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Abstract: Reliable modeling of novel commutative cases of COVID-19 (CCC) is essential for deter-
mining hospitalization needs and providing the benchmark for health-related policies. The current
study proposes multi-regional modeling of CCC cases for the first scenario using autoregressive
integrated moving average (ARIMA) based on automatic routines (AUTOARIMA), ARIMA with
maximum likelihood (ARIMAML), and ARIMA with generalized least squares method (ARIMAGLS)
and ensembled (ARIMAML-ARIMAGLS). Subsequently, different deep learning (DL) models viz:
long short-term memory (LSTM), random forest (RF), and ensemble learning (EML) were applied to
the second scenario to predict the effect of forest knowledge (FK) during the COVID-19 pandemic.
For this purpose, augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests, autocorre-
lation function (ACF), partial autocorrelation function (PACF), Schwarz information criterion (SIC),
and residual diagnostics were considered in determining the best ARIMA model for cumulative
COVID-19 cases (CCC) across multi-region countries. Seven different performance criteria were used
to evaluate the accuracy of the models. The obtained results justified both types of ARIMA model,
with ARIMAGLS and ensemble ARIMA demonstrating superiority to the other models. Among the
DL models analyzed, LSTM-M1 emerged as the best and most reliable estimation model, with both
RF and LSTM attaining more than 80% prediction accuracy. While the EML of the DL proved merit
with 96% accuracy. The outcomes of the two scenarios indicate the superiority of ARIMA time series
and DL models in further decision making for FK.

Keywords: artificial intelligence; ARIMA; ensemble ARIMA; forest knowledge; prediction

1. Introduction

On 31 December 2019, there were many instances of pneumonia in China with no
known background. The cases were reported in early December 2019, and many of those
who were infected lived or worked at the Huanan local Seafood Wholesale Market, despite
the fact that the remainder of the cases had no connection to this location [1]. A novel
coronavirus, designated as 2019-nCoV by WHO on 7 January, was discovered in one of these
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patients [2]. The new virus was termed severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) by the Coronavirus Study Team (CST) [2], and was later renamed COVID-19
by WHO. As of 30 January 2020, seven thousand, seven hundred and thirty-six verified
incidents and twelve thousand, one hundred and sixty-seven probable occurrences had
been reported in the Republic of China, with eighty-two instances reported in eighteen
additional countries [3]. On 30 January 2020, WHO designated the SARS-CoV-2 epidemic
a public health emergency of international concern (PHEI) and a pandemic on 11 March
2020 [3,4].

According to the Chinese National Health Commission, the percentage of deaths
among confirmed cases in the Republic of China was 2.1% as of 4 February 2020 [4].
COVID-19 spreads quickly, resulting in a high number of deaths; moreover, accessible data
as well as published findings are rapidly expanding. As of 17 May 2021, the disease had
claimed the lives of over three million individuals, with over 163 million confirmed cases
in over 220 nations and territories [5]. It is unclear what influence the Huanan Seafood
Market played in the transmission of the new virus. The majority of the first COVID-19
cases were related to this market, indicating that the virus was likely transmitted from
animals to humans [6]. According to genetic evidence, the virus was introduced into the
Huanan market from an unknown source and quickly spread throughout the city, despite
the fact that human-to-human transmission is known to have occurred earlier [6].

Human-to-human transmission was first suggested by the large number of affected
family members and later confirmed by health experts [6]. COVID-19 has had a detrimental
influence on Africa’s health, security, politics, and society. Already frail healthcare facili-
ties were overwhelmed by the rapidly growing number of cases during the pandemic’s
dramatic peak. The continued function of vital health services has also been disturbed
in several African nations, resulting in a supply–demand imbalance. The pandemic has
had a significant impact on non-communicable disease treatment, regular vaccination,
prenatal care, family planning and contraception, and other services. Several researchers
have attempted to anticipate the CCC [7,8], with ARIMA being used in several of these
studies [9,10]. Seasonal ARIMA for example, SARIMA model is associated with epidemio-
logical models based on phone call data [11,12]. Some research, on the other hand, focused
on the impact of governmental measures—such as lockdown and social separation—on
COVID-19 dissemination [11].

