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Abstract: Eleven world elite ski-mountaineering (Ski-Mo) athletes were evaluated for pronounced
echocardiographic physiological remodeling as the primary aim of our feasibility speckle track-
ing study. In this context, sports-related cardiac remodeling was analyzed by performing two-
dimensional echocardiography, including speckle tracking analysis of the left atrium (LA), right
ventricle (RV) and left ventricular (LV) global longitudinal strain (LV-GLS) at rest and post-peak
performance. The feasibility echocardiographic speckle tracking analysis was performed on eleven
elite Ski-Mo athletes, which were obtained in 2022 during the annual medical examination. The
obtained data of the professional Ski-Mo athletes (11 athletes, age: 18–26 years) were compared
for different echocardiographic parameters at rest and post-exercise. Significant differences were
found for LV-GLS mean (p = 0.0036) and phasic LA conduit strain pattern at rest and post-exercise
(p = 0.0033). Furthermore, negative correlation between LV mass and LV-GLS (p = 0.0195, r = −0.69)
and LV mass Index and LV-GLS (p = 0.0253, r = −0.66) at rest were elucidated. This descriptive
reporting provided, for the first time, a sport-specific dynamic remodeling of an entire elite national
team of the Ski-Mo athlete’s left heart and elucidated differences in the dynamic deformation pattern
of the left heart.

Keywords: cardiopulmonary exercise testing; echocardiography; strain analysis; ski-mountaineering;
training; athlete’s physique

1. Introduction

Ski mountaineering (Ski-Mo) has been accepted as a new Olympic sport for the
2026 Milan-Cortina Olympics [1]. Ski-Mo has been rated among the most strenuous
endurance sports with the highest “hypoxic dose” (i.e., time spent in a hypoxic environ-
ment) [2–5], as it demands both maximal endurance performance during the individual
races as well as high-intensity bouts during the sprint and vertical races in elite winter
sports athletes [2–4,6–9].
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In comparison to other winter endurance sports, e.g., Nordic Cross Country skiing
or biathlon, Ski-Mo involves long uphill and downhill passages that have highly varying
muscular demands. This leads to significantly different athletic features in comparison
to other professional winter sports athletes [8]. Ski-Mo athletes tend to be smaller and
younger than other elite endurance winter sports athletes [6–8]. In this context, significant
physiological differences in morphological and functional cardiac remodeling could be
identified for Ski-Mo athletes, especially due to left atrial (LA) remodeling, speckle tracking
analysis of the left ventricle (LV), LV ejection fraction (LV-EF) assessment and LV Mass
index [6–8].

The term athlete’s heart describes adaptions, namely physiological, functional and
electro-physiological, caused by variable physiological sport-specific demands [8]. A
conventional morphological and functional echocardiographic assessment might fail to dis-
tinguish between an athlete’s heart and controls, whereby functional strain rate evaluation
provides further information for subclinical abnormalities and risk stratification [8,10–19].
These relatively new, non-invasive imaging techniques enhance the understanding of an
athlete’s heart through a comprehensive characterization of anatomical and functional adap-
tion, providing novel insights into the assessment of cardio-physiological adaption [20].

Especially the analyzed innovative echocardiographic data on pre- and post-exercise
conditions with particular attention to the application of speckle tracking as dynamic
functional assessment of cardiac remodeling might provide further insights into the char-
acterization of biventricular and LA function in athletes and the impact of sport-specific
cardiocirculatory functional adaption in these athletes [20].

The scientific evidence on the physiological aspects of competitive Ski-Mo athletes is
still sparse. However, so far sport specific cardiopulmonary remodeling due to structural
and functional adaption of the athlete’s heart has already been proven [6–8,21–23]. Under
resting conditions sport specific structural remodeling, such as left atrial volume index
(LAVI) and LV global longitudinal strain (LV-GLS), could be detected [7,8]. The objective
of the present scientific analysis is to investigate the feasibility of biventricular and LA
phasic deformation patterns after maximal exercise, as earlier studies solely focused on
strain analysis at rest. In this context, the aim of this feasibility study is to investigate
the correlations between strain pattern at rest and their dynamic changes post-exercise to
enhance our understanding of an athlete’s heart. This comprehensive characterization of
biventricular and LA functions might provide novel insights into the physiological adaption
of an athlete’s heart, especially under environmental conditions, such as specific altitude
training conditions [20,24]. Previous research revealed a complex sport-specific interaction
between physiological response and altitude training, whereby hypoxia and training stress
are combined [25]. Alterations of the autonomous regulation of the nervous system and
subsequent modifications of the heart rate variability (HRV) have been studied before,
differently depending on the training intensity at altitude [25–28]. These peculiarities
might be promising to provide further interesting data to distinguish sport-specific cardiac
remodeling in these elite world winter sports professionals, who often perform their sports
in altitude, from balanced cardiomyopathies in the future [7,8,20].

