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Abstract: A steady increase in sleep problems has been observed along with the development
of society. Overnight exposure to a static magnetic field has been found to improve sleep quality;
however, such studies were mainly based on subjective evaluation. Thus, the presented data cannot be
used to infer sleep architecture in detail. In this study, the subjects slept on a magneto-static mattress
for four nights, and self-reported scales and electroencephalogram (EEG) were used to determine the
effect of static magnetic field exposure (SMFE) on sleep. Machine learning operators, i.e., decision
tree and supporting vector machine, were trained and optimized with the open access sleep EEG
dataset to automatically discriminate the individual sleep stages, determined experimentally. SMEF
was found to decrease light sleep duration (N2%) by 3.51%, and sleep onset latency (SOL) by 15.83%,
while it increased deep sleep duration (N3%) by 8.43%, compared with the sham SMFE group.
Further, the overall sleep efficiency (SE) was also enhanced by SMFE. It is the first study, to the best
of our knowledge, where the change in sleep architecture was explored by SMFE. Our findings will
be useful in developing a non-invasive sleep-facilitating instrument.

Keywords: static magnetic field exposure (SMFE); questionnaire; electroencephalogram (EEG); sleep
staging; support vector machine (SVM)

1. Introduction

Sleep disturbance has been the main issue for an increasing number of individuals with
the progression of society. It can lead to decreased memory and learning, gastrointestinal
disorders, depression, and exacerbation of chronic conditions [1]. Approximately 30%
of adults and 48% of older adults in particular experience chronic insomnia [2]. Chronic
insomnia is difficult to cure using the currently available pharmacotherapy [3]. Therefore,
physical therapies have been used to treat chronic insomnia [4,5]. Electric, magnetic, and
electromagnetic fields have been applied to modulate sleep in a series of clinical and
experimental studies [6–8]. Most of these treatment approaches were non-invasive and less
stimulant. Therefore, the application of such therapies is promising, although the effects
were not always consistent, nor a clear mechanism of action has been elaborated.

In most studies, questionnaires and self-reported scales are commonly applied to
evaluate sleep quality [8]. Among them, the Pittsburgh Sleep Quality Index (PSQI) [9]
and the Self-Rating Scale of Sleep (SRSS) [10] are useful tools for sleep-related psychiatric
research and practice. The former measures the overall sleep quality during a period, while
the latter assesses short-term sleep quality, e.g., the efficacy of a sleep disorder therapy for
each night during an experiment.
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Sleep has a complex architecture and includes various physiological changes that occur
during the period. A person usually experiences four to six sleep cycles per night, which
includes different sleep stages. The American Academy of Sleep Medicine (AASM) has
divided the sleep process into five stages: awake (N0), non-rapid eye movement (N1–N3),
and rapid eye movement (REM) sleep [11]. N3 is slow-wave sleep, which is the most
recuperative sleep period and is often indicative of high-quality sleep [12]. Sleep staging
is commonly used as an indicator in diagnosing sleep diseases and related psychiatric
disorders. In contrast, self-reported questionnaires may implicitly associate with the
overall sleep quality but could be undermined by subjectivity; therefore, it is difficult to
discriminate the individual sleep stage by using self-reported questionnaires.

Neurophysiological analyses, e.g., using electroencephalogram (EEG), are used in
the research of electromagnetic field exposure effects [13,14] and sleep quality determi-
nation [15]. Sophisticated paradigms have been developed to process sleep EEG signal
into characteristics that reflect sleep rhythms, neural tension, or neural activity [16]. Sleep
staging calculates the dwelling time of sleep in each stage by using time-domain signals
from multiple electrodes. It traditionally requires extensive manual intervention to discern
the specific EEG features. For example, the dataset for an 8-h consecutive sleep may have a
volume of 500 MB if sampled at 1000 Hz. In such a case, the results are prone to human
error due to fatigue [17]. Therefore, automatic sleep staging is required, and sleep staging
based on the machine learning method is a promising alternative [18].