Various new AI-based models have yet to be applied to COVID-19 situations, despite
suggestions in the literature to employ different versions of these models—such as neural
networks—for novel COVID-19 modeling. Another reason to investigate novel modeling
methods is the fact that correct simulation of COVID-19 in a research region can save
money, energy, and time; as a result, the choice of modeling methodology is given a lot
of thought when forecasting these important trends [12–20]. On the other hand, studies
of COVID-19 related to image segmentation have been explored in [12,13,21]. In poorer
countries, where the budget for environmental quality evaluation and monitoring is lower
than in wealthier ones, modeling approaches are more relevant. According to the Scopus
database’s reported literature for 2020–2021, there exists a lot of interest in power system
simulation using the feasibility of ML models. The primary keyword occurrence clusters
and temporal regional spans across the literature are presented in Figure 1a,b, respectively.
Over 2000 articles were included, demonstrating the importance of this topic in terms of
COVID-19 modeling. The investigation of new machine learning models capable of solving
engineering challenges is always ongoing, and both academics and scientists are interested
in the research domain of novel and sophisticated modeling methodologies that can be
applied to COVID-19.

The present study makes the following contributions: This is the first research, to the
best of the authors’ knowledge, in which an ARIMA model is combined with GLS and deep
learning models (random forest (RF) and long-short term memory (LSTM)) to predict CCC
under environmental protection knowledge. This research also considers the Economic
Community of West African States (ECOWAS), a significant economic grouping. This
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paper examines the time series characteristics of the CCC using two-unit root tests before
modeling, eliminating the risk of relying on a single unit root test. The ARIMA models
estimated with ML methods and those estimated with GLS are compared. Despite the fact
that ARIMA was used by ArunKumar et al. [7], Alabdulrazzaq et al. [9], and Guleryuz [14],
none of these studies applied the GLS, RF, LSTM or EML estimation method and more than
one unit root test. This research can help policymakers to analyze hospitalization needs
and adopt interventions targeted at flattening the COVID-19 curve.

Figure 1. (a) Major keywords in the literature on COVID-19, determined using machine learning
models (2020–2021); (b) investigated research regions for the COVID-19 prediction.
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2. Materials and Methods

The current study proposes two different scenarios. The first scenario aimed to model
the cumulative COVID-19 cases in four different counties using various classifications of
ARIMA models: ARIMA based on automatic routines (AUTOARIMA), ARIMA estimated
according to the Box–Jenkins procedure with maximum likelihood method (ARIMAML),
ARIMA estimated with the generalized least squares method (ARIMAGLS), and ensembled
ARIMAML and ARIMAGLS (ARIMAML-ARIMAGLS). The second scenario employed
a novel deep learning model for the estimation of uncertain environmental knowledge
regarding forests during the COVID-19 era. For this purpose, the experimental data used
in this research were divided, with 70% used for calibration and 30% for the verification
phase with validation practices. The model’s results were evaluated using the k-fold cross-
validation methodology, which is considered the best way to achieve unbiased model
performance prediction with a small data set [7,8]. Although various validation methods
can be used, the k-fold cross-validation strategy represents the most practical option for
achieving an unbiased goodness-of-fit prediction (for a restricted data set).

The challenge in determining whether one model outperforms others in reality is the
fundamental incentive for using several data-intelligence models. As a result, selecting
acceptable models for a specific scenario can be difficult for modelers [22,23]. Only by
identifying and selecting several data-driven—and primarily linear—models can this
complexity be addressed, despite their shortcomings in handling extremely non-linear
and complicated data. Figure 2 presents the flowcharts used in the construction of the
current study for scenarios I and II, respectively. Defined in Equation (1), the input data
are gathered, pre-processed, and normalized, as shown in the flowchart. The data were
normalized before the model was trained, which is commonly carried out to improve the
model’s efficiency and accuracy.

y = 0.05 +
(

0.95×
(

x− xmin
xmax − xmin

))
(1)

where y represents normalized data, x represents measured data, and xmax and xmin repre-
sent the measured data’s maximum and minimum values, respectively.

