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Abstract: Reliable modeling of novel commutative cases of COVID-19 (CCC) is essential for deter-

mining hospitalization needs and providing the benchmark for health-related policies. The current 

study proposes multi-regional modeling of CCC cases for the first scenario using autoregressive 

integrated moving average (ARIMA) based on automatic routines (AUTOARIMA), ARIMA with 

maximum likelihood (ARIMAML), and ARIMA with generalized least squares method (ARI-

MAGLS) and ensembled (ARIMAML-ARIMAGLS). Subsequently, different deep learning (DL) 

models viz: long short-term memory (LSTM), random forest (RF), and ensemble learning (EML) 

were applied to the second scenario to predict the effect of forest knowledge (FK) during the 

COVID-19 pandemic. For this purpose, augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) 

unit root tests, autocorrelation function (ACF), partial autocorrelation function (PACF), Schwarz 

information criterion (SIC), and residual diagnostics were considered in determining the best 

ARIMA model for cumulative COVID-19 cases (CCC) across multi-region countries. Seven different 

performance criteria were used to evaluate the accuracy of the models. The obtained results justified 

both types of ARIMA model, with ARIMAGLS and ensemble ARIMA demonstrating superiority to 

the other models. Among the DL models analyzed, LSTM-M1 emerged as the best and most reliable 

estimation model, with both RF and LSTM attaining more than 80% prediction accuracy. While the 

EML of the DL proved merit with 96% accuracy. The outcomes of the two scenarios indicate the 

superiority of ARIMA time series and DL models in further decision making for FK. 
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1. Introduction 

On 31 December 2019, there were many instances of pneumonia in China with no 

known background. The cases were reported in early December 2019, and many of those 

who were infected lived or worked at the Huanan local Seafood Wholesale Market, de-

spite the fact that the remainder of the cases had no connection to this location [1]. A novel 

coronavirus, designated as 2019-nCoV by WHO on 7 January, was discovered in one of 
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these patients [2]. The new virus was termed severe acute respiratory syndrome corona-

virus 2 (SARS-CoV-2) by the Coronavirus Study Team (CST) [2], and was later renamed 

COVID-19 by WHO. As of 30 January 2020, seven thousand, seven hundred and thirty-

six verified incidents and twelve thousand, one hundred and sixty-seven probable occur-

rences had been reported in the Republic of China, with eighty-two instances reported in 

eighteen additional countries [3]. On 30 January 2020, WHO designated the SARS-CoV-2 

epidemic a public health emergency of international concern (PHEI) and a pandemic on 

11 March 2020 [3,4]. 

According to the Chinese National Health Commission, the percentage of deaths 

among confirmed cases in the Republic of China was 2.1% as of 4 February 2020 [4]. 

COVID-19 spreads quickly, resulting in a high number of deaths; moreover, accessible 

data as well as published findings are rapidly expanding. As of 17 May 2021, the disease 

had claimed the lives of over three million individuals, with over 163 million confirmed 

cases in over 220 nations and territories [5]. It is unclear what influence the Huanan Sea-

food Market played in the transmission of the new virus. The majority of the first COVID-

19 cases were related to this market, indicating that the virus was likely transmitted from 

animals to humans [6]. According to genetic evidence, the virus was introduced into the 

Huanan market from an unknown source and quickly spread throughout the city, despite 

the fact that human-to-human transmission is known to have occurred earlier [6]. 

Human-to-human transmission was first suggested by the large number of affected 

family members and later confirmed by health experts [6]. COVID-19 has had a detri-

mental influence on Africa’s health, security, politics, and society. Already frail healthcare 

facilities were overwhelmed by the rapidly growing number of cases during the pan-

demic’s dramatic peak. The continued function of vital health services has also been dis-

turbed in several African nations, resulting in a supply–demand imbalance. The pandemic 

has had a significant impact on non-communicable disease treatment, regular vaccination, 

prenatal care, family planning and contraception, and other services. Several researchers 

have attempted to anticipate the CCC [7,8], with ARIMA being used in several of these 

studies [9,10]. Seasonal ARIMA for example, SARIMA model is associated with epidemi-

ological models based on phone call data [11,12]. Some research, on the other hand, fo-

cused on the impact of governmental measures—such as lockdown and social separa-

tion—on COVID-19 dissemination [11]. 

