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Abstract: Resembling a concealed “organ” in a holobiont, trillions of gut microbes play complex roles
in the maintenance of homeostasis, including participating in drug metabolism. The conventional
opinion is that most of any drug is metabolized by the host and that individual differences are
principally due to host genetic factors. However, current evidence indicates that only about 60%
of the individual differences in drug metabolism are attributable to host genetics. Although most
common chemical drugs regulate the gut microbiota, the gut microbiota is also known to be involved
in drug metabolism, like the host. Interestingly, many traditional herbal medicines and derived
compounds are biotransformed by gut microbiota, manipulating the compounds’ effects. Accordingly,
the gut microbiota and its specified metabolic pathways can be deemed a promising target for promoting
drug efficacy and safety. However, the evidence regarding causality and the corresponding mechanisms
concerning gut microbiota and drug metabolism remains insufficient, especially regarding drugs used
to treat metabolic disorders. Therefore, the present review aims to comprehensively summarize the
bidirectional roles of gut microbiota in the effects of herbal medicine in metabolic diseases to provide
vital clues for guiding the clinical application of precision medicine and personalized drug development.

Keywords: metabolic disorder; gut microbiota; herbal medicine; drug metabolism; drug–gut
microbe interaction

1. Introduction

Since our host origins, trillions of microbes have coexisted and coevolved with hu-
mans in the gastrointestinal tract [1]. In an innovative concept, the host and its commensal
microbiomes are considered a “supraorganism” [2]. Because various microorganisms can
be difficult to culture and because of the limitations of the technology for differentiation,
investigations of the gut microbiota (GM) had progressed very slowly in the past [3]. How-
ever, recently, with the development of OMICs approaches, many scientists and physicians
have established that ten times the cell number and one hundred times the genes exist in
the GM compared to the human host itself [4,5]. Moreover, some researchers also estimated
that the difference in the number of human cells and GM is not significant [6]. Although the
numbers of commensal gut bacteria and their genes are debated by scholars [6], in recent
decades, huge numbers of gut commensal bacteria with a tremendous number of genes
have been proved to play a critical role in host metabolism, including drug metabolism [7].
Therefore, the studies concerning the relationship between GM-produced drug metabolites
and host metabolism dysfunction are noteworthy.

In modern society, metabolic disorders (MetD) are common diseases often referred to
as a new pandemic [8], with increasing prevalence [9]. MetD are heterogeneous diseases
that occur when the normal metabolic process is disrupted due to abnormal chemical
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reactions [10]. These abnormal chemical reactions can lead to the maldistribution of
macronutrients such as protein, fat, and carbohydrates [11]. Thus, at the physical level,
weight loss or gain (in terms of the body mass index) is the primary sign of MetD; at the
physiological level, high blood pressure is the primary sign of MetD; and, at the biochem-
ical level, high triglyceride and high carbohydrate levels in the blood are the primary
indicators of MetD [12–15]. These increase the risks of hyperlipidemia, hyperglycemia, and
hypertension, resulting in obesity, diabetes, and cardiovascular diseases [16].

For the treatment of MetD, both synthetic and traditional medicines (herbal
drugs/formulations) can be considered [17–19]. Each kind of medical system has its
unique way of maintaining health. Generally, Western medicines are primarily metabolized
in the liver via cytochrome P450 enzymes and impact host physiology [20,21]. In the
past, it has been supposed that a single drug is appropriate for a single symptom for any
individual. However, we still do not fully understand how a drug is metabolized in a
particular individual for a particular disease.

Decades earlier, it had already been established that every individual has a unique
composition of intestinal bacteria, which can be recognized as commensal, opportunistic,
and pathogenic [22]. The GM composition fluctuates due to multifactorial host conditions
such as age, genetics, diet, drugs, and various environmental factors [23]. Many scientific
findings have already revealed that the GM can directly contribute to MetD by increasing
gut permeability and systemic low-grade inflammation [24]. Moreover, it is widely assumed
that the host GM has a secondary impact on MetD by modulating the efficacy or availability
of drugs taken by the host.