2.1. ARIMA Model

Box and Jenkins [24] introduced the ARIMA model concept. Equation (2) represents
the ARIMA (p, d, q) model. Autoregressive order, integration order, and moving average
order are represented by the letters p, d, and q, respectively. ARIMA is a type of model used
in time series forecasting where a collection of observed data from the past are analyzed
and used to design a model describing the underlying relationship. This model is further
used to predict/extrapolate into the future [20]. A variable’s future value is assumed to
be a linear function of several observed data points and random errors [25–28]. The time
series is generated using:

ΨYt = α0 + Γεt (2)

where Yt is the stationary dependent variable, εt is the white noise error term,
Ψ = 1−∑

p
i=1 αiLi and Γ = ∑

q
j=0 β jLj, and L is the lag operator defined as LiYt = Yt−i for

i = 1, 2, . . . , ∞. For more details on ARIMA, see [24]. If Yt is stationary, the series can be
modelled as an ARMA (p, q) process, otherwise it has to be modelled as an ARIMA (p, d,
q) process. Figure 3 presents the procedures employed by this study in modeling the CCC.
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Figure 2. The overall flowchart of the models.

Figure 3. Algorithm for developing the ARIMA models.
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2.2. Random Forest (RF)

Random forest (RF) is an effective supervised learning technique mainly used for
classification and regression problems in machine learning [29]. Breiman, [30] introduced
RF as a practical ensemble algorithm which provides an additional non-stationarity layer
to the bagging approach [29–32]. RF fulfils its role by using a random sampling mechanism
to generate several decision trees. Generally, forecasts are derived from the mean outputs
of these systems, which form a vast ensemble of trees. Bootstrapping or a random selection
of inputs are utilized to create the various foundation trees, which is how the decisions are
made. Lately, there has been a surge in curiosity regarding RF, which is already used in
various applications. The RF architecture used to determine the final features to form the
RF tree is presented in Figure 4.

Figure 4. Overall description of RF.

2.3. Long Short-Term Memory Neural Network (LSTM)

Long short-term memory neural network (LSTM) is a widely used deep learning
model in science and engineering. It is capable of analyzing complex and high-dimensional
data in a relatively short period with minimal human resources when compared with
conventional data collection and analysis [33,34]. The LSTM is a sort of recurrent algorithm
that can successfully tackle gradient explosion and gradient disappearance during RNN
training while also increasing RNN performance. The LSTM model was created to compen-
sate for the traditional RNN’s inability to memorize sequences of 10 or more characters.
The recurrent models are chained iterative approaches that are connected and repeated.
The LSTM model, which uses special memory cells to store information, has a chain with
an almost identical structure to that of RNN [14,35,36] (see Figure 5).
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Figure 5. Long short-term memory neural network.

3. Data Processing and Validation

The following paragraph provides definitions of the variables analyzed in this study.
The cumulative total of COVID-19 patients’ daily laboratory records is referred to as the
CCC. The data for this study were taken from the World Health Organization’s (WHO)
COVID-19 global data database. Each country’s sample runs from the first day a COVID-19
case for the first scenario was recorded in the country through to 1 September 2021. The
sample size (N) for each country can be seen in Table 1. Table 1 also shows the CCC’s
descriptive data for the four nations (LY, NG, TR, and ZA). The sample size for each
country is represented by the number of observations (N). The greater the number of
observations, the earlier the country reported the first instance of COVID-19. Accordingly,
the first COVID-19 case in the region was discovered in NG, followed by ZA, TR, and
then LY. The mean (Y) reflects the CCC’s average value, the median (Ymed) shows the
CCC’s value in the center of the sample for each country, and the standard deviation (σ)
represents the CCC’s dispersion from the mean for each country. The earliest number of
instances documented for each nation is given by the minimum (Ymin). For instance, NG’s
first COVID-19 record is 5, while LY’s is 1. The maximum value (Ymax) is the CCC as of
1 September 2021. A histogram of the instances for each country is shown in Figure 6.

Table 1. Descriptive statistics of the variables.

Y− Ymed Ymax Ymin σ N

LY 129,333.3 111,124 366,789 1 116,504.4 605
NG 104,581.5 95,934 213,464 5 72,519.22 631
TR 2,906,611 2,355,839 8,503,220 1 2,635,359 619
ZA 1,252,298 1,231,597 2,927,499 5 960,752.1 625

For the second scenario, a well-structured questionnaire was developed and sub-
divided into seven sections with questions and possible responses under subheadings.
These included questions on the demographic characteristics of students and questions to
evaluate students’ general knowledge regarding forests, forest protection, the importance
of forests, poor forest administration, the dangers of deforestation, and how individuals
and governments can take responsibility for forests. For exploratory and data-driven
analysis, the important variables were selected based on dependency analysis, in which
the following variables from the questionnaire were used: forest knowledge (FK), forest
importance to the country (FIC), priority for recreational activities (ICA), vital goal of forest
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(VGF), the government is responsible for taking care of forest problems (GRF), sources of
forest knowledge (SFK), benefit of forest protection to man and his environment (BFE),
responsibility of individuals to protect the forest in their locality (RIF), and the dangers
of cutting forest down (DCF). To understand the effect of COVID-19 on forest knowledge
and determine the most dominant parameter, a sensitivity analysis was performed and the
results are presented in Figure 7.