A great number of scientific literatures about automatic sleep staging detection were
presented. The majority of these scientific literatures use single-channel EEG recordings
for automatic sleep staging [19] and in most cases classified models are built on extracted
features. Features are extracted from linear or nonlinear. For improving the classification
accuracy and accelerating the model construction procedure, feature selection has become
an important step in data preprocessing [20]. There are many feature selection algorithms,
including filtering, encapsulation and embedded ones. Decision tree is a typical embedded
feature selection algorithm. A decision tree by Liu et al. is suitable for sleep EEG staging
due to that it could achieve feature selection for imbalanced data. Selected features are
generally used as input for classic algorithms such a support vector machines (SVM), k-
nearest neighbor, decision tree (DT), etc. [21]. SVM shows good generalization performance
for high dimensional data due to its convex optimization problem [22].

In this study, changes in sleep architecture by static magnetic field exposure (SMFE)
were evaluated. Forty-one subjects were randomly divided into two groups (real SMFE
group and sham SMFE group) for participation in the experiment for four consecutive
nights. Whole-body SMFE was applied by a magnetostatic mattress. During the experiment,
sleep EEG was recorded, while PSQI and SRSS were used to report the individual overnight
sleep quality. Twenty temporal, frequency and nonlinear metrics were extracted from the
labeled sleep EEG by using the Physionet database. A decision tree (DT) was trained using
data from this sleep EEG database to select a set of features for sleep staging. The acquired
sleep EEG was then classified by a support vector machine (SVM). The purpose of this
study is to explore whether there is an ameliorative effect of SMFE on sleep and to explore
the adjuvant treatment of chronic sleep disorders.

2. Materials and Methods
2.1. Exposure System and Simulations

The design of the whole-body SMFE system should be compatible with the require-
ments of the sleep experiment. For this purpose, the exposure system was designed as a
mattress (Figure 1). The dimensions of the mattress were 190.0 cm × 95.0 cm × 14.3 cm
(length × width × thickness). The mattress consisted of three layers: expanded polypropy-
lene (7.2 cm in thickness), graphene foam (5.0 cm in thickness), and latex (2.1 cm in
thickness), with a layer of cotton cover (0.7 cm in thickness) outside of the mattress.
The mattresses for the real SMFE group and the sham SMFE group had the same size
and appearance. The magnetostatic mattress contained 220 pieces of rare earth mag-



Int. J. Environ. Res. Public Health 2022, 19, 741 3 of 16

netic cylinders of 600 mT (diameter: 2 cm) and 20 rare earth magnetic strips of 250 mT
(length × width × thickness: 90.0 cm × 1.5 cm × 0.3 cm). The non-magnetostatic mat-
tress contains the corresponding demagnetization cylinder and demagnetization strip by
high-temperature treatment. The strips were attached to the surface of the mattress with
alternate polarities. The magnetic cylinders were installed between the magnetic strips.

According to Low et al. at back posture or side posture, 90.9% to 96.1% of the human
surface area was subjected to contact pressure in the range of 0 to 4.1 × 10−3 MPa. Fur-
thermore, there was 23.11% to 29.37% human surface area in the range of 2.1 × 10−3 to
1.2 × 10−2 MPa, with average of 3.0 × 10−3 MPa, mainly at locations of head, chest and
hips [23].

The gas and liquid presses system JRS-90 (JiuRong, Dongguan, China) was used to
press down the mattress to simulate the deformation caused by the human body lying on
the mattress. The height of the cotton cover was compressed to 0.17 cm and the relative
distance between the magnetic stripe and the magnetic cylinder was shortened from 0.4 cm
to 0.2 cm under 3.0 × 10−3 MPa. The distance between the magnetic cylinder and the
surface of the cotton cover was 0.37 cm.

Figure 1. Numerical model of the magnetostatic mattress. The magnetic strips were aligned, with
south poles at both ends and the north pole in the middle (S1-N-S2) or the south pole in the middle
and the north poles at both ends (N1-S-N2) [24]. In the figure, red represents the south pole, and blue
represents the north pole. Yellow represents the position of magnetic field measurement.

Magnetic flux density was simulated by Multiphysics v5.3a (COMSOL Inc., Stockholm,
Sweden). The relative magnetic permeability of the nonmagnetic material layers was set to
1. In contrast, the magnetic objects were configured with a relative magnetic permeability
of 1.05. The meshing schema used the adaptive method to discretize the finest structure.