To the best of our knowledge, drug metabolism comprises a sequence of complex pro-
cesses regulated by host genetics, the GM composition, and environmental factors [25–27].
Current evidence indicates that only about 60% of the individual differences in drug
metabolism are attributable to host genetics [28]. The GM fundamentally modulates drug
metabolism through various enzymes, such as reductases, hydrolases, transferases, and
lyases [29]. One ex vivo experiment showed that at least one GM species from 76 human
gut commensal bacteria chemically modified approximately two-thirds of common clinical
drugs [30]. Moreover, even a single species of the GM can metabolize 11 to 95 kinds of clinical
drugs obtained from DrugBank (https://go.drugbank.com, accessed on 4 January 2018).
Similarly, many herbal medicines and their derived compounds are biotransformed by GM,
manipulating the drugs’ effects and safety [31].

Consequently, we present a comprehensive overview of advances regarding the GM
and herbal medicines’ metabolism in MetD and the challenges at the frontiers of this rapidly
accelerating field. The current review aims to summarize the outcomes of drug metabolism
by the GM in metabolic diseases, which will help researchers to decide their directions
of study. Meanwhile, it will provide a vital reference guiding the clinical application of
precision medicine and personalized therapy for metabolic disorders. Ultimately, we hope
the present overview can contribute to ameliorating the public health issue by widening
the understanding of GM and their metabolism of natural drugs.

In the current study, the literature was searched through two well-known databases of
biomedical literature, PubMed (www.ncbi.nlm.nih.gov/pubmed, accessed on 8 January 2022)
and Google scholar (scholar.google.com), with the combinations of the following keywords:
“herb”, “plant”, “herbal medicine”, “herbal drug”, “gut microbiota”, “gut microbiome”,
“bioconversion”, “fermentation”, “metabolic diseases”, “metabolic syndrome”, “obesity”,
“diabetes”, “NAFLD”, “NASH”, “fatty liver” and “hyperlipidemia”, whereas without
time limitation. Eventually, the papers were selected by whether they contain microbial
metabolites derived from herbal medicine and their natural compounds and relate to
various metabolic diseases.

https://go.drugbank.com
www.ncbi.nlm.nih.gov/pubmed
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2. The GM’s Interplay with Herbal Medicine, Altering Drugs’ Efficacy in
Metabolic Disorders

Many studies have reported that the GM influences herbal drugs’ efficacy during
microbial metabolism by changing pharmacokinetic processes [32]. As typical herbal-origin
compounds, glycosides consist of one/several sugar(s) combined with an aglycone [33].
These phytochemicals are secondary plant metabolites and can be present along with
phenols, alcohols, flavonoids, saponins, and anthraquinone [34]. However, the herb-
derived glycosides are usually inactive due to their conjugated sugar moiety [35]; therefore,
they are classified as prodrugs [36]. Nonactivated glycosides can be degraded/metabolized
by the GM by their enzymes, producing bioactive aglycones [37]. In the process of microbial
transformation, the properties of herbal medicine (HM) compounds have been shown to
be greatly changed by general modifications into smaller, less polar, and more lipophilic
molecules [38]. The above processes derived from the GM consist of many enzymatic
reactions, such as the hydrolysis, oxidation, reduction, and esterification of the functional
groups of compounds [39]. The GM-specific bioconversion processes of herbal compounds
are highly differentiated into several stages and have distinct structural preferences in
functional groups conducted cooperatively or independently [38].

The efficacy of herbal compounds can be modulated by changing their oral bioavail-
ability [40]. In some cases, smaller molecules produced by digestion exhibit stronger
efficacy than their parent molecules [31]. The GM also regulates the toxicity of HMs by
metabolizing toxic substances [31]. The alteration of herbal toxicity by GM metabolism
remains unclear and requires further investigation. Hence, we summarize how the GM
modulates the efficacy of HMs used in the treatment of metabolic disorders. To readily
comprehend the overview, we organized microbial metabolites of herb-derived compounds
produced by gut microbiota in Table 1; we also arranged the impact of microbial metabolism
on drug efficacy against metabolic diseases in Table 2. Meanwhile, the molecular and phar-
macological properties of major compounds and their metabolites from herbs were listed
in Table 3.