Figure 6. Bar plot of CCC for the four regions.

Figure 7. Box-auto correlation analysis between the variables.

The degree to which the relationship between the parameters can be expressed using a
linear function and a non-linear function is referred to as sensitivity analysis. The strength
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of the correlation is not dependent on the direction or sign. A positive coefficient indicates
that an increase in the first parameter would correspond to a rise in the second parameter.
In contrast, a negative correlation indicates an inverse relationship, in which one parameter
increases when the other parameter decreases [37,38].

Evaluation Criteria

Root mean squared error (RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), symmetric MAPE (SMAPE), and Theil inequality coefficient (TIC) were
the evaluation criteria used in this study. Additionally, the determination coefficient (R2)
and correlation coefficient (R) were used to assess goodness-of-fit, and one statistical error,
the mean squared error (MSE), was used to evaluate models of the second scenario. The
above evaluation criteria are presented in Equations (3)–(9).

RMSE =

√
∑T+h

t=T+1(ŷt − yt)
2

h
(3)

MAE =
1
h

T+h

∑
t=T+1

|ŷt − yt| (4)

MAPE =
1
h

[
T+h

∑
t=T+1

∣∣∣∣ ŷt − yt
yt

∣∣∣∣
]
× 100 (5)

SMAPE =
1
h

[
T+h

∑
t=T+1

∣∣∣∣ ŷt − yt
ŷt + yt

∣∣∣∣ × 2

]
× 100 (6)

U1 =

√
∑T+h

t=T+1(ŷt − yt)
2

h
·


√

∑T+h
t=T+1 ŷ2

t

h
+

√
∑T+h

t=T+1 y2
t

h

−1

(7)

R2 = 1−
∑N

j=1

[
(Y)obs,j − (Y)com,j

]2

∑N
j=1

[
(Y)obs,j − (Y)obs,j

]2 (8)

MSE =
1
N

N

∑
i=1

(Yobsi − Ycomi)
2 (9)

R =
∑N

i=1
(
Yobs − Yobs

)(
Ycom − Ycom

)√
∑N

i=1
(
Yobs − Yobs

)2
∑N

i=1
(
Ycom − Ycom

)2
(10)

Equations (3)–(7) include the actual value yt, the forecast value ŷt, the forecast horizon h,
and the training/testing sample T.

4. Results and Discussion

In this section, the results for both multi-regional COVID-19 modeling and the predic-
tion effect of forest knowledge during the COVID-19 pandemic are analyzed. It is worth
mentioning that, to the best of the authors’ knowledge, there is no existing published
research that employed this approach. Another motivation for the current research was to
conduct a comprehensive bibliographic review of COVID-19 using AI-based models. The
results of both analyses are presented in the section below.

4.1. Result for Various Type of ARIMA

As stated above, various ARIMA models were employed to analyze and forecast
the CCC of four different countries. Prior to modeling, pre-analysis was conducted to
determine the reliability of the data. As such, the stationarity of the data was evaluated
using formal unit root tests, i.e., augmented Dickey–Fuller (ADF) and Phillips–Perron (PP)
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tests. These tests have been developed by several studies in the literature. Table 1 presents
the results of the unit root test. From the table it can be seen that the CCC values for each
country tend to be non-stationary at normal level and become stationary at first difference,
excluding TR and ZA which underwent second differences. In addition, ADF revealed
that the CCC for TR is I (2) while that of the other countries is I (1). When contradictory
findings were found, the PP unit root test took precedence since it can detect near-unit
root processes.