The magnetic field strength at 0.37 cm, 5.37 cm, 10.37 cm and 20.37 cm form surface of
three magnetic cylinder were measured by G93 Handheld Wide-range 3-Axis Teslameter
(Coliy, Duesseldorf, Germany) for three times. As shown in Figure 1, they represent the
location of the head, chest and hips respectively. Six locations were measured on the surface
of each magnetic cylinder, the center of the circle and locations 0.2 cm, 0.4 cm, 0.6 cm,
0.8 cm, 1.0 cm from the center of the circle. The maximum of the six measurements was
recorded as the measurement of the magnetic cylinder.

2.2. Subjects

Fifty male college students were recruited for the experiments. They were right-
handed; had no medical or psychiatric disorders; had no alcohol, nicotine, and caffeine
addiction; did not snore, and had good sleeping habits. Each subject was requested to
complete the PSQI before the experiment, which was used to evaluate their recent sleep
quality. The subjects were excluded from the experiments if their PSQI score was beyond 10
(i.e., below the level of good sleep quality). Based on the screening procedure, 44 subjects
accepted to participate in the experiments and were randomly assigned to two groups:
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real SMFE group (r_SMFE) and sham SMFE group (s_SMFE). This was a single-blind
experiment because that the operators were aware of the material of the mattress.

Another three subjects dropped out of the study (one from the r_SMFE and two
from the s_SMFE) because they had difficulty in falling asleep due to the presence of
EEG electrodes during the experiment. The r_SMFE included 21 subjects (mean age:
23.53 ± 1.94 years), and the s_SMFE had 20 subjects (mean age: 23.85 ± 1.51 years) who
completed the experiment. During the daytime, the subjects were asked to maintain their
normal routine activities.

2.3. Experimental Protocol

The experiments were conducted in an apartment with two bedrooms, which were
modified to make them fit for monitoring sleep EEG. The air conditioners were switched
on to stabilize the bedroom temperature at 25 ◦C and to maintain normal ventilation. The
ambient noise during the experiment was below 35 dB, and humidity was maintained
at 50%. Bedroom windows were equipped with blackout curtains, and all light sources
were switched off to ensure a dark environment [25]. The size of the bedrooms was 10 and
11 m2. During the sleep experiment, all subjects positioned their head toward the north
direction, with their feet aligned toward the south direction. The real and sham exposure
experiments were performed simultaneously in two rooms, from 10 PM to 7 AM each day.
The 4 EEGs (O1, O2, C3 and C4), 2 electrooculograms (EOG: EOG1 and EOG2) are closely
associated with sleep [11] and 3 EEGs (Cz, Pz and Oz) are as references and were recorded
(Symtop, Beijing, China) according to the 10–20 positioning system, as shown in Figure 2.
In the case of misalignment of the electrode during sleep, the missing signals from those
channels were replaced with the mean signals from the adjacent channels. EEG from the
other 12 channels (FP1, FP2, F3, F4, F7, F8, T3, T4, T5, T6, P3, and P4) was also measured.

Figure 2. Photograph of sleep EEG recording.
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2.4. Automatic Sleep Staging by Machine Learning

The single-channel (Pz-Oz) automatic sleep staging was classified according to the
features suggested by supervised learning from the labeled open access sleep database
(Physionet, https://physionet.org/content/sleep-edf/1.0.0/) (accessed on 10 October
2021). The recordings were obtained from Caucasian males and females (21~35 years
old) without any medication; they contain horizontal EOG, Fpz-Cz and Pz-Oz EEG, each
sampled at 100 Hz. Because the combination of the features may vary, DT was applied to
identify the optimized feature set, which was subsequently used to train the SVM classifier.
The trained SVM classifier was then used to identify the sleep stage based on EEG obtained
from the volunteer experiment.

A flow chart of the analysis is shown in Figure 3.

Figure 3. EEG-based automatic sleep staging.

2.4.1. EEG Preprocessing

EEGLAB (https://sccn.ucsd.edu/eeglab/index.php) (accessed on 15 November 2021)
was used to preprocess the EEG signals. First, the EEG data were resampled to 100 Hz. The
signals were further filtered with a 0.5~40 Hz band-pass filter. Because of the misalignment
of the electrodes during sleep, abnormal signals were supplemented by spatial-weighted
averaging from the adjacent channels. Independent component analysis identified and
removed the interference components as eye movement.

