
Citation: Yang, B.; Ma, Q.; Hao, J.;

Sun, X. Peroxymonosulfate

Activation by Palladium(II) for

Pollutants Degradation: A Study on

Reaction Mechanism and Molecular

Structural Characteristics. Int. J.

Environ. Res. Public Health 2022, 19,

13036. https://doi.org/10.3390/

ijerph192013036

Academic Editor: Paul B.

Tchounwou

Received: 20 September 2022

Accepted: 9 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Peroxymonosulfate Activation by Palladium(II) for Pollutants
Degradation: A Study on Reaction Mechanism and Molecular
Structural Characteristics
Bowen Yang 1,2, Qiang Ma 1,2, Jiming Hao 3 and Xiaojie Sun 4,*

1 Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Buliding Materials
Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China

2 School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
3 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment,

Tsinghua University, Beijing 100084, China
4 Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology,

Guilin University of Technology, Guilin 541004, China
* Correspondence: sunxiaojie@glut.edu.cn; Tel.: +86-150-7832-9789

Abstract: Compared with certain transition metals (e.g., iron, cobalt, and manganese), noble metals
are less frequently applied in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs).
Palladium (Pd), as one of noble metals, has been reported to possess the possibility of both radical
mechanisms and electron transfer mechanisms in a heterogeneous Pd/PMS system, however, data
are still sparse on the homogeneous Pd/PMS system. Therefore, this work aims to explore the
homogeneous reactivity of PMS by Pd(II) ions from the aspects of reaction parameters, radical or
non-radical oxidation mechanisms, and the relationship between pollutants’ degradation rate and
their molecular descriptors based on both experimental data and density functional theory (DFT)
calculation results. As a result, the reaction mechanism of Pd(II)/PMS followed a radical-driven
oxidation process, where sulfate radicals (SO4

•−), rather than hydroxyl radicals (HO•), were the
primary reactive oxidant species. BOx and EHOMO played significant roles in pollutant degradation
during the Pd(II)/PMS system. It turned out that the bond’s stability and electron donation ability
of the target compound was responsible for its degradation performance. This finding provides an
insight into PMS activation by a noble metal, which has significant implications for scientific research
and technical development.
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1. Introduction

The fast development of industrialization can lead to not only the enhancement of the
quality of human life, but a growing number of problems concerning environmental pollu-
tion, in particular wastewater as well. Thus, wastewater treatment has been considered
one of the primary challenges over the past decades since it contains numerous pathogenic
or disease-causing microorganisms and toxic compounds [1,2]. To this end, various tech-
nologies have been developed, such as adsorption [3], biological treatment [4], membrane
separation [5], and advanced oxidation processes (AOPs) [6]. Unfortunately, the traditional
wastewater treatment plants that are based on biological strategies (e.g., activated sludge
and biofilm) are insufficient to successfully neutralize a line of emerging contaminants with
high toxicity and refractory molecular structure. Accordingly, AOPs have been regarded
as promising techniques for wastewater treatment owing to their easy operation and ver-
satility, outstanding removal efficiency, minimal energy consumption, and simultaneous
decontamination of multiple pollutants within a short time, even seconds [7–9].

AOPs that are based on sulfate radical (SO4
•−), produced from peroxymonosulfate

(PMS) and peroxydisulfate (PDS), have attracted considerable attention due to their high
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reactivity and selectivity in organic pollutants and complex environmental matrices [8,10].
Compared to conventional hydroxyl radicals (HO•), SO4

•− contains a series of merits:
(i) SO4

•− has higher oxidation potential (2.5–3.1 V) than HO• (1.7–2.5 V) [11]; (ii) classical
Fenton oxidation, which is commonly applied to generate HO•, works efficiently only
in acidic conditions (pH ≤ 4.0) [12–15], while SO4

•− could react effectively with organic
pollutants under a wide pH range of 2.0–12.0 [16–18]; and (iii) SO4

•− (30–40 µs) possesses a
longer half-life period than HO• (<1 µs), which could enable sulfate radicals to have more
stable mass transfer and react better with organic pollutants [19,20]. In this regard, several
low-valent transition metals (i.e., Fe(II), Co(II), and Mn(II)) have been proven to be effective
activators for wastewater treatment. For instance, Co(II) ion and cobalt oxides (i.e., Co3O4)
could effectively transform PMS into SO4

•−, thereby, the cobalt-induced PMS activation
achieved outstanding treatment performance for wastewater involving 2,4-dichlorophenol
(2,4-DCP), atrazine, naphthalene, bisphenol A (BPA), ciprofloxacin (CIP), chloramphenicol
(CAP), and phenol [21–25].