Table 1. Herbal compounds and their microbial metabolites formed by host GM.

Herbal Medicine Compound Related
Microbiota Microbial Metabolites Mechanisms Ref.

Ginseng Radix

Ginsenoside Rb1 Bifidobacterium
longum H-1

Ginsenoside Rd
Compound K β-D-glucosidase [41]

Ginsenoside Rb1 Fusobacterium K-60 Compound K β-Glucosidase [42]
Ginsenosides
Ra1 and Ra2

Bifidobacterium
breve K-110 Ginsenosides Rb2, Rc β-D-Xylosidase [43]

Ginsenoside Rb1 Microbacterium
esteraromaticum

Ginsenoside Rd
Ginsenoside 20(S)-Rg3 β-Glucosidase [44]

Ginsenoside Rb1 Eubacterium sp.
A-44

Ginsenoside Rd
Ginsenoside F2
Compound K

β-D-glucosidase [45]

Ginsenoside Rc

Bifidobacterium
K-103

Eubacterium A-44
Ginsenoside Rd (intermediate)

Compound K Hydrolysis [46]
Bacteriodes HJ-15
Bifidobacterium

K-506

Ginsenoside Mb
(intermediate)
Compound K

Hydrolysis

Ginsenoside Rb1 Prevotella oris 20-O-/J-o-glucopyranosyl-
20(S)-protopanaxadiol

β-Glucosidase
hydrolysis [47]
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Table 1. Cont.

Herbal
Medicine Compound Related Microbiota Microbial Metabolites Mechanisms Ref.

Puerariae
Radix
And

Puerariae Flos

Puerarin Dorea longicatena
PUE Daidzein Deglycosylation [48]

Daidzein Slackia
isoflavoniconvertens. Equol Not identified [49]

Kakkalide
Tectoridin

Bifidobacterium breve
K-110

Irisolidone
tectorigenin β-D-Xylosidase [50]

Puerarin
Daidzin

Bacteroides sterocoris
HJ-15

Bifidobacterium
longum H-1

Eubacterium rectale
A-44

Streptococcus faecium
S-9

Daidzein Hydrolysis [51]

Kakkalide
Irisolidone Not identified Irisolidone

Biochanin A

Hydrolysis
Dehydroxylation
Demethoxylation

Demethylation
Hydroxylation

Decarbonylation
Reduction

[52]

Coptidis
Rhizoma

Berberine
Escherichia coli

Streptococcus faecalis
Lactobacillus
acidophilus

Oxyberberine Oxidation [53]

Berberine Not identified
Thalifendine
Berberrubine
Jatrorrhizine

Not identified [54]

Berberine Enterobacter cloacae
Enterococcus faecium Dihydroberberine Nitroreductase [55]

Scutellaria
Radix

Baicalin Not identified Baicalein Not identified [56]
Baicalin Escherichia coli Baicalein Beta-D-

glucuronidase [57]
Baicalin

Wogonoside
Lactobacillus

delbrueckii Rh2
Baicalein
Wogonin β-glucuronidase [58]

Baicalin
Wogonoside

Lactobacillus brevis
RO1

Baicalein
Wogonin β-glucuronidase [59]

Curcumae
Radix

Curcumin
Demethoxycurcumin

Bis-
demethoxycurcumin

Escherichia fergusonii
Escherichia coli ATCC

8739
Escherichia coli

DH10B

Dihydrocurcumin
Tetrahydrocurcumin

Ferulic acid

Reduction
(CurA) [60]

Curcumin E. Coli strain DH10B Dihydrocurcumin
Tetrahydrocurcumin

Reduction
(CurA) [61]

Curcumin (1)
Demethoxycurcumin

(2)
Bisdemethoxycurcumin

(3)

Blautia sp.
MRG-PMF1

Dimethylcurcumin (from 1)
Bisdemethylcurcumin (from 1)
Demethyldemethoxycurcumin

(from 2)