Various new AI-based models have yet to be applied to COVID-19 situations, despite 

suggestions in the literature to employ different versions of these models—such as neural 

networks—for novel COVID-19 modeling. Another reason to investigate novel modeling 

methods is the fact that correct simulation of COVID-19 in a research region can save 

money, energy, and time; as a result, the choice of modeling methodology is given a lot of 

thought when forecasting these important trends [12–20]. On the other hand, studies of 

COVID-19 related to image segmentation have been explored in [12,13,21]. In poorer 

countries, where the budget for environmental quality evaluation and monitoring is lower 

than in wealthier ones, modeling approaches are more relevant. According to the Scopus 

database’s reported literature for 2020–2021, there exists a lot of interest in power system 

simulation using the feasibility of ML models. The primary keyword occurrence clusters 

and temporal regional spans across the literature are presented in Figure 1a,b, respec-

tively. Over 2000 articles were included, demonstrating the importance of this topic in 

terms of COVID-19 modeling. The investigation of new machine learning models capable 

of solving engineering challenges is always ongoing, and both academics and scientists 

are interested in the research domain of novel and sophisticated modeling methodologies 

that can be applied to COVID-19. 
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Figure 1. (a) Major keywords in the literature on COVID-19, determined using machine learning 

models (2020–2021); (b) investigated research regions for the COVID-19 prediction. 

The present study makes the following contributions: This is the first research, to the 

best of the authors’ knowledge, in which an ARIMA model is combined with GLS and 

deep learning models (random forest (RF) and long-short term memory (LSTM)) to pre-

dict CCC under environmental protection knowledge. This research also considers the 
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Economic Community of West African States (ECOWAS), a significant economic group-

ing. This paper examines the time series characteristics of the CCC using two-unit root 

tests before modeling, eliminating the risk of relying on a single unit root test. The ARIMA 

models estimated with ML methods and those estimated with GLS are compared. Despite 

the fact that ARIMA was used by ArunKumar et al. [7], Alabdulrazzaq et al. [9], and 

Guleryuz [14], none of these studies applied the GLS, RF, LSTM or EML estimation 

method and more than one unit root test. This research can help policymakers to analyze 

hospitalization needs and adopt interventions targeted at flattening the COVID-19 curve. 

2. Materials and Methods 

The current study proposes two different scenarios. The first scenario aimed to model 

the cumulative COVID-19 cases in four different counties using various classifications of 

ARIMA models: ARIMA based on automatic routines (AUTOARIMA), ARIMA estimated 

according to the Box–Jenkins procedure with maximum likelihood method (ARIMAML), 

ARIMA estimated with the generalized least squares method (ARIMAGLS), and ensem-

bled ARIMAML and ARIMAGLS (ARIMAML-ARIMAGLS). The second scenario em-

ployed a novel deep learning model for the estimation of uncertain environmental 

knowledge regarding forests during the COVID-19 era. For this purpose, the experimental 

data used in this research were divided, with 70% used for calibration and 30% for the 

verification phase with validation practices. The model’s results were evaluated using the 

k-fold cross-validation methodology, which is considered the best way to achieve unbi-

ased model performance prediction with a small data set [7,8]. Although various valida-

tion methods can be used, the k-fold cross-validation strategy represents the most practi-

cal option for achieving an unbiased goodness-of-fit prediction (for a restricted data set). 

The challenge in determining whether one model outperforms others in reality is the 

fundamental incentive for using several data-intelligence models. As a result, selecting 

acceptable models for a specific scenario can be difficult for modelers [22,23]. Only by 

identifying and selecting several data-driven—and primarily linear—models can this 

complexity be addressed, despite their shortcomings in handling extremely non-linear 

and complicated data. Figure 2 presents the flowcharts used in the construction of the 

current study for scenarios I and II, respectively. Defined in Equation (1), the input data 

are gathered, pre-processed, and normalized, as shown in the flowchart. The data were 

normalized before the model was trained, which is commonly carried out to improve the 

model’s efficiency and accuracy. 

� = 0.05 + �0.95 × �
� − ����

���� − ����

�� (1)

where y represents normalized data, x represents measured data, and xmax and xmin repre-

sent the measured data’s maximum and minimum values, respectively. 
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Figure 2. The overall flowchart of the models. 

2.1. ARIMA Model 

Box and Jenkins [24] introduced the ARIMA model concept. Equation (2) represents 

the ARIMA (p, d, q) model. Autoregressive order, integration order, and moving average 

order are represented by the letters p, d, and q, respectively. ARIMA is a type of model 

used in time series forecasting where a collection of observed data from the past are ana-

lyzed and used to design a model describing the underlying relationship. This model is 

further used to predict/extrapolate into the future [20]. A variable’s future value is as-

sumed to be a linear function of several observed data points and random errors [25–28]. 