ARIMA models have been employed to predict COVID-19-related parameters; for
example, Toga et al. [39] applied ARIMA and ANN to forecast COVID-19 prevalence in
Turkey. Moreover, ensemble ARIMA has not yet received appropriate attention in the
literature. For each of the countries (TR, LY, NG, and ZA), four models were evaluated and
their forecast performance was assessed. These four models were: ARIMA with maximum
likelihood (ARIMAML), ARIMA with generalized least squares (ARIMAGLS), ARIMA
with automatic routines (AUTOARIMA), and ARIMAML with ARIMAGLS (ARIMAML-
ARIMAGLS). Before model development, the dominant model selection approach was
used, which significantly affects the accuracy of any intelligent computational models.
Several input selection approaches including correlation, auto-correlation, and principal
components analysis have been reported in the literature but are associated with linearity
problems. The minimal value of forecast statistics such as RMSE, MAE, MAPE, SMAPE,
Theil U1, and Theil U2 are presented in Tables 2 and 3 and were used to assess the per-
formance of the models. This study employed two forecasting techniques: individual
building forecasting and ARIMAML and ARIMAGLS ensemble forecasting. The results
of ARIMAML and ARIMAGLS are simply averaged. The ensembled model’s output was
then analyzed and compared with the output of individual models.

Table 2. ADF and PP unit root test results.

Variables None Constant Constant and Trend None Constant Constant and Trend Decision

LY 2.676 1.594 −1.986 −2.291 *** −3.933 *** −4.527 *** I(1)
NG 1.244 −0.705 −2.225 −2.179 *** −3.058 *** −3.041 *** I(1)
TR 0.931 0.311 −2.582 −0.89 −1.865 −2.167 I(2)
ZA 0.929 −0.444 −3.166 −1.72 −2.368 −2.277 I(2)
LY 7.204 3.413 −1.797 −10.572 *** −17.217 *** −20.344 *** I(1)
NG 3.755 −0.116 −1.627 −11.264 *** −17.258 *** −17.263 *** I(1)
TR 7.839 3.865 −1.414 −0.907 −1.882 −2.143 I(2)
ZA 4.329 0.882 −2.221 −4.091 *** −4.112 *** −4.567 *** I(1)

*** signifies regrectionof null hypothesis at 1% level of significance.

The ensemble’s principal goal is to create more accurate and dependable estimates
than those produced by a single model [40]. It was also confirmed by [41–43] that the
ensemble technique has numerous advantages over the use of linear modeling methods,
including in the initial stage of model selection and in the output of already selected models
used for the ensemble. This can reduce the inconsistency in model development because
no single model suits and fits all data. The expected performance and accuracy of the
model depends on the nature, relationship between variables, uniformity, size, range, etc.
of the data, as well as the method used. Because each country’s CCC is integrated of
order one, they can be represented by ARIMA (p,1, q) processes. The combination of
autoregressive order (p) and moving average order (q) that produced the lowest Schwarz
information criteria (SIC) with white-noise mistakes was chosen. Because each country’s
CCC is I (1), the initial difference between each CCC was used before estimating. The
probable moving average order is determined using the autocorrelation function (ACF),
whereas the probable autoregressive order is determined using the partial autocorrelation
function (PACF). Figures 8 and 9 show the ACF and PACF graphs, respectively. According
to autoregression theory, typical time series data, particularly COVID-19 variables such as
CCC, may be forecasted using the lags of the same time series or processes that influence
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the output variables, as is the case in this study. If the same variable is used, the ACF and
PACF may be used to determine the optimal number of lags, whereas the cross-correlation
function (CCF) can be utilized if various variables are used.

Table 3. Evaluation results for the training sample.

Models RMSE MAE MAPE SMAPE Theil U1 Theil U2

ARIMAML 287.4491 171.1810 6.329595 4.651772 0.001302 4.456228
AUTOARIMA 266.0884 158.2471 5.097415 4.000233 0.001204 3.065781

ARIMAGLS 287.4962 170.3428 1.579800 1.613471 0.001302 0.904637
ARIMAML-
ARIMAGLS 287.4308 170.5967 3.587180 3.010201 0.001302 2.431895

ARIMAML 194.9946 107.5219 9.913560 5.122160 0.000946 4.291490
AUTOARIMA 220.0399 124.1118 1.442778 1.494742 0.001067 0.834548

ARIMAGLS 195.6538 106.9622 1.257531 1.378221 0.000949 0.900122
ARIMAML-
ARIMAGLS 195.1350 107.0657 5.410406 3.742184 0.000946 2.199975