In addition to transition metals, certain noble metals have recently been reported to
be activators for PMS. Ahn et al. performed a comprehensive survey on 20 transition and
noble metals. They found transition metals (i.e., Co, Cu, and Mo) could induce radical
degradation mechanisms in the PMS system. In contrast, noble metals (i.e., Au, Ir, Pt,
and Rh) followed electron transfer activation without involving the generation of radical
species, such as HO• and SO4

•−. Interestingly, palladium (Pd), as one of the noble metals,
had the possibility of both radical mechanisms and electron transfer mechanisms [26]. By
comparing Pd nanoparticles that were anchored on various supporters such as Al2O3, TiO2,
SiO2, g-C3N4, C, and TiC, Feng et al., found that Pd-SiO2 obtained the highest reactivity
of decomposing 1,4-dioxane in the PMS system. According to radical quenching tests,
methanol was oxidized to formaldehyde (HCHO) by the whole Pd nanoparticles, which
indicated that the degradation pathway followed a radical mechanism [27]. Furthermore,
both the abovementioned works mainly focused on heterogeneous Pd, however, data are
still sparse on the homogeneous Pd/PMS system.

Therefore, this study aims to further explore the homogeneous reactivity of PMS
by Pd(II) ions, primarily focusing on (1) examining the effect of operating parameters
such as the initial Pd(II) dosage, PMS amount, pH, and temperature; (2) exploring the
main reactive oxygen species involving radicals (HO• and SO4

•−) and non-radicals (1O2);
(3) investigating the degradation performance of 16 pollutants containing pharmaceutical
and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), dyes, as
well as other emerging and traditional contaminants; and (4) revealing the relationship
between the degradation rate and molecular structural characteristics based on the density
functional theory (DFT) method. The findings from this work would provide an insight into
PMS activation by noble metals, which has significant implications for scientific research
and technical development.

2. Experimental
2.1. Chemicals and Materials

Phenol was regarded as a model contaminant for investigating the effect of operating
parameters. A total of 16 organic pollutants were selected to systematically evaluate the
reactivity of the Pd(II)/PMS system, namely carbamazepine (CBZ) and caffeine for PPCPs;
bisphenol A (BPA) for EDCs, acid orange 74 (AO74) and rhodamine B (RB) for dyes; as
well as phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol
(TCP), 4-nitrophenol (NP), 1,4-dioxane (1,4-D), 4-hydroxyphenylacetic acid (4-HBA), 4-
nitrobenzoic acid (4-NBA), 4-nitroaniline (4-NA), benzoic acid (BA), and nitrobenzene (NB)
for emerging and traditional contaminants. Oxone (2KHSO5

.KHSO4
.K2SO4) and Na2PdCl4

were used as the oxidant and activator, respectively. A complete list of the chemicals is
shown in Table S1.
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2.2. Experimental Procedures

Unless otherwise specified, the degradation of different target pollutants (50 µM) was
performed in a 50 mL reactor (50 mL wide-mouth glass bottle) with magnetic stirring
of 800 rpm at room temperature under air-equilibrated conditions. The experimental
suspensions typically consisted of a 0.25 mM PMS, and 25 µM Pd(II) ions activator. The
initial solution pH was designed as 4.0 ± 0.1 based on containing 0.25 mM PMS. A total
of 1 M of HClO4 or NaOH was used as a pH adjuster for investigating the effect of the
initial pH. Sample aliquots were withdrawn from the reactor at the desired reaction time
using a 1 mL syringe, filtered through a 0.45 µm PTFE filter (Millipore), then transferred
into a 2 mL vial containing 20 µL MeOH (equal to ~0.5 M in 1 mL sample) to scavenge the
possible residual oxidants. The brief experimental process is shown in Scheme S1 in the
Supplementary Materials.

