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Abstract: In recent decades, particulate pollution in the air has caused severe health problems.
Therefore, it has become a hot research topic to accurately predict particulate concentrations. Particle
concentration has a strong spatial–temporal correlation due to pollution transportation between
regions, making it important to understand how to utilize these features to predict particulate
concentration. In this paper, Pearson Correlation Coefficients (PCCs) are used to compare the particle
concentrations at the target site with those at other locations. The models based on bi-directional gated
recurrent units (Bi-GRUs) and PCCs are proposed to predict particle concentrations. The proposed
model has the advantage of requiring fewer samples and can forecast particulate concentrations in
real time within the next six hours. As a final step, several Beijing air quality monitoring stations
are tested for pollutant concentrations hourly. Based on the correlation analysis and the proposed
prediction model, the prediction error within the first six hours is smaller than those of the other
three models. The model can help environmental researchers improve the prediction accuracy of fine
particle concentrations and help environmental policymakers implement relevant pollution control
policies by providing tools. With the correlation analysis between the target site and adjacent sites, an
accurate pollution control decision can be made based on the internal relationship.

Keywords: PCCs; correlation; particulate concentration prediction; Bi-GRU

1. Introduction

In recent decades, China and other developing countries have experienced rapid
economic growth and urbanization, and the problems of air pollution have also been in-
evitable. For example, due to the deterioration of urban particulate pollution closely related
to the intensive emission of fine particulate matter (PM2.5) and coarse particulate matter
(PM10), the frequent occurrence of haze weather has attracted worldwide attention [1].
Epidemiological studies have shown that long-term exposure to high concentrations of
particulate matter (PM) can lead to serious health risks [2], such as cardiovascular diseases
and respiratory diseases. In addition, PM related visibility reduction will also have a
negative impact on human production and daily life. Therefore, it is very important to
accurately predict the concentration of particulate matter and take countermeasures in
advance according to the prediction. However, because the change in particle concentration
has a very complex linear relationship which can be affected by many aspects such as space
time, wind direction, and humidity [3], it is a very difficult task to accurately predict the
change in particle concentration [4].

However, most fine particle concentration prediction models use the time series data
of a single station to predict the concentration, and do not take into account the regional
correlations among air quality monitoring stations, which will lead to a certain one-sided
prediction of fine particle concentration [4–6]. There are three types of methods to predict
the concentration of particulate concentration. There is one method called the traditional
statistical method, such as the AR model, ARIMA model, and GM (1,1) model [5]. Using
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PM2.5 as an example, Zhang et al. analyzed and predicted the change in PM2.5 concentration
in Fuzhou by using ARIMA model [6]. This method can fit the change trend in the PM2.5
concentration and analyze the correlation between PM2.5 and meteorological parameters.
It is only applicable to small data sets. The second method is the traditional machine
learning-based methods, such as normal equation, decision tree, random forest, and other
models [7,8]. Hou et al. predicts the PM2.5 and PM10 concentrations in Beijing by using
support vector machine [9], and the prediction results show that it has good generalization
ability. This method is more accurate than the statistical prediction model, and can be
applied to small and medium-sized data sets, but the effect of long-term prediction of
PM2.5 concentration is poor. The third method is neural network, such as RNN, LSTM,
and GRU [10]. Qadeer et al. predicts the PM2.5 hourly concentration of two major cities in
South Korea by using the LSTM cyclic neural network. The results show that the model can
better predict the PM2.5 concentration and is better than iterative decision tree and cyclic
neural network methods [11]. This method overcomes the disadvantages of statistics and
traditional machine learning methods [12], is suitable for large data sets, and performs well
in the long-term prediction of PM2.5 concentration [13]. In [14], the authors investigated
changes in mass concentrations of particulate matter (PM) during the Coronavirus Disease
of 2019 (COVID-19) lockdown. In 2022, Dai et al. carried out research on spatial–temporal
characteristics of PM2.5 concentrations in China based on multiple sources of data and LUR-
GBM during 2016–2021 [15]. All the above research shows the importance of predicting
particulate concentration for human society.