2.4.2. Classifier Training

1. Feature extraction

The selection of appropriate EEG features may benefit sleep staging. In the analysis,
20 features in both time and frequency domains, spanning from linear to nonlinear analysis,
were applied in the study as candidates. According to AASM standards, an epoch-by-epoch
(30 s) analysis was used for EEG scoring [11]. Table 1 summarizes the extracted features.

https://physionet.org/content/sleep-edf/1.0.0/
https://sccn.ucsd.edu/eeglab/index.php
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Table 1. Extracted features derived in an epoch.

No. Feature Abbreviation Description If Needed

1 minimum value MINV /
2 maximum value MAXV /
3 arithmetic mean AMV /

4 median value MNV MNV(N : odd) = (x N+1
2
)

MNV(N : even) = 1
2

(
x N

2
+ x N

2 +1

)
5 standard deviation SD /
6 variance V /
7 skewness S S = 1

N−1 ∑N
n=1 [(

xn−AMV
SD

)3
]

8 kurtosis K K = 1
N−1 ∑N

n=1 [(
xn−AMV

SD

)4
]

9 center frequency [26] fc /
10 bandwidth fσ /

11
power spectral

density of center
frequency

pfc /

12 gamma rhythm γ density at 25~40 Hz
13 beta rhythm β density at 13~25 Hz
14 alpha rhythm α density at 8~13 Hz
15 theta rhythm θ density at 4~8 Hz
16 delta rhythm δ density at 1.5~4 Hz
17 K complex Kc density at 0~1.5 Hz
18 fuzzy entropy FUEN 1 refer to [27]
19 sample entropy SampEN 2 refer to [28]
20 multiscale entropy MSES 3 refer to [29]

1 FUEN parameters: r = 0.3, n = 2, m = 2 SD; 2 SampEN parameters: m = 2, r = 0.2 SD; 3 MSES parameters: τ = 11,
m = 2, r = 0.15 SD.

2. Feature selection by DT

Twenty features may include redundant information and could lead to the curse of
dimensionality when being used for classification. DT [30], a machine learning algorithm
used for classification and regression, was applied to feature selection. In this method,
the Gini coefficient of individual features was calculated. The best feature was chosen
according to the weighted Gini coefficient value, which was assigned as a root node for the
new tree. Finally, by ranking the scores in descending order, the subset with the smallest
Gini coefficient was selected as the optimal feature.

3. Individual sleep EEG classification

SVM is a nonlinear binary classifier [31]. To discriminate the sleep EEG into five stages,
the variant of SVM using the one-vs-the-rest (OvR) strategy was applied. This method
transforms a multicategory problem into a binary classification problem.

For this study, each stage trains a binary classifier that distinguishes this stage from
the other stages, implying that we created a binary classifier for each of the five stages.
Thus, a total of five two-category classifiers were built: fN0, fN1, fN2, fN3, and fREM. The
probability of each classifier was then estimated. The stage corresponding to the maximum
of the returned estimates for all classifiers was the stage of the input epoch [32]. The
schematic diagram of OvR is shown in Figure 4.

Ten-fold cross-validation was used to evaluate classification accuracy. The data were
randomly divided into ten sets, with each set comprising eight subjects.

2.4.3. Sleep Staging

Six sleep metrics were considered in the analysis:
Total sleep time (TST): N1d + N2d + N3d + REMd (N1d~N3d, REMd represents the

duration of N1~N3, REM);
N1% = N1d/TST × 100% (N2% and N3% are similar as N1%);



Int. J. Environ. Res. Public Health 2022, 19, 741 7 of 16

Sleep efficiency (SE): TST/TSC × 100% (TSC represents the total sleep EEG collection
time, 9 h in our experiment);

Sleep onset latency (SOL): duration of switching off the lights to the beginning of first N2;
REM latency (RL): duration of the beginning of N1 to the beginning of first REM;
RL%: RL/TST × 100%.

Figure 4. Schematic diagram of OvR. The diagram shows an example where the input epoch is
classified as N2. X represents an EEG signal in an epoch.