The concentrations of all the target pollutants were detected by high-performance
liquid chromatography (HPLC, Agilent Infinity 1260, Santa Clara, CA, USA) that was
equipped with a C-18 column and a UV/Vis detector. The mobile phase contained three
tubes, namely H3PO4 solution (0.1%, v/v), pure acetonitrile (ACN), and pure MeOH.
Formaldehyde (HCHO) that forms as a result of MeOH oxidation was quantitatively
detected by HPLC after derivatization using 2 mM of 2,4-dinitrophenylhydrazine (DNPH)
in ACN [28]. The details, such as solution ratio, wavelength, and flowrate, are presented in
Table S2. PMS was detected according to the method that was suggested by Liang et al.,
based on the generation of iodine (λmax = 352 nm) from the oxidation of I−1 by PMS [29].
Bromate (BrO3

−) was measured by an ion chromatograph (IC, Dionex DX120, Sunnyvale,
CA, USA) that was equipped with a Dionex IonPac AS-14 and a conductivity detector.

2.3. Computation Details

The information on the molecular characters that were used in this work is listed in
Table S3. These descriptors have been successfully used in revealing the correlation between
pollutant degradation performance and molecular parameters during other advanced
oxidation processes (AOPs), e.g., Fenton oxidation, ozonation, and supercritical water
oxidation [30–34]. The whole 17 molecular descriptors of the compounds were calculated
by Material Studio 6.1 (Dmol3/GGA-BLYP/DNP(3.5) basis, Beijing, China) and Gaussian
09 (DFT B3LYP/6-311G level, Beijing, China). At first, the structure of the target compound
was drawn and optimized through Gaussian 09 (DFT B3LYP/6-311G level). Thus, the
exchange, correlation terms, and natural population analysis of atom charge were calculated
by B3LYP function. Finally, certain molecular descriptors were achieved directly from the
output files, such as dipole moment (µ), the total energy of a molecule in the B3LYP level
(EB3LYP), the energy of the highest and lowest occupied molecular orbital (EHOMO and
ELUMO, respectively), the positive partial charge on a hydrogen atom (q(H)x), the negative
or positive partial charge on a carbon atom (q(C)n and q(C)x, respectively), and the positive
partial charge of a hydrogen atom connected to a carbon atom (q(C-H)n and q(C-H)x).
As for bond order and Fukui indices, they were calculated via Material Studio 6.1 with
DMol3 code, 6–311g (d,p) basis set and B3LYP function. A double numerical basis set
with polarization functional was adopted at first. Afterwards, the density mixing and
self-consistent field were set as 0.2 charge with 0.5 spin and 10−6 a.u., respectively. Then
the results of bond order and Fukui indices were obtained from an outmol file, which
included that the minimum and maximum number of chemical bonds between a pair of
coterminous atoms (BOn and BOx), the minimum or maximum value of Fukui indices by
radical attack (F(0)n and F(0)x), by nucleophilic attack (F(+)n and F(+)x), and by electrophilic
attack (F(−)n and F(−)x). At last, the information on molecular descriptors was acquired
from an outmol file.
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3. Results and Discussion
3.1. Effect of Reaction Parameters