In the early stage, the prediction of fine particle concentration is based on empirical
subjective judgment, which is not accurate and efficient. The simple linear regression
equation is the most commonly used in the traditional model, and the linear fitting is
carried out according to the regression principle of minimum absolute error or the penalty
minimization principle of least squares loss function. However, linear models can only
find the linear relationship between independent variables and dependent variables, but
in reality, the relationship between them is often nonlinear, and the traditional methods
can only be used to analyze fewer variables and used in smaller data sets, not suitable for
big data.

In recent years, many researchers [16–19] have been using machine learning methods
to predict fine particles in the air. Prediction models based on machine learning can
generally be divided into two categories, namely, offline models and online models. Offline
models can be further divided into two categories, namely, the single model and hybrid
model. As long as a single model includes the linear regression model, grey model, Bayesian
model, neural network, and artificial intelligence methods. In many studies, linear models
such as the autoregressive integrated moving average model (ARIMA) and mixed logistic
regression model (MLR) are used to predict the concentrations of PM2.5 and PM10. When
the concentration sequence of fine particles is linear, the prediction results of ARIMA and
MLR are more reliable and more explanatory. However, in practice, the change in fine
particle concentration is a highly nonlinear, nonstationary, and irregular sequence. The
limitation of linear model is that its prediction depends too much on the ability of linear
mapping. Compared with linear model, nonlinear model has better prediction effect on
extreme concentration. As a typical nonlinear model, artificial intelligence algorithms,
such as artificial neural network (ANN), are widely used to predict the concentration of
fine particles. However, nonlinear models have their own limitations. For example, they
are prone to local optimization and over fitting problems. In recent years, increasingly
more researchers have been trying to use variants of the recurrent neural network (RNN),
such as the long-term and short-term memory network (LSTM) and gated recurrent neural
network, to predict the concentration of fine particles.
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The objectives of this work is listed as the following:

1. For the transmission of air pollutants between regions, the concentration of particulate
matter has a strong spatial–temporal correlation [20]. The concentration of particulate
matter at the target station will be affected by the concentration of pollutants at other
stations in the region. Therefore, it is necessary to analyze the correlation between the
data for prediction by the machine learning algorithm. In this paper, we proposed
a data analysis method based on PCCs (Pearson Correlation Coefficients) [21] to
improve the prediction accuracy of particulate concentration.

2. Because the bidirectional LSTM network model can capture the near position informa-
tion in addition to capturing the key information of the far position compared with
the unidirectional LSTM network model, the structure of the gated recurrent neural
network model is simpler, and the training of fewer samples can achieve equivalent
performance. Therefore, we propose a new model named the bi-directional gated
recurrent unit (Bi-GRU) model which can be used in time series prediction.

3. Through the experiments, we verify that the particle concentration prediction model
based on PCCs and Bi-GRU can perform real-time particulate concentration forecast-
ing in the coming six hours.

2. Theory and Model
2.1. Data Sources

In order to evaluate our proposed model, we used the following data sources. A total
of 35,064 hourly monitoring data from 12 air quality monitoring stations in Beijing from
1 March 2013 to 28 February 2017 were selected as the required data for the experiments.
The Olympic Sports Center station was selected as the target station, and the other 11
stations are the adjacent stations. The longitude and latitude coordinates of these 12
stations are shown in Table 1.

Table 1. Station longitude and latitude coordinates.