2.4.4. Verification of Staging Results

Sleep specialists were invited to visually classify the EEG of 5 subjects, which were
randomly selected from the EEG data of the third and fourth nights of the two groups to
verify the automatic staging results.

2.5. Statistical Comparison

All analyses were performed by SPSS V22.0 (IBM, Endicott, NY, USA). Sample’s t-test
was conducted for differences in sleep parameters between the two groups (r_SMFE and
s_SMFE). Paired t-test was used to evaluate the difference between automatic and manual
staging. Bootstrap results were based on 1000 bootstrap samples. A significance level of
0.05 was used for each hypothesis.

3. Results
3.1. Simulated Magnetic Field Distribution

During simulation, the maximum magnetic flux intensity on the surface of the cotton
cover with pressure of human was 222.2 mT, as shown in Figure 5b. The magnetic flux
density decreased exponentially from the surface of the mattress, as shown in Figure 5c.
The magnetic flux intensity distribution along two slices is shown in Figure 5d,e.
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Figure 5. Magnetic field distribution at a distance of 0.37 cm from the surface of the magnetic cylinder
with non-deformable model. (a): mattress model; (b): three-dimensional magnetic field distribution
at the level of cotton cover; (c): decrease in magnetic flux densities above the surface of cotton
cover; (d): magnetic field distribution of magnetic strips on the slice of y = 33 cm, (e): magnetic field
distribution of magnetic cylinders on the slice of y = 30 cm. A coordinate system was established at
the corner of the mattress, as shown in Figure 5a.

The measured and calculated maximum flux densities values from different location
were shown in Table 2.

Table 2. The measured and calculated maximum flux densities.

Distance from the Surface of the
Magnetic Cylinder (cm) 0.37 5.37 10.37 20.37

calculated with Non
deformable model

(mT)

head 208.27 1.93 1.06 0.64

chest 204.48 1.39 0.81 0.60

hips 209.14 2.14 1.00 0.45

calculated with
deformable model

(mT)

head 222.2 2.08 1.12 0.68

chest 219.49 1.48 0.86 0.64

hips 222.33 2.30 1.07 0.47

Measured (mT,
mean ± SD)

head 190.27 ± 4.7 × 10−1 1.66 ± 6.5 × 10−3 0.92 ± 2.6 × 10−3 0.56 ± 4.3 × 10−3

chest 186.49 ± 4.0 × 10−1 1.24 ± 4.6 × 10−3 0.70 ± 1.8 × 10−3 0.52 ± 2.2 × 10−4

hips 193.18 ± 4.7 × 10−1 1.83 ± 1.4 × 10−3 0.90 ± 1.2 × 10−3 0.51 ± 4.6 × 10−4
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3.2. Selected EEG Features for Sleep Staging

The features were screened by DT. Eight out of twenty features were selected, namely
α, MSES, FUEN, pfc, θ, SampEN, V and Kc. The resultant average classification accuracy
was 91.23% on the labeled dataset (Physionet database).

Figure 6 shows a comparison of results obtained by manual and automatic staging
for the recorded EEG in the experiments. Most of the differences between manual and
automatic staging appeared at the boundaries of a specific stage.

Figure 6. Sleep staging results obtained by manual staging and automatic staging. The horizontal
axis shows sleep duration in hours.

Figure 7 shows a comparison between automatic staging and manual staging for the
EEG obtained in this study. The worst recognition rate for N1, N2, N3, and REM wasN3,
with an average value of 91.81%.

Figure 7. Results of automatic sleep staging and manual staging. The error bars represent the
standard deviation.
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3.3. Changes in Sleep Quality during the Experiment
3.3.1. PSQI and SRSS Rating

Figure 8 shows the results of PSQI when the subjects were enrolled. All the subjects
had a fairly good sleep quality, with an average score of 5.99 and 6.10 in the s_SMFE and
r_SMFE, respectively (0~5: very good; 6~10: fairly good; 11~15: fairly bad; 16~21: very
bad). The results showed that although the subjects in the two groups had fairly good sleep
quality, the sleep quality of the subjects in the s_SMFE was slightly higher than that in the
r_SMFE in the month prior to the experiment.

Figure 8. PSQI result. The error bars represent the standard deviation.