2. Materials and Methods

The local ethics committee of the University of Bayreuth approved the study protocol
(O1305/1-GB). The study was conducted in conformity with the declaration of Helsinki and
Good Clinical Practice [29]. Before any study-related activities, our participating athletes
were informed about the study protocol, and athletes were asked to give their written
informed consent.

2.1. Study Population

Eleven young elite Ski-Mo professionals, all active members of the German National
Team, participating in World championships and the World Cup season, were examined
and evaluated in the preseason preparation time in summer during the season 2022. No
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participating athlete had to be excluded from the study due to post-COVID-19 infection
syndromes. All participants were evaluated for anthropometric data, 12 lead electrocar-
diogram (ECG) and two-dimensional transthoracic echocardiography, including strain
analysis at rest and post-exercise. The obtained data of the athletes (n = 11; male n = 8,
female n = 3) were compared for different echocardiographic parameters at rest and post-
exercise. All participating athletes did not have any medical history, and their sports-related
history revealed no potential risk factors for sudden cardiac death in all athletes and within
their families.

All participating Ski-Mo athletes were winter sports professionals with a total amount
of 20–30 training hours per week during high-volume training times and 5–10 training hours
during low-volume training times. During low-volume training times, the athletes focus on
continuous endurance training, such as running and cycling, as well as functional strength
training and individual training to improve muscle disbalances [6]. An additional sample
size estimation was not conducted since the included n = 11 represents the entire cohort of
the German National Team competing at World Cup and World Championship levels.

2.2. Echocardiographic Examination

An echocardiographic functional and morphological assessment at rest and post-
exercise using a commercially available echocardiographic system Phillips EPIQ 7 device
with an X5-1 Matrix-array transducer (Phillips Healthcare, Eindhoven, The Netherlands),
following a standard protocol, was performed [30]. In addition, heart rate and blood pres-
sure were measured. Two-dimensional echocardiographic analyses were performed at rest
following the general recommendations [8,30–32]. The systolic LV-EF was calculated using
biplane Simpson rule, based on the apical two-chamber—as well as apical four-chamber
view. Two-dimensional linear dimensions and LAVI were evaluated for both ventricles
and both atria manually according to the recommendations [30–33]. An estimation of the
RV systolic function at rest using the TAPSE (Tricuspide annular plane systolic excursion)
was obtained in the apical four-chamber view. The LV Mass index and the relative wall
thickness (RWT) of the LV were calculated using the formula recommended by the current
guidelines [34]. We measured the pulse-wave Doppler in the apical four-chamber view
referring to the peak early filling (E wave) and late diastolic filling (A wave) velocities to
assess the LV diastolic function. Additionally, tissue Doppler imaging of the lateral mitral
anulus in the apical four-chamber view was performed (peak early velocity E′) [30,31].

Furthermore, speckle tracking analysis of the athlete’s heart was recorded at rest as
well as three minutes post maximal treadmill cardiopulmonary exercise testing (CPET)
as post-exercise assessment, focusing on LV, RV and LA. In this context, we obtained
the LV-GLS pattern, RV free wall longitudinal deformation (RV FW long.Def.), RV four
chamber longitudinal deformation (RV 4C long.Def.) as well as phasic LA strain analysis
by two-dimensional strain analysis in the apical views. The detailed phasic LA strain
analysis was performed according to the recent European Association of Cardiovascular
Imaging (EACVI) recommendations, including LA reservoir strain (LASr), LA conduit
strain (LAScd) and LA contraction strain (LASct) assessment [35]. The LA strain assessment
was not limited because no Ski-Mo athlete presented atrial fibrillation.