Several parameters, such as the Pd(II) dosage, PMS concentration, reaction tem-
perature, and the initial pH, were examined for the degradation of phenol during the
Pd(II)/PMS system (Figure 1). As expected, the degradation of phenol was largely en-
hanced with increasing Pd(II) dosage, PMS amount, and reaction temperature. In terms of
Pd(II) dosage, the removal efficiency of phenol was 48% and 76% at 30 min for Pd(II) addi-
tion of 5 µM and 10 µM, respectively, while complete degradation of phenol was observed
within 10 min and 2 min as Pd(II) dosage was enhanced to 25 µM and 50 µM, respectively
(Figure 1a). For PMS concentration, merely 37% of phenol degradation was obtained at
0.1 mM PMS, and it increased to 76% as PMS was raised to 0.25 mM, then almost 100%
was achieved within 5 min with promoting PMS to 0.5 mM and 1 mM (Figure 1b). As for
the reaction temperature, the degradation efficiency of phenol was gradually improved to
60%, 76%, 89%, and 100% by augmenting the temperature from 4 ◦C to 65 ◦C (Figure 1c).
Interestingly, the effect of pH showed a similar trend of phenol degradation in general
(Figure 1d). This was attributed to the un-buffered solutions, where the presence of acidic
Pd(II) and PMS stock solutions, as well as the release of H+ during the activation of PMS
would lead to an unavoidable instant decline of pH (from the alkalescent or near-neutral
to acidic condition). As displayed in Figure S1, the solution pH dropped to 2.9–4.1 at
the end of the reaction. Besides, the control experiment regarding PMS or Pd(II) alone
exhibited negligible phenol degradation (Figure S2), which elucidated that phenol removal
by adsorption and direct PMS oxidation was marginal. As a result, the successful phenol
degradation efficiency was mainly responsible for the activation of PMS by Pd(II). This
was attributed to the decomposition of PMS by various Pd(II) dosages (Figure S3), therein,
the more Pd(II) dosage that was added, the more PMS that was consumed after 30 min.
Moreover, the homogenous Pd(II)/PMS system seems to display better phenol removal
performance than the heterogeneous Pd-Al2O3/PMS system, where the removal efficiency
of phenol was less than 70% [35].
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Figure 1. Effect of Pd(II) dosage (a), PMS concentration (b), reaction temperature (c), and ini-
tial pH (d) on the degradation of phenol. Condition: (a). [phenol] = 50 µM, [PMS] = 0.25 mM,
pHi = 4; (b). [phenol] = 50 µM, [Pd(II)] = 10 µM, pHi = 4; (c). [phenol] = 50 µM, [PMS] = 0.25 mM,
[Pd(II)] = 10 µM, pHi = 4; (d). [phenol] = 50 µM, [PMS] = 0.25 mM, [Pd(II)] = 10 µM.
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3.2. Reaction Mechanism

Several alcohol-based scavengers such as methanol (MeOH) and tert-butyl alcohol
(TBA) are commonly used in quenching experiments to identify whether radical (i.e.,
HO• and SO4

•−) is the primary reactive oxidant species during PMS-AOPs [8,26,35]. In
this regard, the degradation of phenol in the addition of MeOH and TBA was performed
(Figure 2a), where the effect of TBA on phenol degradation was negligible. In
contrast to that, an obvious quenching effect was found in the presence of MeOH. This
was ascribed to SO4

•−, rather than HO•, as the primary reactive oxidant during Pd(II)/PMS
system, given that TBA is a specific HO• scavenger (kHO• = 6 × 108 M−1 s−1

versus kSO4•− = 7.6 × 105 M−1 s−1) while MeOH can quench both HO•
(kHO• = 9.7 × 108 M−1 s−1) and SO4

•− (kSO4•− = 2.5 × 107 M−1 s−1) [11,36]. Additional
evidence for the generation of SO4

•− was achieved by monitoring the oxidant produc-
tion of formaldehyde (HCHO) from MeOH and bromate (BrO3

−) from bromide (Br−)
(Figure 2b). It showed a steep increase in both HCHO and BrO3

− concentration. The
SO4

•−-driven oxidation is undergo through facile one-electron oxidation of Br- to Br• by
SO4

•− (k = 3.5 × 107 M−1 s−1) [36], then followed by oxidation to BrO3
− through interme-

diates (BrO− and BrO2
−) [37]. By contrast, the BA-to-4-HBA conversion failed (Figure 2b),

which excluded that HO• played a significant role in the Pd(II)/PMS system, given that
4-HBA, as the main oxidant product of BA, was commonly detected during HO•-induced
BA oxidation [38]. Analogous to the Pd(II)/PMS system, Co(II)/PMS, as a typical SO4

•−-
driven oxidation system [39], also displayed similar phenomena in the production of
HCHO, BrO3

−, and 4-HBA (Figure S4). Therefore, the reaction mechanism of Pd(II)/PMS
probably followed SO4

•−-driven oxidation.
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Figure 2. (a) The effect of MeOH and TBA on the degradation of phenol, and (b) oxidant produc-
tion of HCHO, bromate, and 4-HBA in Pd(II)/PMS system. Condition: (a). [phenol] = 50 µM,
[PMS] = 0.25 mM, [Pd(II)] = 25 µM, [MeOH] = [TBA] = 200 mM, pHi = 4; (b). [MeOH] = 200 mM,
[Br−] = 0.1 mM, [BA] = 10 mM, [PMS] = 0.25 mM, [Pd(II)] = 25 µM, pHi = 4.