The time series is generated using: 

��� = �� + ���    (2)

where ��  is the stationary dependent variable, �� is the white noise error term, � = 1 −

∑ ��
�
��� ��  and � = ∑ ��

�
��� �� , and �  is the lag operator defined as ���� = ����  for � =

1,2, . . . . ∞. For more details on ARIMA, see [24]. If �� is stationary, the series can be mod-

elled as an ARMA (�,�) process, otherwise it has to be modelled as an ARIMA (p, d, q) 

process. Figure 3 presents the procedures employed by this study in modeling the CCC. 
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Figure 3. Algorithm for developing the ARIMA models. 

2.2. Random Forest (RF) 

Random forest (RF) is an effective supervised learning technique mainly used for 

classification and regression problems in machine learning [29]. Breiman, [30] introduced 

RF as a practical ensemble algorithm which provides an additional non-stationarity layer 

to the bagging approach [29–32]. RF fulfils its role by using a random sampling mecha-

nism to generate several decision trees. Generally, forecasts are derived from the mean 

outputs of these systems, which form a vast ensemble of trees. Bootstrapping or a random 

selection of inputs are utilized to create the various foundation trees, which is how the 

decisions are made. Lately, there has been a surge in curiosity regarding RF, which is al-

ready used in various applications. The RF architecture used to determine the final fea-

tures to form the RF tree is presented in Figure 4. 

 

Figure 4. Overall description of RF. 

2.3. Long Short-Term Memory Neural Network (LSTM) 

Long short-term memory neural network (LSTM) is a widely used deep learning 

model in science and engineering. It is capable of analyzing complex and high-dimen-

sional data in a relatively short period with minimal human resources when compared 
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with conventional data collection and analysis[33,34]. The LSTM is a sort of recurrent al-

gorithm that can successfully tackle gradient explosion and gradient disappearance dur-

ing RNN training while also increasing RNN performance. The LSTM model was created 

to compensate for the traditional RNN’s inability to memorize sequences of 10 or more 

characters. The recurrent models are chained iterative approaches that are connected and 

repeated. The LSTM model, which uses special memory cells to store information, has a 

chain with an almost identical structure to that of RNN [14,35,36](see Figure 5). 

 

Figure 5. Long short-term memory neural network. 

3. Data Processing and Validation 

The following paragraph provides definitions of the variables analyzed in this study. 

The cumulative total of COVID-19 patients’ daily laboratory records is referred to as the 

CCC. The data for this study were taken from the World Health Organization’s (WHO) 

COVID-19 global data database. Each country’s sample runs from the first day a COVID-

19 case for the first scenario was recorded in the country through to 1 September 2021. 

The sample size (N) for each country can be seen in Table 1. Table 1 also shows the CCC’s 

descriptive data for the four nations (LY, NG, TR, and ZA). The sample size for each coun-

try is represented by the number of observations (N). The greater the number of observa-

tions, the earlier the country reported the first instance of COVID-19. Accordingly, the 

first COVID-19 case in the region was discovered in NG, followed by ZA, TR, and then 

LY. The mean (Y) reflects the CCC’s average value, the median (Ymed) shows the CCC’s 

value in the center of the sample for each country, and the standard deviation (σ) repre-

sents the CCC’s dispersion from the mean for each country. The earliest number of in-

stances documented for each nation is given by the minimum (Ymin). For instance, NG’s 

first COVID-19 record is 5, while LY’s is 1. The maximum value (Ymax) is the CCC as of 1 

September 2021. A histogram of the instances for each country is shown in Figure 6. 

Table 1. Descriptive statistics of the variables. 

 �‾ ���� ���� ���� � N 

LY 129333.3 111124 366789 1 116504.4 605 

NG 104581.5 95934 213464 5 72519.22 631 

TR 2906611 2355839 8503220 1 2635359 619 

ZA 1252298 1231597 2927499 5 960752.1 625 
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For the second scenario, a well-structured questionnaire was developed and subdi-

vided into seven sections with questions and possible responses under subheadings. 

These included questions on the demographic characteristics of students and questions to 

evaluate students’ general knowledge regarding forests, forest protection, the importance 

of forests, poor forest administration, the dangers of deforestation, and how individuals 

and governments can take responsibility for forests. For exploratory and data-driven anal-

ysis, the important variables were selected based on dependency analysis, in which the 

following variables from the questionnaire were used: forest knowledge (FK), forest im-

portance to the country (FIC), priority for recreational activities (ICA), vital goal of forest 

(VGF), the government is responsible for taking care of forest problems (GRF), sources of 

forest knowledge (SFK), benefit of forest protection to man and his environment (BFE), 

responsibility of individuals to protect the forest in their locality (RIF), and the dangers of 

cutting forest down (DCF). To understand the effect of COVID-19 on forest knowledge 

and determine the most dominant parameter, a sensitivity analysis was performed and 

the results are presented in Figure 7. 