Each of the participating Ski-Mo athletes was evaluated for the prevalence of left and
right heart valve regurgitation as part of the standard echocardiographic assessment [8,30,36].

2.3. Statistical Analyses

Data were analyzed with Graph Pad Prism 8.2.1(279) (Graph Pad Software; San Diego,
CA, USA). All data were tested for normal distribution via Shapiro–Wilk test. Data were
tested for differences with paired t-tests, with statistical significance being accepted at
p ≤ 0.05. All data are presented as mean ± SD. Pearson correlations were conducted
for anatomical echocardiographic parameters as independent parameter with GLS, RV
deformation pattern and LA reservoir, LA conduit and LA contractile at resting conditions
as well as post-exercise in our participating elite Ski-Mo athletes. Due to the relatively small
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number of participating elite winter sports athletes, who were enrolled as the uniqueness
of this reporting, we are not able to draw reliable conclusions by uni- and multivariate
regression analyses, but we might point out interesting trends in the cohort of enrolled
world elite winter sports professionals.

3. Results
3.1. Baseline Athletes’ Characteristics and Echocardiographic Assessment at Rest

The baseline characteristics and anthropometric data of the participating male and
female Ski-Mo athletes are presented in Table 1. The body surface areas were calculated
with the Du Bois method.

In the two-dimensional echocardiographic assessment, all participating Ski-Mo ath-
letes showed a low–normal to normal systolic LV-EF at rest estimated by the biplane
Simpson method and did not show any relevant pathological regurgitation of the right
and left heart valves. Only mild regurgitation at the tricuspid and mitral valves was re-
vealed. There was no relevant systolic pulmonary artery pressure evaluated by tricuspid
peak systolic velocity. The obtained LA and LV assessment did not differ in between the
participating athletes. The baseline echocardiographic characteristics are presented in
Table 2.

Table 1. Baseline anthropometric Ski-Mo characteristics.

Ski-Mo
Male n = 8

Ski-Mo
Female n = 3

Age (years) 20.5 ± 2.4 19 ± 0
Height (cm) 177.8 ± 4.6 164.0 ± 20.0
Weight (kg) 63.6 ± 6.1 52.1 ± 5.9
BMI (kg/m2) 20.1 ± 1.4 19.3 ± 0.4

resting blood pressure
systolic/diastolic (mmHg)

119 ± 6.1
85 ± 3.2

110 ± 5.2
71 ± 2.3

resting heart rate (bpm) 41 ± 3.6 44 ± 2.5
BSA (body surface area m2) 1.79 ± 0.1 1.79 ± 0.1

Data are presented as a median with standard deviation. Abbreviations: cm, centimeter; kg, kilogram; m2, square
meter; bpm; beats per minute. Bold: anthropometric athlete’s characteristics.

Table 2. Baseline echocardiographic measurements (mean ± SD) of the Ski-mountaineering athletes
and comparison to the stated control data of the position statement paper of the DGK (German
Society of Cardiology, 2020).

Ski-Mo Male
n = 8

Ski-Mo Female
n = 3

Reference Value
Male

Reference Value
Female

LV edd (mm) 47.13 ± 4.64 43.67 ± 2.31 42–58 38–52

LV Mass Index (g/m2) 71.38 ± 15.50 67.33 ± 12.35 49–115 43–95

Relative wall Thickness RWT 0.34 ± 0.05 0.37 ± 0.05

IVSd (mm) 8.25 ± 1.28 7.33 ± 0.58 6–10 6–9

LVPWs (mm) 8.00 ± 0.93 8.00 ± 1.00 6–10 6–9

E/A 1.98 ± 0.32 1.90 ± 0.20

E/E′ 5.08 ± 2.18 5.53 ± 0.62

LAVI (mL/m2) 28.13 ± 8.17 36.00 ± 3.00

RA (cm2) 15.00 ± 2.39 14.00 ± 2.65
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Table 2. Cont.