Figure 9 shows the SRSS scores for four experimental nights. The sleep quality of all
subjects on the first and second nights was not good (but in the normal range: 15~22). On
the third and fourth nights, all the subjects had good sleep quality (beyond 23), and the
scores of the r_SMFE were higher than those of the s_SMFE.

Figure 9. SRSS scores of four nights. The error bars represent the standard deviation.
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3.3.2. Sleep Staging

N1% and N2% increased on the first two nights, while N3% and REM% decreased
significantly (Table 3). The SOL on the first night exceeded 70 min, with more awake
episodes (more than 1 time for each subject on average), and the RL was as long as 2.73 h.
On the second night, N1% and N2% decreased, and the sleep pattern tended to be normal.
On the third and fourth nights, N1% and N2% decreased continuously. N3% and REM%
were prolonged, and no awakening occurred throughout the night. The sleep pattern was
consistent with the normal pattern [33].

Table 3. Results of EEG (mean ± SD).

1st Night 2nd Night 3rd Night 4th Night

r_SMFE s_SMFE r_SMFE s_SMFE r_SMFE s_SMFE r_SMFE s_SMFE

N1% 16.20 ± 4.5 16.89 ± 4.5 9.50 ± 2.7 9.66 ± 2.7 5.72 ± 1.5 6.01 ± 1.3 5.82 ± 1.3 6.31 ± 1.1
N2% 59.22 ± 5.2 63.52 ± 6.8 53.96 ± 3.5 56.02 ± 3.5 46.11 ± 2.2 47.69 ± 1.7 45.93 ± 2.3 47.9 ± 1.7
N3% 14.08 ± 3.0 12.52 ± 4.0 19.82 ± 2.9 18.45 ± 3.3 25.46 ± 2.0 23.68 ± 1.2 25.45 ± 1.6 23.2 ± 1.3

REM% 10.50 ± 3.5 8.07 ± 3.9 16.73 ± 2.0 15.87 ± 1.6 22.51 ± 1.4 22.62 ± 1.4 22.81 ± 1.9 22.51 ± 1.5
TST (h) 1 5.58 ± 0.90 5.52 ± 0.87 7.46 ± 0.85 7.15 ± 0.85 7.96 ± 0.58 7.61 ± 0.72 8.16 ± 0.39 7.86 ± 0.67

SE 2 % 62.00 ± 10.0 61.31 ± 9.7 82.85 ± 9.5 79.42 ± 9.5 88.47 ± 6.4 84.56 ± 8.0 90.63 ± 4.3 87.33 ± 7.5
WN 3 (time) 1.00 ± 0.7 1.40 ± 0.8 0.10 ± 0.3 0.25 ± 0.4 0.00 ± 0.0 0.05 ± 0.2 0.00 ± 0.0 0.00 ± 0.0
SOL (min) 4 74.24 ± 16.8 75.15 ± 17.2 58.52 ± 15.4 57.89 ± 15.3 26.28 ± 5.9 28.46 ± 6.2 24.32 ± 7.6 31.65 ± 9.3

RL (h) 5 2.58 ± 0.8 2.73 ± 0.9 1.05 ± 0.3 1.20 ± 0.3 1.05 ± 0.3 1.03 ± 0.3 1.09 ± 0.3 1.02 ± 0.2

1 TST: total sleep time; 2 SE: sleep efficiency; 3 WN: awakening number; 4 SOL: sleep onset latency; 5 RL: REM latency.

Figure 10 shows the average sleep cycle of the subjects in the different groups during
the first to fourth nights. The duration of the first sleep cycle was generally longer, and
the sleep cycle was irregular and incomplete. On the third and fourth nights, the r_SMFE
showed longer N3 than the s_SMFE, and the completed sleep cycle was longer. This result
was consistent with the subjective evaluation result. Therefore, sleep data recorded on the
third and fourth nights were used as valid data for sleep quality comparison.

Table 4 shows a comparison of EEG variables among the two groups and all data
follows a normal distribution. There were statistically significant differences in N2%, N3%,
SE, SOL. The results showed that N2% and SOL of the r_SMFE were decreased meanwhile
N3% and SE were increased in the r_SMFE.

