industry domains. This research developed the distinct
measurement items for SHHS derived from the literature, thus it suggested the full ques-
tionnaire set of a unified model of UTAUT and TTF specialized for the user acceptance of
SHHS. It can be utilized and adapted to other contexts of SHHS when evaluating the users’
adoption behaviors.

Third, this study provides empirical evidence for the research on user acceptance of
SHHS during the pandemic era in South Korea. As noted in the introduction, much of
the research on SHHS has investigated the technological perspective but lacked the users’
perspectives such as their experience and acceptance of SHHS. With the increased need for
home health care since the pandemic and the market expansion of SHHSs associated with
rapid technological development, research on the actual users’ acceptance was required.
In that sense, this study could be meaningful in providing empirical evidence of service
acceptance by collecting a large number of actual SHHS users.
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On a practical level, these research findings could help home health care service
planners and marketers promote SHHS in an individual’s health management. With the
COVID-19 pandemic, user needs for home health care have become complicated. Despite
the current rapid development of related technologies, technological maturity and service
popularization do not seem to have been achieved sufficiently for users to realize. When
their complex needs can be satisfied through the convergence of various technologies as
well as smart home technology (TTF), users would feel that SHHS is useful and beneficial
(PE) and this may finally lead to adoption. Therefore, it is recommended to communicate
effectively with potential customers how convergent technologies of the service solve the
specific needs of the user. Moreover, in terms of FC, strategies to improve technological
infrastructure to ensure a seamless experience of SHHSs (e.g., compatible service with
diverse usage contexts) would be required to promote user acceptance.

5.3. Limitations and Future Research

This study has several limitations. First, alternative technologies or service platforms
for home health care may exist. The basic assumption of SHHS in this study is the situation
in which home health care services are implemented based on smart home technology.
However, users may not necessarily consider only health care services based on smart home
technology to achieve the purpose of self-health management. As the needs for personal
health care become diversified due to the COVID-19 situation, users could conveniently
perform home health care by utilizing various means such as exercise equipment, services,
and platforms. As in this study’s result, even if the need for home health care tasks is
high, it may not sufficiently lead to task–technology fit or acceptance of actual SHHS.
Accordingly, it would be necessary to embrace various technologies and service methods
for home health care in future studies.

Second, this study was conducted in South Korea, and the research findings might be
difficult to generalize due to specificity to Korean users. Generally, South Korea is often con-
sidered as a testbed of global ICT brand companies, due to highly developed information
technology infrastructure, the nation’s innovativeness, and the people’s digital friendli-
ness [75,76]. Generally, Korean users may have a high level of technological expectation,
and they tend to be early adopters. Moreover, due to the data collection method of the web
survey, those in their 60s and older were excluded because of insufficient samples. Hence,
the respondent group of this study might have a tendency to high-level innovativeness.
They might consider that the task–technology fit level is unsatisfactory to adopt SHHSs
more than another country’s citizens would. Therefore, comparative studies targeting users
from other countries may be required to validate the generalizability of this research model.

Third, this study did not consider any comparative study by user group or by period
because the primary research aim was to investigate the applicability of the unified model
in the SHHS domain. However, in terms of the user group, demographic variables such as
gender, age, or the level of digital literacy can be included as moderators in the research
framework. Especially, the acceptance behavior of SHHS might be influenced by the level
of individual digital literacy or innovativeness considering the technology-intensive service
characteristics. In terms of period, research to capture users’ attitudinal changes toward
SHHS could be a meaningful opportunity to validate the unified model. The empirical
survey of this study was conducted in the middle of the COVID-19 period and the results
could be limited to representing the context only during the pandemic period. Therefore,
further studies to compare the users’ behavioral changes between the periods before and
after the pandemic would be valuable.