Reduction [62]

Mori folium/
Bupleurum

Radix/
Houttuyniae

Herba

Quercitrin Bacillus subtilis Quercetin Dioxygenase
(C-ring cleavage) [63]

Quercitrin Fusobacterium K-60 Quercetin Hydrolysis
(α-L-Rhamnosidase) [64]

Quercitrin Fusobacterium K-60

Quercetin
3,4-Dihydroxyphenylacetic

acid
4-Hydroxylphenylacetic acid

Not identified [65]

Glycyrrhizae
Radix

Glycyrrhizin Eubacterium sp. GLH
18β-Glycyrrhetinic acid

monoglucuronide
18β-Glycyrrhetinic acid

Deglycosylation [66]

Glycyrrhizin
Not indicated
(human feces

sample)
18β-Glycyrrhetic acid b-D-glucuronidases [67]

Glycyrrhizin Ruminococcus sp.
PO1-3

18β-Glycyrrhetic acid
3-Oxo-glycyrrhetic acid

b-D-glucuronidases
3β-Hydroxysteroid

dehydrogenase
[68]
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2.1. Gut Microbial Metabolism Produces Ginsenosides from Ginseng Radix, Exerting Bioactivity

The ginsenosides are a group of steroidal glycosides and triterpenes derived from gin-
seng that have pharmacological activity against diabetes, obesity, and other MetD [69]. The
GM biotransformation process on ginseng saponins and its influence on host health have
been extensively studied [70]. Previous findings revealed that the therapeutic potential of
ginseng saponins largely depends on their bioconversion by the host GM, which can result
in varying bioavailability, membrane permeability, and stability in the gastrointestinal
tract [71]. The biological conversion of ginsenosides has been investigated in various stud-
ies, including ex vivo studies (anaerobic incubation with human fecal supernatants), in vivo
studies (germ-free or antibiotic-treated animals, and gnotobiotic animals), and clinical tri-
als. The 20(S)-protopanaxadiol-type ginsenosides (Rb1, Rb2, Rb3, Rc, and Rd) are mainly
transformed into compound K, and Rh2 and 20(S)-protopanaxatriol-type ginsenosides (Re,
Rg1, and Rg2) can also be converted into Rh1 and protopanaxatriol [70,72]. GM species,
such as Fusobacterium, Eubacterium, and Bifidobacterium spp., predominantly biotransform
the ginsenosides through β-glucosidase [41,42,44–47,70,73–76]. Among these bacterial
metabolites, compound K, which is a hydrophobic and absorbable compound [73], has the
most potent activity against numerous diseases, including various metabolic disorders [46].

2.2. Gut Microbial Metabolism Produces Active Compounds from Puerariae

Puerariae Radix, enriched with isoflavone glucosidases, has a long history of use in east
Asia, possessing therapeutic effects on obesity, dyslipidemia, and insulin signaling [77,78].
The typical compounds in Puerariae Radix include puerarin, daidzin, and daidzein [79].
Daidzin and puerarin are metabolized into daidzein and, further, into equol, which is
promising for estrogenic activities [80]. It was demonstrated that daidzein shows higher
intestinal absorbability than daidzin in the Caco-2 cell model, implying the importance of
bacterial hydrolysis in absorption [81]. Another in vitro study revealed that daidzin and
puerarin were transformed into daidzein by human fecal bacteria, such as Eubacterium
A-44, and the metabolite daidzein displayed effectively increased estrogenic activity [51].
Other flavonoids are found in Pueraria flos, including kakkalide and tectoridin, which
also have estrogenic effects similar to those of equol [50]. In this case, kakkalide and
tectoridin are mainly metabolized into irisolidone and tectorigenin by the human and rat
gut bacterium Bifidobacterium K-110 via β-D-xylosidase, and they exert stronger activity
than their corresponding precursors [50,52].