The degree to which the relationship between the parameters can be expressed using 

a linear function and a non-linear function is referred to as sensitivity analysis. The 

strength of the correlation is not dependent on the direction or sign. A positive coefficient 

indicates that an increase in the first parameter would correspond to a rise in the second 

parameter. In contrast, a negative correlation indicates an inverse relationship, in which 

one parameter increases when the other parameter decreases[37,38]. 

 

Figure 6. Bar plot of CCC for the four regions. 
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Figure 7. Box-auto correlation analysis between the variables. 

Evaluation Criteria 

Root mean squared error (RMSE), mean absolute error (MAE), mean absolute per-

centage error (MAPE), symmetric MAPE (SMAPE), and Theil inequality coefficient (TIC) 

were the evaluation criteria used in this study. Additionally, the determination coefficient 

(R2) and correlation coefficient (R) were used to assess goodness-of-fit, and one statistical 

error, the mean squared error (MSE), was used to evaluate models of the second scenario. 

The above evaluation criteria are presented in Equations (3)–(9). 

RMSE = �
∑ (y�� − y�)����

�����

h
    (3)

MAE =
1

h
� |y�� − y�|

���

�����

    (4)

MAPE =
1

h
� � �

y�� − y�

y�

�

���

�����

� × 100    (5)

SMAPE =
1

h
� � �

y�� − y�

y�� + y�

�

���

�����

× 2� × 100 (6)

U� = �
∑ (y�� − y�)

����
�����

h
⋅ ��

∑ y��
����

�����

h
+ �

∑ y�
����

�����

h
�

��

    (7)

R� = 1 −
∑ �(Y)���,� − (Y)���,��

��
���

∑ �(Y)���,� − (Y)����
���,��

��
���

 (8)

MSE = 
�

�
 ∑ (Y���� − Y����)

��
���   (9)
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R =
∑ (Y��� − Y����)(Y��� − Y����)�

���

�∑ (Y��� − Y����)��
��� ∑ (Y��� − Y����)��

���

 
(10)

Equations (3)–(7) include the actual value y�, the forecast value y��, the forecast horizon h, 

and the training/testing sample T. 

4. Results and Discussions 

In this section, the results for both multi-regional COVID-19 modeling and the pre-

diction effect of forest knowledge during the COVID-19 pandemic are analyzed. It is 

worth mentioning that, to the best of the authors’ knowledge, there is no existing pub-

lished research that employed this approach. Another motivation for the current research 

was to conduct a comprehensive bibliographic review of COVID-19 using AI-based mod-

els. The results of both analyses are presented in the section below. 

4.1. Result for Various Type of ARIMA 

As stated above, various ARIMA models were employed to analyze and forecast the 

CCC of four different countries. Prior to modeling, pre-analysis was conducted to deter-

mine the reliability of the data. As such, the stationarity of the data was evaluated using 

formal unit root tests, i.e., augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) tests. 

These tests have been developed by several studies in the literature. Table 1 presents the 

results of the unit root test. From the table it can be seen that the CCC values for each 

country tend to be non-stationary at normal level and become stationary at first difference, 

excluding TR and ZA which underwent second differences. In addition, ADF revealed 

that the CCC for TR is I (2) while that of the other countries is I (1). When contradictory 

findings were found, the PP unit root test took precedence since it can detect near-unit 

root processes. 

ARIMA models have been employed to predict COVID-19-related parameters; for 

example, Toga et al. [39] applied ARIMA and ANN to forecast COVID-19 prevalence in 

Turkey. Moreover, ensemble ARIMA has not yet received appropriate attention in the 

literature. For each of the countries (TR, LY, NG, and ZA), four models were evaluated 

and their forecast performance was assessed. These four models were: ARIMA with max-

imum likelihood (ARIMAML), ARIMA with generalized least squares (ARIMAGLS), 

ARIMA with automatic routines (AUTOARIMA), and ARIMAML with ARIMAGLS (AR-

IMAML-ARIMAGLS). Before model development, the dominant model selection ap-

proach was used, which significantly affects the accuracy of any intelligent computational 

models. Several input selection approaches including correlation, auto-correlation, and 

principal components analysis have been reported in the literature but are associated with 

linearity problems. The minimal value of forecast statistics such as RMSE, MAE, MAPE, 

SMAPE, Theil U1, and Theil U2 are presented in Tables 2 and 3 and were used to assess 

the performance of the models. This study employed two forecasting techniques: individ-

ual building forecasting and ARIMAML and ARIMAGLS ensemble forecasting. The re-

sults of ARIMAML and ARIMAGLS are simply averaged. The ensembled model’s output 

was then analyzed and compared with the output of individual models. 
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Table 2. ADF and PP unit root test results. 