Ski-Mo Male
n = 8

Ski-Mo Female
n = 3

Reference Value
Male

Reference Value
Female

LV− EFrest (%) 61.38 ± 4.17 59.00 ± 1.00 52–72 54–72

LV− EFpost-stress (%) 70.00 ± 2.88 68.33 ± 0.58

Data are presented as a median with standard deviation. Abbreviations: LV edd, left ventricle enddiastolic size;
LV, left ventricular; IVSd, interventricular septal wall thickness at diastole; LVPWd, left ventricular posterior wall
thickness at diastole; E/A and E/E′, parameters for diastolic function of the left ventricle; LAVI, left atrial volume
index; RA, right atrium; LV − EF, left ventricular systolic ejection fraction. Bold: echocardiographic parameters.

In comparison with data from sedentary control measurements presented by the
German Society of Cardiology (DGK) [32] and with previous morphological and functional
echocardiographic data from these athletes [7,8], the obtained sport specific morphological
echocardiographic data [LVedd diameter, LV Mass index measurements, interventricular
septal wall thickness at diastole (IVSd) and left ventricular posterior wall thickness at
diastole (LVPWd), and systolic LV-EF] can be categorized to be in the normal range [7,8].

3.2. Speckle Tracking Analysis of the Right and Left Heart at Rest and Post-Exercise–Sport-Specific
Functional Cardiac Remodeling

In the speckle tracking analysis, normal LV-GLS values at rest (−21.55 ± 3.44%)
and slightly reduced values for LV-GLS post-exercise (−17.25 ± 3.39%) were elucidated.
The difference between rest and post-exercise assessment was significant (p = 0.0036), as
presented in Figure 1.

No significant differences were found for the RV free wall longitudinal deformation
(RV FW long.Def. rest −28.17 ± 5.45% vs. RV FW long.Def. post-exercise −26.57 ± 6.24%,
p = 0.48) nor for the RV apical four-chamber longitudinal deformation (RV 4C long.Def.
rest −23.08 ± 2.09% vs. RV 4C long.Def. post-exercise −21.71 ± 4.89%, p = 0.40) at rest and
post-exercise.

With respect to standard echocardiographic parameters, LA and LV geometric prop-
erties did not show significant interindividual differences. The evaluation of functional
LA remodeling by the average phasic LA strain (LAS) during all three phases of the atrial
cycle revealed significant differences in the comparison of resting and post-exercise con-
ditions. In this context, across our participating athletes neither the LASr analysis at rest
compared to post-exercise strain pattern (LASr rest 51.95 ± 11.55% vs. LASr post-exercise
43.92 ± 11.88%, p = 0.12) nor the LASct analysis at rest compared to post-exercise strain
pattern (LASct rest −10.49 ± 7.45% vs. LASct post-exercise −15.46 ± 11.58%, p = 0.24)
revealed significant differences.

Significant differences could be elucidated for the LAScd analysis at rest versus post-
exercise parameters (LAScd rest −41.45 ± 5.46% vs. LAScd post-exercise −28.45 ± 10.33%,
p = 0.0033, as presented in Figure 1).
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Figure 1. Speckle tracking analyses of world elite Ski-Mo professional–Comparison of mean LV-
GLS, phasic LA strain and RV strain with significant differences between resting conditions and
post-exercise. ** indicates p < 0.01.

3.3. Sport-Specific Functional Cardiac Remodeling–Univariante Relationships between
Morphological Echocardiographic Characteristics and Functional Remodeling as Speckle
Tracking Analyses

No significant correlations between LAVI and the athlete’s heart strain pattern could
be revealed, whereby a negative correlation between LV mass and LV-GLS (p = 0.0195,
r = −0.69) and LV-GLS and LV mass Index (p = 0.0253, r =−0.66) at rest could be proven, as
presented in Figure 2.
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4. Discussion

To the best of our knowledge, this is the first feasibility study to prove functional LA
response due to exercise conditions in elite Ski-Mo athletes. These peculiarities provide
novel insights into the assessment of Ski-mountaineers’ heart-to-exercise conditions at
altitude and improve our understanding of physiological sport-specific demands in these
winter sports professionals. Our previous research has shown that the heart of Ski-Mo
athletes has adapted to physical exercise by individual sport-specific remodeling due to
morphological and functional assessment [6–8]. Our additional novel presented results
might provide further useful data to complete the understanding of the complex intraindi-
vidual Ski-Mo athlete’s cardio-physiological performance adaption and of their enhanced
anaerobic capacity during race performance at altitude.