2.3. Gut Microbial Metabolism of Compounds from Coptidis Rhizoma Improves Their Absorption Rate

Flavone glycosides and berberine are the main active compounds from Coptis Chinen-
sis, which exerts notable effects on type 2 diabetes (T2DM) and T2DM-related complications,
including hyperlipidemia, heart disease, and retinopathy [82]. Although it is an essen-
tial compound from Coptidis rhizoma with many properties, berberine has extremely
low bioavailability (<1%) [83], and its absorption is largely attributed to the activity of
GM [84]. Berberine can be metabolized by the GM into dihydroberberine, berberrubine,
demethyleneberberine, jatrorrhizine, and oxyberberine [85]. The biotransformation of
berberine into the reduced form, dihydroberberine, is achieved by Enterobacter cloacae and
Enterococcus faecalis by nitroreductase, improving its absorption rate [86]. Once absorbed,
dihydroberberine is reverted to berberine in the host’s intestinal epithelial tissue and dis-
persed to organs, where it exerts its pharmacological activities [55]. Another metabolite,
oxyberberine, is metabolized by the intestinal microbiota, showing greater effects than
berberine [53].

2.4. Gut Microbial Bioconversion of Compounds from Scutellaria Radix Improves Their Absorption Rate

The root of Scutellaria baicalensis and its major compound, baicalin, have been used
to treat metabolic diseases, including obesity, hyperlipidemia, metabolic syndrome, and
diabetes [87]. Baicalin is hydrolyzed into its aglycone, baicalein, by β-glucuronidase from
E. coli [57] and is thereby easily absorbed in the intestine [88]. Absorbed baicalein can be
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reconjugated into baicalin by UDP-glucuronosyltransferase in the host’s liver and intestine
and exert beneficial activities [56,84]. An in vivo study using a bile-duct-ligated rat model
suggested that baicalin is converted to baicalein by the GM generating β-glucuronidase,
and that the absorption of baicalein is preferable to that of baicalin in the gastrointestinal
tract [89]. Wogonin is another key component of Scutellaria baicalensis. As an aglycone
derived from wogonoside, it has a beneficial effect on glucose and lipid metabolism [90]. A
rat study demonstrated the fundamental role of the GM in the absorption of compounds
from Scutellaria baicalensis, in which antibiotic pretreatment inhibited the absorption of
wogonoside and baicalin and its metabolites [91]. Intestinal bacteria of the Lactobacillus
spp. and their glucuronidase enzymes are reported to be involved in these enzymatic
reactions [58,59], which also increases the bioavailability of compounds.

Table 2. Gut microbial metabolites derived from herbal compounds and their Impact on metabolic
diseases.

Herb Name Microbial
Metabolites

Treatment of
Diseases

Study Design
(In Vitro/In Vivo/Clinical Study)

Impact of Drug
Efficacy Ref.

Ginseng Radix

Compound K Diabetes

In vivo
(SD rats)
In vitro

(Caco-2 cell permeability)

Increased absorption [73]

Compound K
Ginsenoside Rh1 NAFLD

In vivo
(HFD-fed SD rats)

In vitro
(HSC-T6 cell)

Increased activity [92]

Compound K Diabetes In vivo
(STZ and HFD-fed ICR mice) Increased activity [93]

Puerariae
Radix
and

Puerariae Flos

Irisolidone
Tectorigenin Estrogenic effect

In vitro
(human fecal incubation, MCF-7

cells)

Increased activity
(c-fos and pS2 gene) [50]

Daidzein Not indicated

In vitro
(Caco-2 permeability)

In vivo
(hydrolyzation by rat microvilli)

Increased absorption [81]

Daidzein Estrogenic effect
In vitro

(human fecal incubation,
MCF-7 cells)

Increased activity [51]

Equol NAFLD In vivo
(HFD-fed mice)

Increased activity
Changed bioactivity [94]

Coptidis
Rhizoma

Oxyberberine Colitis In vivo
(DSS-induced colitis Balb/C mice) Increased activity [53]

Dihydroberberine Diabetes In vivo
(KK-Ay mice) Increased absorption [55]

Berberrubine Hypercholesterolemia
Clinical study

(n = 12, moderate
hypercholesterolemia)

Increased activity [95]

Scutellaria
Radix

Baicalein Not intended In vivo
(antibiotic-treated SD rats) Increased absorption [96]

Baicalein Not intended In vivo
(germ-free Wistar rats) Increased absorption [56]

Baicalein Not intended In vivo
(bile-duct-ligated Wistar rats Increased absorption [89]

Wogonin Not intended In vivo
(antibiotic-treated SD rats) Increased absorption [91]
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Table 2. Cont.