To investigate whether 1O2 was involved in PMS activation by Pd(II), p-benzoquinone
(p-BQ), furfuryl alcohol (FFA), azide ion (N3

−), and L-histidine were introduced to the
quenching experiment based on k = 9.8 × 108 M−1 s−1 of (p-BQ) [40], 1.2 × 108 M−1 s−1

(FFA), 1.0 × 109 M−1 s−1 (N3
-), and 1.5 × 108 M−1 s−1 (L-histidine) for 1O2 [41,42]. As

shown in Figure 3, phenol degradation was largely suppressed by the presence of p-BQ,
FFA, N3

-, and L-histidine. Whereas such inhibition was ascribed to the direct PMS depletion
by these oxidant scavengers in their excess amounts (Figure S5), therein PMS was consumed
around 98% for FFA, L-histidine, and N3

-, and over 93% for p-BQ at the reaction time of
0.5 min, which was also in agreement with recent works [43,44]. To further determine the
occurrence of 1O2 during the Pd(II)/PMS system, a control experiment was conducted
in D2O solution according to D2O which could extend the lifetime of 1O2 by tenfold [45],
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thus the solvent exchange would promote the singlet oxygenation of pollutant [43]. In
contrast, there was no enhancing effect on phenol degradation when H2O was replaced by
D2O (Figure 3), which allowed us to discount the possible involvement of 1O2 as a reactive
oxidant in the Pd(II)/PMS system.
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Figure 3. The effect of 1O2 scavengers and D2O solution on phenol degradation in the Pd(II)/PMS
system. Condition: [phenol] = 50 µM, [PMS] = 0.25 mM, [Pd(II)] = 25 µM, [FFA] = [L-histidine] =
[N3

−] = 200 mM, [p-BQ] = 100 mM, pHi = 4.

3.3. Oxidative Degradation of Various Pollutants

In order to systematically evaluate the reactivity of PMS by Pd(II), sixteen kinds of
organics on behalf of the emerging and traditional pollutants were introduced in our study.
As displayed in Figure 4, various pollutants resulted in different degradation efficiencies,
where nitrobenzene (NB) was removed by merely 38% at the reaction time of 30 min,
while 4-CP, DCP, and TCP achieved 100% degradation efficiencies within 5 min. Such a
discrepancy was attributed to the structural properties of pollutants. For instance, the
electron-withdrawing groups (e.g., nitro and carboxylic groups in NB, 4-NBA, and BA)
tend to be sluggish towards SO4

•−, while the electron-donating groups (e.g., hydroxyl
and chloride groups in phenol, 4-CP, DCP, and TCP) exhibited high susceptibility to
SO4

•−, which was analogous to the previous literature regarding sulfate radical-based
AOPs [46]. In addition, the dyes like AO74 and RB acquired better degradation efficiencies,
which contributed to their chromogenic group (i.e., diazo group) that could be easily
attacked by radicals [47]. Similar results were also found in the recent work [35], where
Ahn et al. investigated the heterogeneous Pd/PMS system using Pd-Al2O3 nanoparticles
and observed the target compounds containing the electron-withdrawing groups (e.g., 4-NP,
BA, and CBZ) were hardly removed, while the chemicals containing the electron-donating
groups (e.g., phenol, BPA, 4-CP, and TCP) obtained better degradation performance.
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Caffeine, CBZ, 4-NA, and 4-HBA; (b) for BPA, AO74, RB, 1,4-D, Phenol, 4-CP, DCP, and TCP.