Cardiac and physiological adaptions due to exercise in elite athletes, mainly endurance
athletes, represent a hot topic, and studies addressing this topic already exist [11–13,17,37].
The uniqueness of our study as a feasibility trial represents the performance evaluation
of a small number of world elite winter sports athletes competing in one of the most
strenuous endurance sports with the highest “hypoxic dose”, and their competitions are
often performed in extreme altitudes, including vertical race components [3,4,6–8]. The
detected strain rate measurements at rest for LV-GLS in our analyzed participating elite
Ski-Mo athletes indicate normal values, despite mild differences compared to untrained
controls and well-trained athletes of other sports [11,19,38,39]. However, up to now, LV
strain assessment in sport professionals remain largely undefined and has to be interpreted
in a multimodality approach assessing cardiac function following exercise [11,16,38,40,41].
Therefore, previous research revealed converse results with either progressive strain rate
increase [15,42] or decreased LV-GLS and RV-GLS rates during exercise [42]. Our data
elucidate normal LV-GLS strain rates at rest but a small decrease immediately post-exercise.
Therefore, our study may serve as a pilot project to evaluate a Ski-Mo athlete’s heart
due to altitude performance conditions. Previous research revealed the importance of
energy storage during LV twisting to increase and to maintain stroke volume during
exercise [24,43]. Prolonged strenuous variables, such as an athlete’s blood pressure response,
variable preload conditions, heart rate response during exercise and exposure, especially
to high-intensity interval training (HIIT) episodes at altitude, have to be considered in
the interpretation and slight reduction of LV-GLS post-exercise in our Ski-Mo athletes’
data [44,45] and their potential negative impact on left and right ventricular function
according to “exercise induced cardiac fatigue” [46–48].

RV longitudinal strain seems to provide an effective tool to assess sport-associated
individual athletes’ adaption or alterations of the RV by exercise-related RV overload,
even at an early subclinical stage [49–55]. Normal to slightly lower resting values of RV
myocardial strain have to be shown to be a consequence of physiological cardiac remodeling
rather than subclinical myocardial damage in elite endurance athletes [51,52,56–58]. No
significant differences between pre- and post-exercise conditions in our small cohort could
be proven. Although it might be difficult to derive reliable conclusions from our RV strain



Int. J. Environ. Res. Public Health 2022, 19, 13153 8 of 13

assessment, our descriptive reporting might contribute to a better understanding of sport-
specific RV remodeling at altitude conditions. Several influencing environmental as well
as physiological parameters, the impact of ethnicity, the beta-adrenergic desensitization,
and the different levels of exposure to dynamic training on the RV, not all highlighted
in our presented feasibility analyses, have to be taken into consideration for a focused
and comprehensive assessment of right heart remodeling [48,59,60]. Next to the impact of
the functional shift of RV as a novel marker of an athlete’s heart [48,49,61,62], we have to
be aware that such RV remodeling might represent a proarrhythmogenic substrate in
some highly trained athletes in the absence of known familiar predisposition-implicating
the importance of long-term clinical assessment in the accompanying performance
center [63–65].