Herb Name Microbial
Metabolites

Treatment of
Diseases

Study Design
(In Vitro/In Vivo/Clinical Study)

Impact of Drug
Efficacy Ref.

Curcumae
Radix

Tetrahydrocurcumin Diabetes In vivo
(STZ-induced diabetic rats) Increased activity [97]

Tetrahydrocurcumin Lipid
accumulation

In vitro
(THP-1 cells) Decreased activity [98]

Mori folium,
Bupleurum

Radix,
Houttuyniae

Herba

Quercetin Platelet activity In vitro Increased activity [65]

Quercetin Insulin resistance In vitro
(TNF-α-treated C2C12 cells) Increased activity [99]

Glycyrrhizae
Radix

Glycyrrhetic acid Not indicated In vivo
(SD rats, Wistar germ-free rats)

Increased
bioavailability [100]

18β-Glycyrrhetinic
acid Obesity

In vitro
(3T3-L1)
In vivo

(HFD-fed C57/BL6 mice)

Not indicated [101]

18β-Glycyrrhetinic
acid NASH In vivo

(MCD; C57/BL6 mice) Increased bioactivity [90]

SD, Sprague Dawley; STZ, streptozotocin; HFD, high-fat diet; HSC, hepatic stellate cell; NAFLD, non-alcoholic
fatty liver disease; DSS, dextran sulfate sodium; TNF, tumor necrosis factor; NASH, non-alcoholic steatohepatitis;
MCD, methionine- and choline-deficient diet.

2.5. Gut Microbial Metabolism of Curcumin from Curcumae Radix Increases Its Bioavailability

Curcumae Radix contains curcumin, a phenolic pigment insoluble in water, which
shows pharmacological activities against metabolic diseases, including obesity, diabetes,
and hepatic steatosis [102,103]. As a polyphenol, curcumin has low bioavailability as
demonstrated by its in vivo pharmacokinetic data [104]. The main reasons for the low
bioavailability of curcumin are its poor absorption, instability, rapid metabolism, and rapid
excretion [105]. However, curcumin can be metabolized by the human gut bacteria Blau-
tia sp. MRG-PMF1 into demethylcurcumin and bisdemethylcurcumin [62]. Additionally, an
in vitro fermentation study reported that three bacteria, including Escherichia fergusonii and
Escherichia coli DH10B, metabolized curcumin via two-step reduction into dihydrocurcumin
as an intermediate, followed by tetrahydrocurcumin and ferulic acid as final products [60].
The debate over any difference in biological activity between the parent compound (cur-
cumin) and its major metabolite (tetrahydrocurcumin) is ongoing; however, it seems that
they possess differential activity with distinct target molecules [104].

2.6. Gut Microbial Bioconversion of Quercitrin from Several Herbs into Quercetin Increases
Its Bioavailability

Quercetin and its glycoside form, quercitrin (quercetin 3-rhamnoside), are the most
common flavonoids found in nature [106]. These compounds are distributed in some com-
mon traditional medicinal herbs and foods, like Mori folium, Bupleurum Radix, and Hout-
tuyniae Herba [65,107,108]. Like other flavonoids, quercetin glycosides are not bioavailable
due to their structures [84]; however, intestinal microbiota including Bacillus subtilis and
Fusobacterium K-60 can metabolize quercitrin to produce quercetin through dioxygenase
or α-L-rhamnosidase [63,109]. Among the aglycones, quercetin possesses ubiquitous ef-
fects of hypoglycemic, hypolipidemic, and hypotensive and anti-obesity with multifaceted
mechanisms [110]. Meanwhile, the low bioavailability of quercitrin also affects its delivery
into farther regions of the intestine, where it can be decomposed to quercetin, the active
aglycone [111].
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2.7. Glycyrrhizin from Glycyrrhizae Radix Requires Bacterial Transformation to Be Absorbed in
the Intestine