No. Site Name Longitude Latitude

(1) Olympic Sports Center 116.403458 39.989664
(2) Changping 116.233032 40.229940
(3) Dingling 116.232467 40.300231
(4) Dongsi 116.435012 39.938650
(5) Guanyuan 116.369366 39.937364
(6) Gucheng 116.195640 39.913450
(7) Huailou 116.646984 40.308425
(8) Agricultural Exhibition Hall 116.470307 39.947009
(9) Shunyi 116.664263 40.177008

(10) Temple of Heaven 116.417313 39.887977
(11) Wanliu 116.305661 39.972746
(12) Longevity West Palace 116.374728 39.885653

The distribution map is shown in Figure 1 [22].
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2.2. PCCs

PCCs are a type of coefficient indicating the strength of correlation. They are marked
as S to indicate the degree of correlation between two variables A and B [23]. The formula
is as follows. Where σA represents the standard deviation of A, σB represents the standard
deviation of B, A represents the sample average value of A, B represents the sample average
value of B, Cov(A,B) represents the covariance of A and B.
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The value of S is set between −1 and 1. A positive correlation is stronger when its
value is closer to 1, while a negative correlation is stronger when its value is closer to
−1 [24]. Table 2 shows the value and correlation strength.
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Table 2. Classification of correlation strength.

Pearson Coefficient Value Range (Absolute Value) Strength Level

(0.8, 1.0] Extremely strong correlation
(0.6, 0.8] Strong correlation
(0.4, 0.6] Closely correlation
(0.2, 0.4] Weak correlation
[0.0, 0.2] Irrelevance

2.3. Cyclic Neural Network Model

A recurrent neural network (RNN) is a special network that sorts neurons in a specific
order. One of its main functions is to learn and predict the data with time series characteris-
tics. In fact, the structure of the recurrent neural network has only one neuron responsible
for the input and output of all data. The data will pass through the output layer, then
the middle layer, and finally the output data through the output layer will continue to be
input to itself. In this cycle, each cycle is called a frame. Because neurons will bring the
information of the previous frame to their next frame, the network is represented by the
time axis. The cyclic neural network is expanded according to the time series as a network
composed of multiple neurons arranged in sequence, as shown in Figure 2.
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Figure 3 shows the internal structure diagram of neurons of cyclic neural network.
After the expansion of the cyclic neural network, each neuron receives the data transmitted
by the neurons in the previous frame as input X(t), and the calculated value h(t) will
be output to the neurons in the next frame. The input and output are subject to their
corresponding weights wx and restrictions wy, and the expression is as follows. In
Formulas (2) and (3), where h(t) is a matrix of m × n, including the output of a small
batch of instances at time t, m is the number of small batch instances and n is the number of
neurons [25]. x(t) is an m × n matrix containing all instance inputs. Wx is an n × n matrix
containing the connection weight of the current time step for each input. Wy is an n × n
matrix containing the connection weight of the previous time step. b is a bias term of size N
containing each neuron.

h(t) = ∅
(

XT
(t) ∗ wx + yT

(t−1) ∗ wy + b
)

(2)

On the last batch of examples, the output of a layer of recursive neurons can be
calculated according to the above formula. The expression is as follows:

h(t) = ∅
(

X(t) ∗Wx + Y(t−1) ∗ wy + b
)
= ∅

([
X(t)Y(t−1)

]
∗ w + b

)
(3)

Notice that Y(t) is a function of X(t) and Y(t−1), Y(t−1) is a function of X(t−1) and Y(t−2),

and so on. In this case, Y(t) can be regarded as a function of all inputs
(

X(0), X(1)

)
, . . . , X(t)
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from time t = 0. In the first step of time, when t = 0, there is no previous input, so all
previous inputs are initialized to 0.
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2.4. Gated Recurrent Neural Network

A gated recurrent neural network (GRNN) is one of the most widely used variants of
RNN. As with the long- and short-term memory network, it is also proposed to solve the
gradient problem in long-term memory and back-propagation. GRU (gated recurrent unit)
has made improvements on the basis of LSTM. The original three door structure of LSTM
is retained as only two doors, that is, the input gate and the forgetting gate in LSTM are
combined into one to become the update gate. The structure of the GRU model is shown in
Figure 4.
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GRU combines the internal state vector and output vector into a unified state vector h,
and reduces the number of gates to 2: reset gate and update gate. The principle of reset
door and update door is as the following Equations (4)–(6) [26].
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The reset gate controls the amount that the state ht−1 of the last timestamp enters the
GRU. The gating vector gr is obtained by transforming the current timestamp input xt and
the previous timestamp state ht−1. The specific expression is as follows:

gr = σ(wr[ht−1, xt] + br) (4)

where wr and br are the parameters of the reset gate, which are automatically optimized
by the back propagation algorithm, and σ is the activation function. Generally, sigmoid
function is used. When gating vector gr = 0, the new input h̃t is all from input xt, and ht−1
is not accepted. At this time, it is equivalent to resetting ht−1. When gr = 1, the ht−1 and
xt inputs together which will produce a new input h̃t.

The gate is updated to control the influence of the last timestamp state ht−1 and the
new input h̃t on the new state vector ht. The specific expression is as follows:

gz = σ(wz[ht−1, xt] + bz) (5)

where wz and bz are the parameters of the update gate, which are automatically optimized
by the back propagation algorithm, and σ is the activation function. Generally, sigmoid
function is used. gz is used to control the new input h̃t signal, and 1 − gz is used to control
the status ht−1 signal:

ht = (1− gz)ht−1 + gz h̃t (6)

The update quantities of ht−1 and h̃t are in a competitive state. When update gate gz
= 0, ht is all from the last timestamp state ht−1, and when update gate gz = 1, ht is all from
the new input h̃t.

2.5. Bi-Directional Gated Recurrent Neural Network

Bi-directional gated recurrent neural network is an improved GRU neural network
model. The Bi-GRU structure model is shown in Figure 5. A circle represents a GRU unit,
and the curve in the circle represents the activation function. A forward propagating GRU
unit and a backward propagating GRU unit form a basic unit of Bi-GRU, and several pairs
of GRU units form a Bi-GRU deep learning network.
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expression corresponding to the information propagated forward
→
ht

(i)
and backward

←
ht

(i)

of the ith hidden layer is as follows:

→
ht

(i)
= f

(
→
W

(i)
h(i−1)

t +
→
V

(i) →
ht−1

(i)
+
→
b
(i)
)

(7)

←
ht

(i)
= f

(
←
W

(i)
h(i−1)

t +
←
V

(i) ←
ht+1

(i)
+
←
b
(i)
)

(8)

where: f is the activation function;
→
W

(i)
,
→
V

(i)
and

→
b
(i)

respectively represent the two

forward weights and offsets of layer I;
←
W

(i)
,
←
V
(i)

, and
←
b
(i)

represent the two backward
weights and offsets of layer I, respectively.

2.6. Experimental Design

As various air quality monitoring stations may encounter many situations such as
equipment abnormality when collecting data, the collected data may have blank values.
Here, because the data vacancy value used in the experiment accounts for a relatively small
proportion, but considering that the change in particle concentration is highly dependent,
direct deletion will damage the integrity of the data, so the linear interpolation method is
used to fill the vacancy value. As the change in particle concentration has obvious seasonal
characteristics, the environmental pollution impact field of the seasonal type is added.

The experimental data contain 13 environmental pollution impact factors, and the
meanings of each field are shown in Table 3.

Table 3. The meanings of data fields.

Field Name Representative Meaning Unit

PM2.5 PM2.5 Concentration (µg/m3)
PM10 PM10 Concentration (µg/m3)
SO2 SO2 Concentration (µg/m3)
NO2 NO2 Concentration (µg/m3)
CO CO Concentration (µg/m3)
O3 O3 Concentration (µg/m3)

TEMP Temperature ◦C
PRES Pressure Hpa

DEWP Dew Point Temperature ◦C
RAIN Precipitation mm

wd Wind Drection /
WSPW Wind Speed m/s
season Season /

When training the model, the data type needs to be converted into numerical type.
Because the experimental data contain character type data, namely rain and season fields,
classification data processing is required. The specific operation is to convert characters
representing different meanings into different numerical values.