6. Conclusions

This study aimed to analyze the influential factors and measure the behavioral ac-
ceptance of SHHSs in South Korea. This study adopted the integrated model of UTAUT
and TTF and contextualized it, involving SHHS characteristics to explain the behavioral
acceptance of SHHSs from users’ perceptions and task–technology fit. The results indicated
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that our integrated acceptance model explained 55.2% of the variance in behavioral inten-
tion, 44.9% of adoption and 62.5% of the continuous intention to use SHHSs, supporting
11 of the 13 proposed hypotheses. Users’ perceptions of PE, EE, SI and FC can positively
anticipate BI to accept SHHSs, having relatively strong influence from PE and FC. Further-
more, TTF has an influence on PE and BI, and indirectly on ADT and CI; it implies that
the consideration of matching fit of task and technology, as well as user perceptions of
technologies, is essential to evaluate the acceptance of SHHSs [34]. Meanwhile, TAC was in-
significant to determine TTF, which might stem from the complicated needs of home health
care due to the COVID-19 pandemic but was not sufficiently resolved by current service
technologies. The findings implied that the acceptance of SHHSs needs to be evaluated
with consideration of both the user perceptions on technologies and the matching fit of task
and technology. Theoretically, this study supports the applicability of the integrated model
of UTAUT and TTF to the domain of SHHS, and newly proposed measurement items of
TTF reflecting the domain specificity of SHHS, providing empirical evidence during the
pandemic era in South Korea. Practically, the results could suggest to the planners and
strategists of home health care services how to promote SHHS in health management.

Author Contributions: Conceptualization, H.-J.K., J.H. and G.H.K.; methodology, H.-J.K., J.H. and
G.H.K.; software, H.-J.K.; validation, J.H. and G.H.K.; formal analysis, H.-J.K.; investigation, H.-J.K.;
writing—original draft preparation, H.-J.K.; writing—review and editing, H.-J.K., J.H. and G.H.K.;
supervision, J.H. and G.H.K.; project administration, H.-J.K.; funding acquisition, H.-J.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and ICT of the Republic of Korea and
the National Research Foundation of Korea, grant number NRF-2019R1G1A1100180.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Sungshin
Women’s University (protocol code SSWUIRB-2020-005, initial approval on 6 March 2020).

Informed Consent Statement: The ethics committee waived the need for consent because they
approved that the risk to the study subjects was expected to be extremely low even if consent
was exempted for the following reasons. First, no information that can identify participants (e.g.,
name, identifiers, titles, email address, contact, etc.) was included in the questionnaire, to keep the
respondents’ anonymity. Second, it was practically impossible to obtain consent from the participants
because the online survey company randomly distributed the survey using their respondent panels.
Meanwhile, all the required information, such as the objectives, confidentiality, anonymity of the
survey, and the option not to answer any question the respondent felt infringed on their privacy, was
described on the first page of the questionnaire.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A

Table A1. The square root of AVEs (in bold) and correlation coefficients.

TAC TEC TTF PE EE SI FC BI ADT CI

TAC 0.856 - - - - - - - - -
TEC 0.579 0.892 - - - - - - - -
TTF 0.292 0.513 0.923 - - - - - - -
PE 0.534 0.720 0.658 0.896 - - - - - -
EE 0.303 0.440 0.419 0.511 0.878 - - - - -
SI 0.545 0.586 0.502 0.669 0.432 0.868 - - - -
FC 0.348 0.505 0.549 0.623 0.628 0.550 0.875 - - -
BI 0.500 0.638 0.377 0.671 0.508 0.589 0.594 0.955 - -

ADT 0.384 0.416 0.415 0.509 0.422 0.543 0.621 0.563 0.948 -
CI 0.510 0.549 0.433 0.656 0.477 0.651 0.608 0.779 0.790 0.937

The square root of AVE of each construct (in bold) was larger than its correlation coefficients with other constructs.
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Table A2. Outer loadings and cross-loadings for the measurement items.

TAC TEC TTF PE EE SI FC BI ADT CI

TAC1 0.839 0.419 0.285 0.445 0.270 0.461 0.283 0.366 0.307 0.398
TAC2 0.870 0.474 0.255 0.466 0.256 0.463 0.260 0.405 0.296 0.405
TAC3 0.870 0.482 0.214 0.462 0.275 0.446 0.269 0.451 0.285 0.434
TAC4 0.836 0.523 0.217 0.473 0.269 0.409 0.302 0.438 0.265 0.407
TAC5 0.859 0.517 0.273 0.459 0.268 0.490 0.314 0.413 0.383 0.448
TAC6 0.879 0.518 0.226 0.446 0.260 0.491 0.333 0.444 0.371 0.455
TAC7 0.887 0.497 0.277 0.438 0.217 0.480 0.318 0.406 0.341 0.446
TAC8 0.807 0.553 0.232 0.472 0.267 0.481 0.301 0.526 0.371 0.506