Glycyrrhizin is a triterpenoid saponin derived from Glycyrrhizae Radix (licorice) that
is used for its various clinical indications, including nonalcoholic fatty liver disease, gastric
disorders, and metabolic disorders [112,113]. Extracted licorice contains glycyrrhizin and
its aglycone, glycyrrhetic acid, as bioactive compounds. An in vivo study showed that
the administration route of glycyrrhizin is critical for its bioavailability; that bioavailabil-
ity under oral administration was approximately 1% due to its poor absorption in the
intestine [114]. The bioconversion of glycyrrhizin to an active form, 18β-glycyrrhetinic
acid or glycyrrhetic acid, occurs in the presence of β-D-glucuronidase from Eubacterium,
Ruminococcus, and other species of the intestinal microbiota [115].

Table 3. The molecular and pharmacological properties of major compounds and their metabolites
from herbs, described in the main text.

Herbal Medicine Raw Compound Properties of Raw
Compound Properties of Metabolite Metabolite

Ginseng Radix

Ginsenoside Rb1 PubChem CID Ginsenoside Rd
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ginseng between individuals [116]. Another case is the Rhei Radix medicine used in 
postoperative patients; these patients are frequently administered antibiotics, which 
prevents the prodrug from being properly metabolized by the GM, and purgative efficacy 
was not observed in many cases [117]. Another consideration is the fact that the diversity 
of the GM varied across ethnicities, which could also influence the efficacy of natural 
drugs [118].  

As mentioned above, a series of evidence indicated the undeniable impacts of 
individual GM on personal health for clinicians. Therefore, it is necessary to establish 
integrated databases containing herbal compounds and gut microbial metabolites 
according to the representative types of human microbial communities. However, current 
studies describing the impacts of microbial conversions of natural drugs on their efficacies 
are relatively scarce among the studies on drugs and are fragmented by their scope. For 
instance, most articles focus on the microbial conversion process itself, not exploring the 
differences in efficacy between the metabolites and parent compounds. Other researchers 
have only focused on the outcomes of microbial bioconversion, without exploring the 
bacteria or enzymes involved. Therefore, an integrated natural compound library should 
cover intact natural components, microbial metabolites, enzymes involved in the process, 
and predicted consequences for the oral bioavailability or bioactivities, to enable a better 
understanding and prediction of the impacts of natural products or herbal medicinal 
treatments on certain diseases. On the other hand, this also requires a metagenomic 
database of GM in various populations. Fortunately, the outcome of 845 intestinal 
microbial metagenome data analyses in three Asian countries was recently published 
(Korea, Japan, and India) [119]. 

However, the herbal drug–microbiota interaction is reciprocal, not unilateral. As 
many studies have revealed, herbs exert profound effects on the GM community, 
sometimes via bactericidal or prebiotic effects. Berberine has been reported to modulate 
the GM in rats with obesity induced by a high-fat diet [120], and this compound is known 
to exert antibiotic effects, especially on Gram-negative bacteria. In addition, the 
antidiabetic effects of baicalein are associated with modulation of the GM [121], and 
baicalein is also known to restrict the growth of harmful bacterial strains. On the contrary, 
herbal polysaccharides and glycosides usually possess prebiotic effects, providing 
carbohydrates as nutrients [40]. As a result, it has been demonstrated that modulation of 
the GM to ameliorate metabolic disturbances may now be a feasible strategy [122]. 
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3. Current Status and Future Perspectives

Understanding the variability of the GM and host digestion of drugs is necessary for
precision medicine [40]. As presented herein, natural drugs are metabolized by the host
GM through complex mechanisms. Based on these findings, some studies have started to
interpret the differential efficacies of herbal drugs between individuals, using the different
gut microbial compositions.