Previous research demonstrated the importance of LA remodeling as a promising tool
for the volumetric and functional characterization of the LA in athletes [66] as well as in
patients with heart failure [67]. To the best of our knowledge, this is the first feasibility
study to evaluate the acute LA response in Ski-Mo athletes. LA function, in general, has
a great pathophysiological impact on the modulation of LV filling conditions as well as
on LA response functions during exercise [67,68]. Our novel obtained data on exercise-
induced LA adaption revealed significant differences for the phasic LAScd data at rest
versus post-exercise values, whereas LASr and LASct strain patterns were not affected. The
possibility to mobilize atrial functional “booster” capacity in response to exercise represents
an important aspect of an athlete’s performance, whereby endurance training is known
to be associated with an increase in venous return with a potential overstretching of the
LA [67,69]. Although LA response according to a Frank–Starling mechanism up to a certain
point has been described before [70], it has to be stated that LA response may vary to
different exercise modalities, environmental conditions and loads [67]. Referring to this
background, our observed LAScd reduction post-exercise might be interpreted due to high-
intensity components mainly at altitude environmental conditions. Due to these extreme
conditions causing hypoxia and modifications of the HRV [25,26,28], a certain impact on
the specific Ski-Mo athlete’s LA response might be assumed. Functional LA properties
have to be interpreted as a consequence of intense and chronic training in an athlete’s heart,
as stated before [66]. Exercise-induced hypertension, variable preload conditions after
endurance exercise and LVH are suggested to have the mean impact on alternated LAScd
or the previously described LA intrinsic impairment [71]. Whether these LA remodeling
persists during an athlete’s lifetime career or might be related to environmental conditions
remains to be evaluated. Nevertheless, these alterations might be related to the higher risk
of arrhythmias, especially atrial fibrillation (AF) known as paroxysmal AF, in young and
middle-aged athletes (PAFIYAMA) [68,72]. Therefore, our feasibility study cannot appraise
any chronological causalities on the LAS pattern and draw reliable conclusions, and further
prospective research is necessary to strengthen the scientific evidence.

Sport-specific cardiac remodeling in extreme levels of endurance sports, such as Ski-
Mo, is a previously known phenomenon displaying a continuous process with a broad
spectrum of adaption during an athlete’s career [5–8,73–76]. Whether the LVH found in
athletes is physiological adaption or a risk factor for the progression of an initial subclinical
hypertrophy remains controversial in the literature [40,76]. Evaluating the impact of
anatomical left heart remodeling on biventricular and LA deformation patterns at rest and
post-exercise, we could reveal a negative correlation between higher LV Mass as well as LV
Mass Index and lower LV-GLS strain values at rest in our elite Ski-Mo athletes. Due to the
small sample size, data outliers might lead to a significant bias in the echocardiographic
data assessment and consequently affect the correlation of LV mass index and LV-GLS.
Although it is not possible to derive reliable conclusions from this small sample size of
Ski-Mo professionals, our data assessment might be regarded as an additional descriptive
characterization of an athlete’s altitude training-induced dynamic remodeling process,
primarily appearing as a balanced process [76].
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Our feasibility trial aims to elucidate sport-specific adaptions of elite Ski-Mo athletes,
who compete as very endurant athletes with enhanced anaerobic capacity at altitude and
under environmental influences. However, our study is not without limitations. Firstly, our
measurements were acquired in the preseason preparation time in summer with respect to
a certain deviation in individual training schedules. Secondly, the slightly anthropometric
variability in the cohort of Ski-Mo athletes with a mixture of young and experienced
athletes entails an intra-cohort variability and contributes to a certain standard deviation in
our cardiac assessment, such as the LV Mass index. Furthermore, no comparable winter
sports athletes with different ethnic backgrounds except Caucasian athletes were analyzed.
Additionally, focusing on speckle tracking deformation pattern pre- and post-exercise, no
complete echocardiographic examination and no calculation of average septal and lateral E’
data were obtained according to the current and latest recommendations [30,34]. During
the treadmill CPET, no strain analyses were acquired because it was technically not feasible.
Last, we were unable to draw reliable conclusions between echocardiographic assessment
and parameters of CPET performance because the size of the entire elite German Ski-Mo
team is small. This would not lead to statistically reliable conclusions. Future research
might focus on a larger athlete’s sample size to verify and strengthen the scientific evidence
base of the obtained findings of our feasibility reporting.

5. Conclusions

This report provides, for the first time, new evidence of sport-specific dynamic remod-
eling of the Ski-Mo athlete’s heart and elucidates differences at resting and post-exercise
conditions in the strain pattern of the left heart against the sport-specific altitude training
background of Ski-Mo athletes.

In conclusion, strain imaging is technically feasible in world elite Ski-Mo athletes
and might contribute to a better understanding of sport-specific remodeling and probably
enhanced physiological remodeling in these highly trained altitude athletes. Further data
are warranted to characterize the sport-specific dynamic atrial and ventricular cardiac
remodeling, and our obtained findings might pave the road to future studies with long-
term follow-up and a greater number of athletes to verify and strengthen the scientific
evidence base.
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