Considering that the dimensions of data fields are inconsistent, dimensionless opera-
tion is required. Generally, there are two methods for dimensionless processing, namely,
normalization and standardization. However, because there are some outliers and noises
in the data, the standardized processing can indirectly avoid the impact caused by outliers.
Therefore, standardized processing is adopted here. The standardized calculation formula
is as follows:

x∗ =
xi −

−
x

σ
(9)
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where xi and x∗ respectively represent the original observation value and the normalized
observation value of each field. Additionally, they respectively represent the mean and
standard deviation of all observed values.

Here, feature engineering is divided into two parts, one is the construction of data
sets, the other is the division of data sets. First, we constructed the data set, and then we
divided the data into two parts. One part is the data containing only PM2.5, and the other
part is the data containing all features. The data set is divided into training set and test set.
The proportion of this paper is divided according to 8:2, that is, 80% of the data is used
as training set for model training, and 20% of the data is used as test set to evaluate the
performance of the model.

In order to evaluate the performance of model prediction, this paper used two different
indicators, including mean absolute error (MAE) and root mean square error (RMSE). The
calculation methods of these two indicators are as follows.

MAE =
1
N

N

∑
1
(observedt − predictedt)

2 (10)

RMSE =

√√√√ 1
N

N

∑
1
(observedt − predictedt)

2 (11)

where observedt represents the observed value at time t and predictedt represents the pre-
dicted value at time t.

The flow chart of the PCCs-BiGRU network for air pollutant concentration prediction
is shown in Figure 6, and the model structure is shown in Figure 7.
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In order to analyze the impact of space adjacent sites on the change of air pollutant
concentration at the central site, the correlation analysis proposed above was used to screen
the target pollutant concentration at the adjacent sites, and then the screened features and
the historical data of the central site were assigned to the Bi-GRU model as inputs to obtain
the final prediction results.

The initialization values of the network structure parameters are as follows:

1. Input and output vector dimensions: the input contains a total of 16 pollutant con-
centrations including PM2.5 at each time before prediction and related impact factors,
and the output is the predicted PM2.5 concentration in the next six hours. Since the
time frequency of the data is hours, the time step set by the model here is 24, that is,
the PM2.5 concentration in the next six hours is predicted by using the 24-h historical
air pollution related data. The number of neurons in the Bi-GRU module of the model
is set to 64. In order to prevent over fitting, the dropout is set to 0.2, that is, 20% of the
output is randomly screened. The final output layer of the network is the sense layer
with a dimension of six, which represents the concentration of PM2.5 in the six hours
after prediction.

2. Loss function: the loss function of the neural network uses the MAE (mean absolute
error) between the predicted PM2.5 value and the real value to make the predicted
PM2.5 concentration output by the network as close to the real value as possible.

3. Optimization method: the Adam optimizer is used here. Through a large number of
theories and practices, it has been proven that the Adam optimization method has
better performance than other adaptive learning methods. The Adam convergence
speed is faster and it is more suitable for processing sparse data.

Next, we trained the model with the prediction step of six hours, and compared the
convergence speed of the model and the experience accumulated by the prediction error
through experiments. In the training rounds, epochs were set to 100, and the number of
training samples in each batch size was set to 64. The error performance of the model
during training and testing is shown in Figure 8.
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Figure 8. The relationship between Bi-GRU model and training rounds.

It is concluded from the curve that after the training rounds of the model reach 40, the
error change of the training set is no longer obvious, and basically tends to be stable. In
order to speed up the training speed on the premise of reducing errors, it is reasonable to
set the rounds to 50.

3. Experimental Results and Analysis
3.1. Experimental Results of PM2.5 Concentration Prediction Based on PCCs and Bi-GRU

In this experiment, the time step set by Bi-GRU is 24 and the number of neurons is 64.
The optimizer uses Adam. In order to prevent over fitting, the dropout layer is added and
set to 0.2, and the parameter of the sense layer is set to six, that is, the PM2.5 concentration
in the next six hours is predicted. Here, the training set and test set are divided by 8:2, that
is, the training set is set as the first 1168 groups and the test set as the last 292 groups. The
structure of the experimental model is shown in Figure 9.
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Figure 9. Schematic diagram of PCCs-BiGRU structure model.