TEC1 0.571 0.861 0.401 0.645 0.398 0.512 0.426 0.629 0.404 0.548
TEC2 0.541 0.903 0.429 0.628 0.386 0.489 0.466 0.568 0.389 0.492
TEC3 0.514 0.882 0.487 0.654 0.379 0.564 0.369 0.560 0.362 0.498
TEC4 0.513 0.912 0.497 0.644 0.393 0.527 0.470 0.563 0.380 0.494
TEC5 0.515 0.900 0.490 0.626 0.366 0.507 0.467 0.517 0.379 0.472
TEC6 0.468 0.890 0.452 0.642 0.422 0.526 0.472 0.556 0.344 0.460
TEC7 0.498 0.892 0.437 0.653 0.400 0.528 0.479 0.594 0.342 0.468

TTF1 0.257 0.449 0.904 0.551 0.364 0.418 0.495 0.340 0.374 0.367
TTF2 0.284 0.495 0.926 0.631 0.406 0.462 0.528 0.408 0.407 0.439
TTF3 0.257 0.479 0.937 0.609 0.396 0.483 0.508 0.322 0.383 0.396
TTF4 0.279 0.469 0.923 0.634 0.381 0.489 0.494 0.321 0.368 0.393

PE1 0.467 0.592 0.704 0.885 0.475 0.611 0.580 0.576 0.481 0.583
PE2 0.502 0.648 0.571 0.884 0.414 0.613 0.588 0.537 0.470 0.573
PE3 0.494 0.675 0.530 0.923 0.466 0.589 0.526 0.669 0.465 0.631
PE4 0.452 0.668 0.544 0.893 0.472 0.587 0.537 0.620 0.407 0.561

EE1 0.313 0.458 0.452 0.533 0.924 0.426 0.637 0.503 0.429 0.473
EE2 0.086 0.227 0.219 0.258 0.779 0.214 0.395 0.309 0.195 0.252
EE3 0.267 0.393 0.341 0.449 0.923 0.362 0.558 0.470 0.342 0.409
EE4 0.335 0.413 0.410 0.490 0.879 0.462 0.570 0.460 0.455 0.488

SI1 0.486 0.446 0.404 0.503 0.314 0.875 0.415 0.422 0.477 0.531
SI2 0.490 0.470 0.441 0.507 0.325 0.878 0.419 0.404 0.458 0.518
SI3 0.450 0.571 0.451 0.676 0.445 0.852 0.554 0.635 0.474 0.614

FC1 0.253 0.359 0.468 0.492 0.509 0.447 0.867 0.464 0.573 0.508
FC2 0.316 0.397 0.470 0.522 0.603 0.460 0.897 0.523 0.575 0.566
FC3 0.340 0.527 0.500 0.608 0.556 0.521 0.854 0.559 0.499 0.524
FC4 0.306 0.482 0.481 0.557 0.527 0.498 0.880 0.531 0.524 0.526

BI1 0.479 0.615 0.373 0.649 0.507 0.577 0.604 0.949 0.531 0.731
BI2 0.480 0.614 0.368 0.658 0.497 0.575 0.582 0.974 0.549 0.759
BI3 0.471 0.611 0.334 0.636 0.462 0.530 0.532 0.950 0.496 0.718
BI4 0.478 0.596 0.366 0.618 0.470 0.565 0.548 0.945 0.571 0.766

ADT1 0.385 0.413 0.399 0.478 0.409 0.528 0.625 0.533 0.953 0.740
ADT2 0.374 0.380 0.379 0.442 0.368 0.518 0.548 0.453 0.917 0.702
ADT3 0.338 0.390 0.404 0.494 0.407 0.508 0.588 0.554 0.964 0.769
ADT4 0.360 0.394 0.393 0.513 0.412 0.507 0.591 0.587 0.956 0.782

CI1 0.471 0.511 0.421 0.619 0.453 0.610 0.593 0.740 0.775 0.956
CI2 0.512 0.517 0.398 0.614 0.395 0.613 0.540 0.674 0.721 0.908
CI3 0.479 0.531 0.420 0.630 0.453 0.625 0.565 0.762 0.755 0.965
CI4 0.451 0.500 0.384 0.595 0.488 0.593 0.580 0.743 0.710 0.920

The outer loading of each item was higher on its corresponding construct (in bold) than the cross-loadings on
other constructs.
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