Varia-

bles 
None Constant 

Constant and 

Trend 
None Constant 

Constant and 

Trend 

Deci-

sion 

LY 2.676 1.594 −1.986 −2.291 *** −3.933 *** −4.527 *** I(1) 

NG 1.244 −0.705 −2.225 −2.179 *** −3.058 *** −3.041 *** I(1) 

TR 0.931 0.311 −2.582 −0.89 −1.865 −2.167 I(2) 

ZA 0.929 −0.444 −3.166 −1.72 −2.368 −2.277 I(2) 

LY 7.204 3.413 −1.797 −10.572 *** −17.217 *** −20.344 *** I(1) 

NG 3.755 −0.116 −1.627 −11.264 *** −17.258 *** −17.263 *** I(1) 

TR 7.839 3.865 −1.414 −0.907 −1.882 −2.143 I(2) 

ZA 4.329 0.882 −2.221 −4.091 *** −4.112 *** −4.567 *** I(1) 

*** signifies regrectionof null hypothesis at 1% level of significance 

The ensemble’s principal goal is to create more accurate and dependable estimates 

than those produced by a single model [40]. It was also confirmed by [41–43] that the 

ensemble technique has numerous advantages over the use of linear modeling methods, 

including in the initial stage of model selection and in the output of already selected mod-

els used for the ensemble. This can reduce the inconsistency in model development be-

cause no single model suits and fits all data. The expected performance and accuracy of 

the model depends on the nature, relationship between variables, uniformity, size, range, 

etc. of the data, as well as the method used. Because each country’s CCC is integrated of 

order one, they can be represented by ARIMA (p,1, q) processes. The combination of au-

toregressive order (p) and moving average order (q) that produced the lowest Schwarz 

information criteria (SIC) with white-noise mistakes was chosen. Because each country’s 

CCC is I (1), the initial difference between each CCC was used before estimating. The 

probable moving average order is determined using the autocorrelation function (ACF), 

whereas the probable autoregressive order is determined using the partial autocorrelation 

function (PACF). Figures 8 and 9 show the ACF and PACF graphs, respectively. Accord-

ing to autoregression theory, typical time series data, particularly COVID-19 variables 

such as CCC, may be forecasted using the lags of the same time series or processes that 

influence the output variables, as is the case in this study. If the same variable is used, the 

ACF and PACF may be used to determine the optimal number of lags, whereas the cross-

correlation function (CCF) can be utilized if various variables are used. 

 

Figure 8. ACF of the first difference of CCC for the four countries. 
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Figure 9. PACF of the first difference of CCC for the four countries. 

Understanding the modeling process and data division is quite crucial in any mod-

eling procedure; as such, the modeling forecast for the training phase is presented in Table 

3. The results of various performance evaluation matrices, such as RMSE, MAPE, and 

MAE, are presented for all of the employed models. Based on these results, it can be seen 

that the lowest RMSE value associated with LY, NG, TR, and ZA is for AUTOARIMA, 

ARIMA(ML-GLS), ARIMA(ML-GLS), and ARIMAML, respectively. It has been reported 

in the literature that, for better analysis of model accuracy, different performance indices 

should be included. MAPE is one such recommended index, and MAPE values between 

1–10 is recommended for the best results. The training results indicated that almost all of 

the model’s performance can be justified by considering the values of MAPE (see Figure 

10). According to Figure 10, LY (MAPE = 1.5798), NG (MAPE = 1.2575), TR (MAPE = 

1.6228), and ZA (MAPE = 1.0482). ARIMAGLS outperformed the other models for LY, NG, 

and ZA in terms of MAPE values, while AUTOARIMA was the best model for TR. 

Table 3. Evaluation results for the training sample. 

Models RMSE MAE MAPE SMAPE Theil U1 Theil U2 

ARIMAML 287.4491 171.1810 6.329595 4.651772 0.001302 4.456228 

AUTOARIMA 266.0884 158.2471 5.097415 4.000233 0.001204 3.065781 

ARIMAGLS 287.4962 170.3428 1.579800 1.613471 0.001302 0.904637 

ARIMAML-ARIMAGLS 287.4308 170.5967 3.587180 3.010201 0.001302 2.431895 

ARIMAML 194.9946 107.5219 9.913560 5.122160 0.000946 4.291490 

AUTOARIMA 220.0399 124.1118 1.442778 1.494742 0.001067 0.834548 

ARIMAGLS 195.6538 106.9622 1.257531 1.378221 0.000949 0.900122 

ARIMAML-ARIMAGLS 195.1350 107.0657 5.410406 3.742184 0.000946 2.199975 

ARIMAML 1384.8780 667.1446 9.421745 1.801850 0.000259 6.971105 

AUTOARIMA 9364.0090 6847.1200 1.622860 1.533954 0.001748 0.715107 

ARIMAGLS 1384.8720 666.1256 8.916807 1.775690 0.000259 6.619425 
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ARIMAML-ARIMAGLS 1384.8530 666.6342 9.169276 1.788919 0.000259 6.795260 