Table 4. Comparisons of EEG sleep variables among the two groups.

r_SMFE
(%, Mean ± SD)

s_SMFE
(%, Mean ± SD) Difference (95% CI) * t Value p Value

N1% 5.77 ± 1.4 6.16 ± 1.2 0.0039 (−0.002, 0.01) 1.37 0.174

N2% 46.12 ± 2.2 47.8 ± 1.7 0.018 (0.009, 0.03) 4.03 <0.001

N3% 25.46 ± 1.8 23.48 ± 1.2 −0.020 (−0.03, −0.01) −5.79 <0.001

REM% 22.76 ± 1.6 22.56 ± 1.4 −0.0019 (−0.009, 0.005) −0.58 0.566

SE% 89.55 ± 4.6 85.94 ± 6.6 −0.036 (−0.06, −0.01) −2.89 0.005

WT (time) 0.00 ± 0.0 0.03 ± 0.2 0.025 (−0.02, 0.7) 1.03 0.308

SOL (min) 25.3 ± 6.8 30.06 ± 7.9 4.74 (1.5, 8.0) 2.93 0.004

RL % 1.07 ± 0.3 1.03 ± 0.3 −0.043 (−0.2, −0.07) −0.75 0.453

* Difference = r_SMFE-s_SMFE. 95% CI: 95% confidence interval. Results with statistically significant differences
have been highlighted in bold.
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Figure 10. The averaged sleep cycle of the two groups during the four nights. The horizontal axis
shows the total sleep duration of the night as 100%, and the graph shows the percentage of each sleep
cycle; I~V represents the first cycle to the fifth cycle.

4. Discussion

In this study, PSQI was used to evaluate the sleep quality of the subjects before they
were enrolled in the exposure experiment. The results indicate that the subjects were at
a similar level of sleep quality before the experiment. The four-night sleep quality of the
subjects was evaluated using SRSS, and the detailed sleep architecture was evaluated by
EEG. The results of both analyses showed that the subjects had poor sleep quality on
the first night. On the one hand, the mean SRSS scores of the r_SMFE and s_SMFE were
19.31 and 18.21, respectively. On the other hand, the first RL was more than twice the
normal value, indicating that the subjects had difficulty entering REM sleep, and the overall
REM period accounted for approximately 10%. This may be related to factors such as
discomfort caused by wearing an EEG cap and psychological stress caused by participation
in sleep EEG data collection [34]. During the experiment, the subject’s adaptability to the
experimental environment was strictly evaluated. If the subject reported that it was difficult
to fall asleep due to EEG recording, the subject’s experiment was terminated, and all the
data of this subject were abandoned (three participants were excluded from the experiment).
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After the first night of adaptation, the sleep quality of the remaining participants improved.
In general, on the third and fourth nights, the subjects had good sleep quality (24.81 in the
r_SMFE and 23.47 in the s_SMFE, in terms of mean SRSS), which was consistent with EEG
results [35].

The SRSS results of the third and fourth nights indicated that the r_SMFE had higher
scores than the s_SMFE, although there were no significant differences between the two
groups; this suggested that the subjects in the r_SMFE subjectively felt improvement in
sleep quality by the magnetostatic mattress. The results of sleep EEG in the last two nights
showed significantly reduced SOL and N2%, and significantly increased SE and N3% in
the r_SMFE. According to AASM, entering the N2 stage is considered as falling asleep. The
reduction of SOL indicated that the subjects could fall asleep quickly. Furthermore, the
increase in SE indicated that subjects had longer sleep time. The improvement for these
two sleep parameters corresponded to the effect of most hypnotic treatments [36]. Unlike
drug therapy, SMFE not only prolongs sleep time but also improves sleep architecture. For
example, N3 was defined as deep sleep, which was found to be enhanced in the r_SMFE.
During this phase, the brain organizes the memory of the daytime, and it is the key stage
of the human body to restore physical strength and eliminate fatigue. This indicated that
relatively short-term exposure to a weak static magnetic field could promote the deep sleep
period and optimize sleep structure.

The average difference between measured and calculated with non-deformable model
was 12.27% and that of deformable model was 17.69%. The difference between the mea-
sured value and the calculated value at the same measuring height is within the acceptable
range. It should be noted that the location of the maximum values of the measured and
calculated values are slightly different, compared to the calculated values, the location of
the measured values is closer to the center of the cylindrical surface.