For instance, a study comparing two groups of Korean subjects with distinct capabili-
ties for metabolizing compound K showed a marked difference in the compositions of their
GM, which explained the inconsistency in the drug potency of Panax ginseng between
individuals [116]. Another case is the Rhei Radix medicine used in postoperative patients;
these patients are frequently administered antibiotics, which prevents the prodrug from
being properly metabolized by the GM, and purgative efficacy was not observed in many
cases [117]. Another consideration is the fact that the diversity of the GM varied across
ethnicities, which could also influence the efficacy of natural drugs [118].

As mentioned above, a series of evidence indicated the undeniable impacts of individ-
ual GM on personal health for clinicians. Therefore, it is necessary to establish integrated
databases containing herbal compounds and gut microbial metabolites according to the
representative types of human microbial communities. However, current studies describing
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the impacts of microbial conversions of natural drugs on their efficacies are relatively scarce
among the studies on drugs and are fragmented by their scope. For instance, most articles
focus on the microbial conversion process itself, not exploring the differences in efficacy be-
tween the metabolites and parent compounds. Other researchers have only focused on the
outcomes of microbial bioconversion, without exploring the bacteria or enzymes involved.
Therefore, an integrated natural compound library should cover intact natural components,
microbial metabolites, enzymes involved in the process, and predicted consequences for
the oral bioavailability or bioactivities, to enable a better understanding and prediction
of the impacts of natural products or herbal medicinal treatments on certain diseases. On
the other hand, this also requires a metagenomic database of GM in various populations.
Fortunately, the outcome of 845 intestinal microbial metagenome data analyses in three
Asian countries was recently published (Korea, Japan, and India) [119].

However, the herbal drug–microbiota interaction is reciprocal, not unilateral. As
many studies have revealed, herbs exert profound effects on the GM community, some-
times via bactericidal or prebiotic effects. Berberine has been reported to modulate the
GM in rats with obesity induced by a high-fat diet [120], and this compound is known
to exert antibiotic effects, especially on Gram-negative bacteria. In addition, the antidia-
betic effects of baicalein are associated with modulation of the GM [121], and baicalein
is also known to restrict the growth of harmful bacterial strains. On the contrary, herbal
polysaccharides and glycosides usually possess prebiotic effects, providing carbohydrates
as nutrients [40]. As a result, it has been demonstrated that modulation of the GM to
ameliorate metabolic disturbances may now be a feasible strategy [122]. Therefore, the
Impact of herbal drugs/prescriptions on the commensal gut bacterial community should
also be considered, to optimize the use of natural drugs.

Only a small proportion of the interactions between natural drugs and GM have been
elucidated, considering the huge contribution of bacterial metabolism in digestion [123,124].
A recent study suggested a novel solution: adopting machine learning to predict drugs’
metabolism by GM [125]. Although the model used in the study predicted the depletion
of drugs by gut microbial metabolism and did not suggest any consequent metabolites,
it is worth exploring the possibilities of computational analysis in this field. So far, it is
still challenging to fully clarify how gut microbial metabolism benefits treating metabolic
disease, even with the enhanced bioavailability of drugs. Herein, the selected publica-
tions revealed an increasing tendency in the recent decade; however, only 2% of human
studies reflected the status of severe deficiency regarding herb–drug metabolism and gut
microbiota, especially in metabolic dysfunction (Figure S1). Thus, the scientific evidence is
still inadequate, especially from human trials. We anticipate that the complex interaction
between GM and herbal medicines and the aftermath of microbial metabolism will be
investigated clearly through more and more animal and clinical studies.

4. Conclusion

Overall, the present review explored the roles of the GM in the metabolism of herbal
compounds to provide a vital reference for guiding clinical applications and further re-
search. This review also provides valuable clues to assist in the application of clinical
drugs in precision medicine and should contribute to personalized drug development for
metabolic diseases. For policymakers, good pharmacovigilance needs to consider the host
commensal microbiota to guarantee public medication safety and effectiveness, especially
for herbal medicine.
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