ARIMAML 1384.8780 667.1446 9.421745 1.801850 0.000259 6.971105
AUTOARIMA 9364.0090 6847.1200 1.622860 1.533954 0.001748 0.715107

ARIMAGLS 1384.8720 666.1256 8.916807 1.775690 0.000259 6.619425
ARIMAML-
ARIMAGLS 1384.8530 666.6342 9.169276 1.788919 0.000259 6.795260

ARIMAML 1685.9570 818.2752 14.266580 3.603760 0.000768 13.075140
AUTOARIMA 6842.2840 4613.7460 1.256974 1.241767 0.003113 0.538986

ARIMAGLS 1690.7090 819.5312 1.048277 1.105426 0.000770 0.673285
ARIMAML-
ARIMAGLS 1686.6170 814.9397 7.180849 2.674733 0.000768 6.467583

Figure 8. ACF of the first difference of CCC for the four countries.

Understanding the modeling process and data division is quite crucial in any modeling
procedure; as such, the modeling forecast for the training phase is presented in Table 3.
The results of various performance evaluation matrices, such as RMSE, MAPE, and MAE,
are presented for all of the employed models. Based on these results, it can be seen that the
lowest RMSE value associated with LY, NG, TR, and ZA is for AUTOARIMA, ARIMA(ML-
GLS), ARIMA(ML-GLS), and ARIMAML, respectively. It has been reported in the literature
that, for better analysis of model accuracy, different performance indices should be included.
MAPE is one such recommended index, and MAPE values between 1–10 is recommended
for the best results. The training results indicated that almost all of the model’s performance
can be justified by considering the values of MAPE (see Figure 10). According to Figure 10,
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LY (MAPE = 1.5798), NG (MAPE = 1.2575), TR (MAPE = 1.6228), and ZA (MAPE = 1.0482).
ARIMAGLS outperformed the other models for LY, NG, and ZA in terms of MAPE values,
while AUTOARIMA was the best model for TR.

Figure 9. PACF of the first difference of CCC for the four countries.

A quantitative comparison of the results can be conducted using the testing phase
sample presented in Table 4. The testing phase represents an essential stage in any modeling
in order to validate and generalize the model. The modeling results for CCC show that
AUTOARIMA and ARIMAGLS outperformed the other models. It is also worth mentioning
that, in most situations, RMSE and Theil U1 agreed on the same model as being the best.
It is also worth noting that when other accuracy metrics (MAE, MAPE, SMAPE, and Theil)
conflict with RMSE, RMSE takes precedence. Figure 11a,b shows the forecast comparison
graphs for the training and testing samples for each nation. The line graphs showing the
actual and anticipated levels of CCC are barely distinct. This suggests that using ARIMA
to forecast the CCC is valid.

The Taylor diagrams for the training and testing samples are shown in Figure 12a,b.
The model with the largest dot had the best RMSE. ARIMAML-ARIMAGLS had the best
prediction accuracy for seven countries, ARIMAGLS for four countries, and ARIMAML for
three countries, as shown in Figure 8. Figure 9 indicates that ARIMAGLS outperforms the
other models in predicting accuracy for three countries, whereas ARIMAML outperformed
the other models for one country. Tables 3 and 4 are visually summarized in Figures 8 and 9,
respectively. The fan plots for the training and testing samples are shown in Figure 13a,b.
The RMSE of the four models are shown on the graph. The greater the model’s prediction
performance, the narrower the angle of the sector of the fan plot (see, Figure 13a,b). The
performance of four of the best-performing models described in this study was examined
in the preceding analysis. The top performing models, according to individual forecast
data, are ARIMAGLS and ARIMAML, while combining the two models produces the
best prediction accuracy. Because GLS yields inconsistent empirical fit and parameter
estimations, the ARIMAGLS model beats other models. Finally, due to the applicability
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of merging predictions, combining the ARIMAML and ARIMAGLS produces the greatest
predicted accuracy in most circumstances when compared with separate models.

Figure 10. MAPE and RMSE values for: (a) LY, (b) NG, (c) TR, and (d) ZA for both training and
testing phases.

Table 4. Evaluation results for the testing sample.