ARIMAML 1685.9570 818.2752 14.266580 3.603760 0.000768 13.075140 

AUTOARIMA 6842.2840 4613.7460 1.256974 1.241767 0.003113 0.538986 

ARIMAGLS 1690.7090 819.5312 1.048277 1.105426 0.000770 0.673285 

ARIMAML-ARIMAGLS 1686.6170 814.9397 7.180849 2.674733 0.000768 6.467583 

 

 

 

Figure 10. MAPE and RMSE values for: (a) LY, (b) NG, (c) TR, and (d) ZA for both training and 

testing phases. 

A quantitative comparison of the results can be conducted using the testing phase 

sample presented in Table 4. The testing phase represents an essential stage in any mod-

eling in order to validate and generalize the model. The modeling results for CCC show 

that AUTOARIMA and ARIMAGLS outperformed the other models. It is also worth men-

tioning that, in most situations, RMSE and Theil U1 agreed on the same model as being 

the best. It is also worth noting that when other accuracy metrics (MAE, MAPE, SMAPE, 

and Theil) conflict with RMSE, RMSE takes precedence. Figure 11a, b shows the forecast 

comparison graphs for the training and testing samples for each nation. The line graphs 

showing the actual and anticipated levels of CCC are barely distinct. This suggests that 

using ARIMA to forecast the CCC is valid. 
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Table 4. Evaluation results for the testing sample. 

Models RMSE MAE MAPE SMAPE Theil U1 Theil U2 

ARIMAML 287.4491 171.1810 6.329595 4.651772 0.001302 4.456228 

AUTOARIMA 266.0884 158.2471 5.097415 4.000233 0.001204 3.065781 

ARIMAGLS 287.4962 170.3428 1.579800 1.613471 0.001302 0.904637 

ARIMAML-ARIMAGLS 287.4308 170.5967 3.587180 3.010201 0.001302 2.431895 

ARIMAML 194.9946 107.5219 9.913560 5.122160 0.000946 4.291490 

AUTOARIMA 220.0399 124.1118 1.442778 1.494742 0.001067 0.834548 

ARIMAGLS 195.6538 106.9622 1.257531 1.378221 0.000949 0.900122 

ARIMAML-ARIMAGLS 195.1350 107.0657 5.410406 3.742184 0.000946 2.199975 

ARIMAML 1384.8780 667.1446 9.421745 1.801850 0.000259 6.971105 

AUTOARIMA 9364.0090 6847.1200 1.622860 1.533954 0.001748 0.715107 

ARIMAGLS 1384.8720 666.1256 8.916807 1.775690 0.000259 6.619425 

ARIMAML-ARIMAGLS 1384.8530 666.6342 9.169276 1.788919 0.000259 6.795260 

ARIMAML 1685.9570 818.2752 14.266580 3.603760 0.000768 13.075140 

AUTOARIMA 6842.2840 4613.7460 1.256974 1.241767 0.003113 0.538986 

ARIMAGLS 1690.7090 819.5312 1.048277 1.105426 0.000770 0.673285 

ARIMAML-ARIMAGLS 1686.6170 814.9397 7.180849 2.674733 0.000768 6.467583 

The Taylor diagrams for the training and testing samples are shown in Figure 12a,b. 

The model with the largest dot had the best RMSE. ARIMAML-ARIMAGLS had the best 

prediction accuracy for seven countries, ARIMAGLS for four countries, and ARIMAML 

for three countries, as shown in Figure 8. Figure 9 indicates that ARIMAGLS outperforms 

the other models in predicting accuracy for three countries, whereas ARIMAML outper-

formed the other models for one country. Tables 3 and 4 are visually summarized in Fig-

ures 8 and 9, respectively. The fan plots for the training and testing samples are shown in 

Figure 13a,b. The RMSE of the four models are shown on the graph. The greater the 

model’s prediction performance, the narrower the angle of the sector of the fan plot (see, 

Figure 13a,b). The performance of four of the best-performing models described in this 

study was examined in the preceding analysis. The top performing models, according to 

individual forecast data, are ARIMAGLS and ARIMAML, while combining the two mod-

els produces the best prediction accuracy. Because GLS yields inconsistent empirical fit 

and parameter estimations, the ARIMAGLS model beats other models. Finally, due to the 

applicability of merging predictions, combining the ARIMAML and ARIMAGLS pro-

duces the greatest predicted accuracy in most circumstances when compared with sepa-

rate models. 
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Figure 11. Forecast comparison graph for the: (a) training, and (b) testing samples. 
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Figure 12. Taylor diagram for the: (a) training, and (b) testing samples. 
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Figure 13. Fan plot of RMSE for the: (a) training, and (b) testing samples. 