Since the target of our prediction here is the PM2.5 concentration of the Olympic Sports
Center site, the PM2.5 concentration characteristics of the three sites with the strongest
correlation with the PM2.5 concentration characteristics of the target site are screened
through PCCs, and the corresponding correlation table is obtained through experiments, as
shown in Table 4. If more sites of related data are selected, there will be too many influence
fields in the final fused data set, which will lead to slowing the speed of the model and
a long training time, which will affect the model accuracy and efficiency. Through the
simulation experiments, the three sites with the highest correlation are selected to ensure
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high accuracy in a certain extent, and that the complexity of the training model will not be
too high.

Table 4. PM2.5 correlation of each station.

Site Name PCCs

Olympic Sports Center 1.000
Guanyuan 0.954

Dongsi 0.949
Agricultural Exhibition Hall 0.943

Wanliu 0.940
Temple of Heaven 0.930

Longevity West Palace 0.920
Gucheng 0.900
Shunyi 0.891

Huailou 0.847
Changping 0.841

Dingling 0.821

It can be seen from Table 4 that the three adjacent stations with the strongest corre-
lation with the PM2.5 concentration of the target station are Guanyuan, Dongsi, and the
agricultural exhibition hall. Therefore, the PM2.5 concentration of the three stations and the
historical pollutant concentration of the central station are added to the model for training
as inputs during the model training.

In order to compare the performance of correlation analysis and Bi-GRU prediction
models, we compared them with other algorithms, including LSTM prediction model with-
out correlation analysis, correlation analysis and LSTM prediction model, and correlation
analysis and Bi-LSTM prediction model. The predicted results of the PM2.5 concentration
corresponding to each model in the test set in the next six hours are shown in Figures 10–15,
and the corresponding error indicators of the predicted results of each model are shown in
Tables 5 and 6.
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Table 5. The MAE of PM2.5 concentration prediction in the next six hours.

Model Name LSTM PCCs-LSTM PCCs-BiLSTM PCCs-BiGRU

Next 1 h 21.07 17.79 13.47 11.18
Next 2 h 24.72 22.24 18.42 16.63
Next 3 h 27.69 26.51 23.17 21.07
Next 4 h 30.07 29.55 26.46 25.50
Next 5 h 32.29 32.40 30.37 29.09
Next 6 h 33.79 33.74 32.42 31.38

Table 6. The RMSE of PM2.5 concentration prediction in the next six hours.

Model Name LSTM PCCs-LSTM PCCs-BiLSTM PCCs-BiGRU

Next 1 h 31.95 27.97 20.40 19.05
Next 2 h 44.19 40.57 33.03 32.13
Next 3 h 48.64 46.99 41.52 39.11
Next 4 h 54.32 53.94 49.24 47.98
Next 5 h 58.49 59.61 54.11 53.04
Next 6 h 61.91 62.09 58.55 56.48

It can be seen from Tables 5 and 6 that the MAE average and RMSE average of the four
models decrease in turn, indicating that the performance of the model is improving after
the introduction of correlation analysis and the BiGRU model. Similarly, we also observe
that the prediction error increases with the increase in prediction duration because this is a
normal phenomenon caused by error accumulation.
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3.2. Experimental Results of PM10 Concentration Prediction Based on PCCs and Bi-GRU

Since the target of our prediction here is the PM10 concentration of the Olympic Sports
Center site, we first screen the PM10 concentration characteristics of the first three sites
with the strongest correlation with the PM10 concentration characteristics of the target
site through PCCs, and the corresponding correlation table is shown in Table 7 through
experiments.

Table 7. PM10 correlation of each station.