The magnetic flux density decreased rapidly in the body. In the present study, the
magnetic flux density at the separation of 0.8 cm (epidermal and dermal layers of the
human body) from the magnetic mattress was 148 mT, while it was 0.67 mT at 22 cm to the
surface of the mattress (corresponding to the sagittal length of the human body because
the thickness of the waist and abdomen of the human body in the 95th percentile for
individuals of 18~25 years is 21.5 cm [37]. The separation between the nose tip and the back
is roughly the same value [38]). The corresponding mechanism, for the effect induced by
such a weak magnetic field, was difficult to be determined, but some possible explanations
can be given. First, because phospholipids in cell membranes have both diamagnetic
and paramagnetic properties, the lipid in the cell membrane would be realigned by the
magnetic field. This interference by the magnetic field might affect various ion channels
or cell structures. Therefore, the ion flux in the cell may reduce the action potential. It has
been observed that a magnetic field of as low as 10 mT intensity can interact and reduce
the signal traffic of the C-fiber by blocking or reducing action potential through effects on
sodium flux [39,40]. Blockage of voltage-gated sodium channels reduces high-frequency
repetitive firing and thereby promotes sleeping [41]. Blocking of other channels, e.g.,
the potassium internal rectifying channels, may also produce inhibition of the firing of
neurons [33]. Study of the kinetics of oxyhaemoglobin auto-oxidation revealed decreases
in the auto-oxidation reaction rate of 2~5.9% and 10~17%, under the effect of static MFs of
strengths 100~250 mT and 350~400 mT, respectively [42]. Further, it has also been observed
that weak magnetic fields can increase the release of oxygen from hemoglobin, thereby
enhancing partial pressure of tissue oxygen and improving oxygen delivery to tissues, and
thus benefiting sleep.

The abovementioned mechanisms were based on the finding at the magnetic field
strength of around 10 mT, and the change in the peripheral nervous system (PNS) benefited
the sleep of the subjects. Although the magnetic field strength at the brain level was 0.73 mT,
which was only a magnitude higher than the strength of the earth’s magnetic field, the
change in EEG by the central nervous system (CNS) exposure to such a low static magnetic
field could not be ruled out. Wang et al. [43] found the alpha-band EEG discriminated in
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response to different geomagnetic field stimuli. The modulation of EEG of such a waveband
was also detected in our experiments (as the classification feature identified by DT). The
underlying mechanism was the presence of a ferromagnetic transduction element, which
was directly responsive to both time-varying and static magnetic fields and was sensitive to
field polarity [43]. Sensory systems generally exhibit response specificity and neural tuning
to the local environment (Block, 1992), and they can be less responsive or nonresponsive to
unnatural stimuli [44].

The alignment of the magnets on the mattress was designed to achieve a steep local
gradient (as shown in Figure 5b) because the field gradient was thought to play an important
role in the resultant biological effect [40,45], in addition to field intensity. A steep gradient
field can help further reduce the action potential firing [46] as the resultant Lorentz force
could lead to different velocities of the ion flux. This interferes with the action potential
firing, similar to the spatially uniform but time-varying magnetic field [47].

Sleep architecture varies with sex, age, and race [48]. To evaluate the applicability
of the effects on a wide population, future work should include subjects from other age
groups. In this experiment, all light sources were turned off, and only the line supplying
power to the sleep EEG was energized. There is a modest association between residential
exposures to elevated magnetic field intensity and insomnia complaints [49]. Other the
control of other electromagnetic components in the sleep laboratory would be discussed
in future work (low, mainly power, frequency fields from electrical supplying system and
radiofrequency fields from radio communication networks).

5. Conclusions

The subjective and objective analysis suggest that SMFE (varying across the body
ranging at 0.5~150 mT) given by a magnetostatic mattress may improve sleep quality and
the effects were also manifested in the changes in sleep architecture. Sleep stages were
discerned with a set of eight EEG metrics using machine learning operators. The results
of the last two nights during the experiment indicated reduced SOL, increased SE, and
enhanced N3. These findings revealed that SMFE could improve sleep quality in terms of
both sleep duration and sleep structure. The possible mechanisms have also been discussed.
The present study may contribute to the development of instrumentation for promoting
sleep improvement in individuals with sleep disorders.
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