4.2. Result of Deep Learning Model 

For the development of the AI-based models used in the current study, simulations 

were performed in MATLAB 9.3 (R2020a). Suitable model architecture of both the LSTM 

and RF models was optimized and selected using trial and error. As reported in the liter-

ature [44–46], modeling results must satisfy certain evaluation indicators. The outcomes 

of the simulated models were evaluated using the most utilized performance criteria, in-

cluding R2, MSE, RMSE, and R in both the calibration (70%) and verification (30%) stages. 

The predicted results were derived from M1 and M2, and the simulated quantitative as-

sessment results are presented in tabular form. Table 5 shows the results of the perfor-

mance analysis for RF, LSTM, and EML models. It can be seen from the results that all 

three AI-based models can produce good performance accuracy for the evaluation of FK 

and management. This is due to the powerful ability of non-linear AI-based models to 

describe complex systems. Between the two AI-based models (RF and LSTM), SLSTM-M1 

emerged as the best combination for FK estimation with values of R2 = 0.9393, MSE = 

0.0450, and R = 0.9692 in the calibration phase. 

Table 5. Results and performance analysis of the models. 

  Calibration Phase   Verification Phase  

Models R2 MSE R RMSE R2 MSE R RMSE 

RF-M1 0.8982 0.0705 0.9477 0.2655 0.8526 1.0205 0.9234 1.0102 

RF-M2 0.9082 0.0626 0.9530 0.2502 0.8985 0.7715 0.9479 0.8784 

LSTM-M1 0.9447 0.0336 0.9720 0.1833 0.9393 0.0450 0.9692 0.2121 

LSTM-M2 0.8876 0.3705 0.9421 0.6087 0.8864 0.8374 0.9415 0.9151 

NN-EML 0.9776 0.0305 0.9881 0.1746 0.9694 0.0374 0.9845 0.1933 

Further analysis of the results demonstrated that RF-M2 served as the second-best 

model, follow by RF-M1, and lastly LSTM-M1. The estimation results regarding goodness-

of-fit are presented by radar charts (see Figure 14). For the results of single models, it can 

be concluded that the performance accuracy of the models follows the following order: 

LSTM-M1 > RF-M2 > ARF-M1 > LSTM-M2. All models achieved good results but cannot 

serve the purpose of estimation since LSTM is a deep learning model that better captures 

the non-linear relationship between the variables. Similarly, the profound advantages of 
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deep learning and LSTM include their capability to analyze complex and high-dimen-

sional data in a relatively short period with minimal human resources compared with 

conventional data collection and analysis. To compare the predictive performance of this 

study, the R values greater than 0.7 indicated an excellent model. According to [47], R2 

values greater than 0.8 are satisfactory for any analysis using AI-based models. To further 

analyze the predictive performance of the model, point-by-point probability plots were 

generated between the observed and predicted values for the best models, as depicted in 

Figure 15. From the plots, it can be observed that higher agreement between the observed 

and predicted values was achieved by LSTM-M1. For this reason, quantitative analysis of 

the models can be performed using the determination coefficient (R2). LSTM-M1 increased 

the prediction accuracy of the best RF by 4% in the calibration phase and by 2% in the 

verification phase. 

 

Figure 14. Radar chart for all of the models for R2 and R. 

 

Figure 15. Results of cumulative distribution function for all of the single models. 
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The data used in the second scenario were pre-analyzed using a variety of techniques 

including normalization and reliability tests. The conceptual understanding of each input 

parameter is critical in assessing the strength of predictive models in soft-computing anal-

ysis. As a result, all of the study regions were subjected to stationery and consistency stud-

ies utilizing Cronbach’s alpha technique and unit root test. It should be noted that the 

preliminary examination of a single parameter or input for any time series is extremely 

important because their forecast accuracy might significantly add to the models’ im-

proved performance. According to Dickey et al.[22], the ADF test is essential for obtaining 

trustworthy and valid results that ensure the stationarity of all variables. All of the criteria 

mentioned were met by the experimental data used in this study. The findings demon-

strate that the computational modeling methodologies explored have varied levels of ap-

propriateness when considering the evaluation criteria. Furthermore, the aggregate find-

ings showed that EML was the most effective simulation in terms of performance require-

ments. Though it is impossible to rank the methods according to their acquired precision, 

the ELM method model had the best forecast accuracy, with a fit to the data of above 97%. 