Site Name PCCs

Olympic Sports Center 1.000
Dongsi 0.918

Guanyuan 0.917
Agricultural Exhibition Hall 0.912

Wanliu 0.902
Temple of Heaven 0.882

Longevity West Palace 0.880
Shunyi 0.855

Gucheng 0.845
Changping 0.808

Huailou 0.782
Dingling 0.770

It can be seen from Table 7 that the three adjacent stations with the strongest correlation
with the PM10 concentration of the target station are Dongsi, Guanyuan, and agricultural
exhibition hall. It is noted that the three adjacent stations with the strongest correlation with
the PM2.5 concentration characteristics of the target station are the same. In environmental
science, the concentration changes in PM2.5 and PM10 are positively correlated, and the
experimental results here also prove this. Therefore, during model training, the PM10
concentration of the three stations and the historical pollutant concentration of the central
station are added to the model as inputs for training.

In order to compare the performance of the correlation analysis and Bi-GRU prediction
models, we compared them with other algorithms, including the LSTM prediction model
without correlation analysis, the correlation analysis and LSTM prediction models, and
the correlation analysis and Bi-LSTM prediction models. The predicted results of PM10
concentration corresponding to each model in the test set in the next six hours are shown
in Figures 16–21, and the corresponding error indicators of the predicted results of each
model are shown in Tables 8 and 9.
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Table 8. The MAE of PM10 concentration prediction in the next six hours.

Model Name LSTM PCCs-LSTM PCCs-BiLSTM PCCs-BiGRU

Next one hour 22.56 21.24 18.31 15.95
Next two hours 28.22 27.40 25.25 22.90

Next three hours 32.73 31.94 29.47 26.15
Next four hours 34.08 36.72 32.82 30.80
Next five hours 37.14 40.42 36.97 36.20
Next six hours 38.71 41.09 38.33 37.10

Table 9. The RMSE of PM10 concentration prediction in the next six hours.

Model Name LSTM PCCs-LSTM PCCs-BiLSTM PCCs-BiGRU

Next one hour 32.78 30.78 26.75 23.73
Next two hours 48.81 47.19 44.21 42.21

Next three hours 53.89 52.97 49.43 45.18
Next four hours 59.39 63.37 57.94 54.59
Next five hours 63.12 68.50 62.27 61.00
Next six hours 67.30 71.20 66.94 64.65

It can be seen from Tables 8 and 9 that the MAE average and RMSE average of the
four models decrease in turn, indicating that the performance of the model is improving
after the introduction of correlation analysis and the BiGRU model.
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4. Discussion

From the experimental results, we can make the comparison of MAE and RMSE for
the prediction results of our method in the next six hours with the other three prediction
models. First, we can see that the worst prediction effect in the first three hours is the LSTM
prediction model without correlation analysis, which is the most commonly used method
for particle concentration prediction, that is, the prediction model obtained by directly
training the target site data set in the LSTM model. Second, the PCCs-LSTM prediction
model has a better effect, which is significantly improved compared with the previous
LSTM prediction model without correlation analysis. The reason is obviously that the
correlation analysis is carried out, and the data set of the target site and the data set of
several sites with the strongest correlation are combined and then put into the model for
training, so the prediction effect is improved. The prediction effect of the PCCs-BiLSTM
model is better than that of the PCCs-LSTM model. This is because the LSTM model itself is
better at capturing the information of the far position than that of the near position, and the
BiLSTM model avoids this problem. It can be seen that the PCCs-BiGRU model proposed
in this paper has the best prediction effect compared with the other three comparison
models. On the one hand, it selects the training data set after correlation analysis, which
can better mine the internal relationship between the data of the target site and the data
of the target site. This is also the key part of the excellent prediction effect of the model.
Second, the BiGRU model is used for model training, because compared with BiLSTM,
BiGRU is equivalent to simplified operation, which can save more hardware computing
power and time cost, and the prediction effect will be better.

We also see that the prediction effect of the PCCs-LSTM model has not been improved
compared with the LSTM prediction model without correlation analysis in the last three hours,
because of the disadvantages of the LSTM model. The PCCs-BiLSTM and PCCs-BiGRU
models do not have similar situations, and the prediction effect of PCCs-BiGRU obtains the
best results in most conditions. In conclusion, the PCCs-BiGRU prediction model proposed in
this paper is more effective in predicting the change in particle concentration.