3.4. Relationship between k and Molecular Descriptors

The quantum properties of these contaminants were calculated by DFT to explore the
further the correlation between oxidative degradation and molecular structural charac-
teristics (Table S4). Furthermore, the degradation rate of pollutants was calculated by a
pseudo-first-order kinetic model as follows:

ln
[C]0
[C]t

= kt

where [C]0 stands for the initial concentration of each compound (namely 50 µM), [C]t
indicates its concentration at time t, k represents the degradation rate constants of each
compound, and t is the reaction time. Accordingly, all the k values, their respective
molecular descriptors, and the correlation coefficients of 16 target pollutants are listed
in Table S4. The correlation implied that q(H)x, q(C)n, F(−)n, F(−)x, F(+)n, F(+)x, F(0)n,
and F(0)x were positively correlated to k, while µ, EB3LYP, ELUMO, EHOMO, q(C)x, q(C-H)n,
q(C-H)x, BOn, and BOx were negatively correlated to k. The significance of molecular
descriptors towards k on the basis of the absolute value followed the order that BOx
(−0.543) > EHOMO (−0.509) > EB3LYP (−0.467) > F(0)x (0.447) > F(−)n (0.408) > F(−)x (0.377)
> ELUMO (−0.318) > F(0)n (0.315) > F(+)x (0.275) > q(C)x (−0.265) > µ (−0.242) > q(H)x (0.228)
> F(+)n (−0.210) > BOn (−0.209) > q(C-H)n (−0.203) > q(C)n (−0.180) > q(C-H)x (−0.101).
It turned out that the most relative parameter was BOx, which greatly affected pollutant
degradation in the Pd(II)/PMS system. Indeed, BO (bond order) reflects the number of
the chemical bond between a pair of atoms, namely a higher value of BO could lead to
more stability in the bond. In other words, the less the BO value was, the more easily it
could be attacked, resulting in bond cleavage [48,49]. Besides, EHOMO, as another essential
molecular parameter, is a measure of the electron donation ability of the target compound.
This was in agreement with the finding of Section 3.3. Therein the compounds containing
electron-withdrawing groups (e.g., nitro and carboxylic groups in NB, 4-NBA, and BA)
presented relatively lower k values, while the chemicals possessing electron-donating
groups (e.g., hydroxyl and chloride groups in phenol, 4-CP, DCP, and TCP) showed better
degradation performance (Figure 4). Besides, compared with the relationship between k
and molecular descriptors in other AOPs, such as the supercritical water oxidation (SCWO)
process [33], where F(+)n, F(−)n, F(0)n, and EHOMO achieved high correlation coefficients
in the SCWO system, and followed an order that F(−)n (−0.425) > F(+)n (−0.417) > EHOMO
(0.415) > F(0)n (−0.402), which was lower than the correlation coefficients achieved in this
work (i.e., BOx (−0.543) > EHOMO (−0.509) > EB3LYP (−0.467) > F(0)x (0.447)). This indicates
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the correlation coefficients that were acquired in this work had more significant correlation
than those in SCWO process.

4. Conclusions

The homogeneous PMS activation by Pd(II) has been found to exhibit highly effective
degradation performance for pollutants. The degradation efficiency was enhanced with
increasing Pd(II) dosage, PMS concentration, and reaction temperature, while the initial
solution pH showed a similar trend of pollutant degradation in a wide un-buffered pH
range of 3–9. Sulfate radical (SO4

•−) was proposed as the dominant reactive oxidant
species based on the quenching effect with excess MeOH and the high amount of Br−-to-
BrO3

− conversion. In contrast, hydroxyl radicals (HO•) and singlet oxygen (1O2) played
minor roles in the Pd(II)/PMS system. According to the correlation between the degrada-
tion rate (k) and molecular descriptors, BOx and EHOMO were the critical parameters for
16 target pollutants degradation during the Pd(II)/PMS system. In other words, the bond’s
stability and electron donation ability of the target compound acted as an essential part
of the pollutant degradation performance. In sum, the homogeneous Pd(II)/PMS system
displayed an outstanding reactivity performance in a wide of pH and temperatures, there-
fore, a potential application of Pd(II)/PMS should be considered in practical wastewater
treatment. Moreover, the findings from this work provide an insight into PMS activation
by noble metals, which has significant implications for scientific research and technical
development. Additionally, considering Pd is a kind of noble metal and its price is not
economic, future work should focus on recycling the Pd(II) ions via introducing ligands,
such as nitrilotriacetic acid (NTA), ethylenediamine tetraacetic acid (EDTA), oxalate acid,
and citric acid.
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