The error plots in Figure 16 present a visual comparison of the model combinations with 

regards to MSE. For the total goodness-of-fit, an error plot depicts the level of agreement 

between the observed and projected load. The error map clearly reveals that the ELM 

method model is more accurate than the RF and LSTM models. 

 

Figure 16. Error performance in term of MSE for all of the models. 

The above findings are supported by the capacity of the ELM approach to handle 

non-linear systems. Unlike RMSE, MSE seems to have a more natural standard measure 

error and is explicit. It is a model performance measure that is commonly employed in 

regression analysis. The MAE for a test set is the average of the basic values of all instances 

in the verification set’s forecast errors. Table 4 also demonstrates its promise in terms of 

error values. According to the literature, the lowest MSE values suggest the best results 

and vice versa. The ensemble model’s efficiency can be linked to the hybrid model’s ability 

to produce more promising outcomes than a single model. For both research and engi-

neering, it is critical to report how dependable AI-based models are. 

The overall judgement between the best single model and ensemble learning is pro-

vided using a two-dimensional Taylor diagram, as presented in Figure 17. By considering 

the actual and estimated values, a Taylor diagram highlights and summarizes several sta-

tistical indices such as R, RMSE, and standard deviation [48]. Taylor diagrams can be 

found in a wide range of fields, including applied and social sciences. Surprisingly, to the 
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best knowledge of the researchers, this is the first study to employ this graph in FK fore-

casting. In addition, this graphic can be used to compare the internal consistency of dif-

ferent models. As a result, the diagram can be viewed as a collection of polar plot points. 

A detailed description and discussion of the Taylor diagram can be found in [49]. In the 

testing phase, the ELM approaches obtained greater goodness of fit with a value of R = 

0.98, as shown in Figure 17. These findings show that deep learning and ensemble tech-

niques are capable of capturing complicated non-linear patterns between load demand 

factors for both training and testing. 

 

Figure 17. Taylor graphical representations of ensemble models. 

5. Conclusions 

This study estimated and evaluated the forecast performance of four distinct ARIMA 

models: ARIMAML, ARIMAGLS, AUTOARIMA, and ARIMAML-ARIMAGLS. The mod-

els were estimated using CCC time series data for four countries (Brazil, Turkey, Libya, 

and South Africa). Two sub-samples were employed: 75% for training and 25% for testing. 

For the training subsample, AUTOARIMA was found to be the best model for Libya, AR-

IMAGLS for Turkey, and ARIMAML for Nigeria and South Africa. For the testing sample, 

AUTOARIMA had the best predictive ability for Libya and Nigeria, while ARIMAML was 

the best for Turkey and South Africa. No evidence was found that ensembling ARIMAML 

and ARIMAGLS produced the best forecast accuracy in both sub-samples. The results of 

this study can serve as a reference for modeling the CCC and devising health-related pol-

icies. 

Nevertheless, for the DL results, AI-based models were developed based on sensitiv-

ity analysis to estimate forest knowledge using RF and LSTM models. The performance 

criteria were evaluated using R2, R, MSE, and RMSE. The predictive results demonstrated 

that AI-based models could predict forest knowledge with less input combination. The 

results further indicated that all deep learning approach models are capable and satisfac-

tory tools for modeling forest knowledge. Deep learning LSTM-M1 emerged as the best 

and most reliable estimation model among the AI models analyzed. Although it is difficult 

to rank the models by their achieved accuracies, the ELM techniques approach showed 

the best relative prediction accuracy, attaining a goodness of fit greater than 97%. The 

outcomes also suggested the development of AI-based models in this field. Other non-

linear models and optimization techniques should be employed, such as non-linear en-

semble techniques (NET), gaussian process regression models (GPRM), gradient boasting 

(GB), extreme learning machines (ELM), genetic algorithms (GA), emerging optimization 

(EO), and kernel models (KM) to improve the estimation accuracy. It is also suggested to 

expand these techniques to other geo-environmental locations across the globe. This is in 

line with Areepong and Sunthornwat, [50] who concluded that future research should 
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focus on estimating the maximum number of visitors that can enter a country while main-

taining control of the number of COVID-19 cases. It may also be of interest to investigate 

the use of both forecasting models to anticipate and assess the spread of COVID-19 in 

other nations. 
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