However, there is a significant difference between the predicted results and the actual
results of the fine particle concentration at the target station at some time, which is caused
by various factors. We can see from the results that when the difference is relatively
large, it is often far greater than the fine particle concentration in the adjacent period. We
often refer to the data that deviates from the average value in the time series data set as
outliers. There are many reasons for this situation, such as the error caused by the failure
of the monitoring station during data sampling, and the data obtained by the automatic
completion method corresponding to the loss of data at a certain time. The outliers will
have impact on the future time series analysis. The outliers will directly affect the fitting
accuracy of the model, so there will cause a large difference between the predicted results
and the actual values at a certain time. For this situation, we can reduce it as much as
possible during data preprocessing, but we cannot completely avoid it. Considering the
occurrence of this situation, we also conducted averaging processing for the selection of
the two evaluation index results of MAE and RMSE in this paper, which can reflect the
advantages and disadvantages of our overall prediction in different time.

Because the value of the Pearson coefficient ranges from −1 to 1, and a positive
correlation is stronger when its value is closer to 1, while a negative correlation is stronger
when its value is closer to -1, in this paper, we selected the three sites with the highest
correlation with the change in fine particles at the target site, so the corresponding Pearson
coefficient, whether it is close to 1 or −1, is considered to be highly correlated. Therefore,
we treat the absolute value of its Pearson coefficient, so its range is 0 to 1, shown in Table 2.

In addition, the method proposed in this paper also has some disadvantages. For
example, regarding the data source, we need to obtain as much data as possible from
adjacent sites to facilitate the correlation analysis among sites, so the requirements for data
source acquisition are relatively high. In the experiments, we predicted the concentration of
fine particles in the next six hours, and the overall prediction effect is good. If the method is
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used for longer time prediction, the results are not good. The advantage is that our method
can perform real-time and accurate forecasting particulate concentration at the hour level
during the next six hours.

5. Conclusions

In this study, we first conducted the correlation analysis of fine particle concentration
at the target site through PCCs, then combined it with the Bi-GRU model and established a
new prediction model which is used for the regional prediction of fine particle concentration
in the air. This model can fully consider the internal relationship among the air quality
monitoring stations by combining the influence of the correlation among the stations. The
experiment used the hourly PM2.5 and PM10 fine particle concentration data of 12 air quality
monitoring stations in Beijing, and selected the Olympic Sports Center Station as the target
station, and the other 11 stations as the adjacent stations. The proposed prediction model of
fine particle concentration based on correlation analysis and Bi-GRU was trained, verified,
and tested. The experimental results show that: (1) In the first three hours, the prediction
error of PCCs-LSTM prediction model was smaller than that of LSTM prediction model
without correlation analysis. (2) The prediction error between the PCCs-LSTM prediction
model and the LSTM prediction model of correlation analysis in the last three hours is
almost showing no big difference. (3) In the first six hours, the prediction error of PCCs-
BiLSTM prediction model is smaller than that of PCCs LSTM prediction model. (4) The
prediction error of the PCCs-BiGRU prediction model proposed in this paper within the
first six hours is smaller than that of the other three prediction models. (5) The prediction
error of each model increases with the increase in prediction time step.

In terms of application, the model can help environmental researchers to further
improve the prediction accuracy of the concentration of fine particles in the air, and provide
tools for environmental policy makers to implement relevant pollution control policies.
Through the correlation analysis between the target site and the adjacent sites, the internal
relationship can be mined to provide decision support for accurate pollution control. The
limitation of this study is that only the data sets in Beijing were selected and only the
fine particle concentration prediction in the next six hours were carried out. In future
research, we can consider selecting data sets from more regions and predicting fine particle
concentration in a longer time step to further verify the superiority of the PCCs-BiGRU
prediction model proposed in this paper in fine particle concentration prediction.
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