Models RMSE MAE MAPE SMAPE Theil U1 Theil U2

ARIMAML 287.4491 171.1810 6.329595 4.651772 0.001302 4.456228
AUTOARIMA 266.0884 158.2471 5.097415 4.000233 0.001204 3.065781

ARIMAGLS 287.4962 170.3428 1.579800 1.613471 0.001302 0.904637
ARIMAML-ARIMAGLS 287.4308 170.5967 3.587180 3.010201 0.001302 2.431895

ARIMAML 194.9946 107.5219 9.913560 5.122160 0.000946 4.291490
AUTOARIMA 220.0399 124.1118 1.442778 1.494742 0.001067 0.834548

ARIMAGLS 195.6538 106.9622 1.257531 1.378221 0.000949 0.900122
ARIMAML-ARIMAGLS 195.1350 107.0657 5.410406 3.742184 0.000946 2.199975

ARIMAML 1384.8780 667.1446 9.421745 1.801850 0.000259 6.971105
AUTOARIMA 9364.0090 6847.1200 1.622860 1.533954 0.001748 0.715107

ARIMAGLS 1384.8720 666.1256 8.916807 1.775690 0.000259 6.619425
ARIMAML-ARIMAGLS 1384.8530 666.6342 9.169276 1.788919 0.000259 6.795260

ARIMAML 1685.9570 818.2752 14.266580 3.603760 0.000768 13.075140
AUTOARIMA 6842.2840 4613.7460 1.256974 1.241767 0.003113 0.538986

ARIMAGLS 1690.7090 819.5312 1.048277 1.105426 0.000770 0.673285
ARIMAML-ARIMAGLS 1686.6170 814.9397 7.180849 2.674733 0.000768 6.467583
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Figure 11. Forecast comparison graph for the: (a) training, and (b) testing samples.

Figure 12. Cont.
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Figure 12. Taylor diagram for the: (a) training, and (b) testing samples.

Figure 13. Cont.
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Figure 13. Fan plot of RMSE for the: (a) training, and (b) testing samples.

4.2. Result of Deep Learning Model

For the development of the AI-based models used in the current study, simulations were
performed in MATLAB 9.3 (R2020a). Suitable model architecture of both the LSTM and RF
models was optimized and selected using trial and error. As reported in the literature [44–46],
modeling results must satisfy certain evaluation indicators. The outcomes of the simulated
models were evaluated using the most utilized performance criteria, including R2, MSE,
RMSE, and R in both the calibration (70%) and verification (30%) stages. The predicted
results were derived from M1 and M2, and the simulated quantitative assessment results
are presented in tabular form. Table 5 shows the results of the performance analysis
for RF, LSTM, and EML models. It can be seen from the results that all three AI-based
models can produce good performance accuracy for the evaluation of FK and management.
This is due to the powerful ability of non-linear AI-based models to describe complex
systems. Between the two AI-based models (RF and LSTM), SLSTM-M1 emerged as the
best combination for FK estimation with values of R2 = 0.9393, MSE = 0.0450, and R = 0.9692
in the calibration phase.

Table 5. Results and performance analysis of the models.

Calibration Phase Verification Phase

Models R2 MSE R RMSE R2 MSE R RMSE

RF-M1 0.8982 0.0705 0.9477 0.2655 0.8526 1.0205 0.9234 1.0102
RF-M2 0.9082 0.0626 0.9530 0.2502 0.8985 0.7715 0.9479 0.8784

LSTM-M1 0.9447 0.0336 0.9720 0.1833 0.9393 0.0450 0.9692 0.2121
LSTM-M2 0.8876 0.3705 0.9421 0.6087 0.8864 0.8374 0.9415 0.9151
NN-EML 0.9776 0.0305 0.9881 0.1746 0.9694 0.0374 0.9845 0.1933

Further analysis of the results demonstrated that RF-M2 served as the second-best
model, follow by RF-M1, and lastly LSTM-M1. The estimation results regarding goodness-
of-fit are presented by radar charts (see Figure 14). For the results of single models, it can be
concluded that the performance accuracy of the models follows the following order: LSTM-
M1 > RF-M2 > ARF-M1 > LSTM-M2. All models achieved good results but cannot serve
the purpose of estimation since LSTM is a deep learning model that better captures the
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non-linear relationship between the variables. Similarly, the profound advantages of deep
learning and LSTM include their capability to analyze complex and high-dimensional data
in a relatively short period with minimal human resources compared with conventional
data collection and analysis. To compare the predictive performance of this study, the R
values greater than 0.7 indicated an excellent model. According to [47], R2 values greater
than 0.8 are satisfactory for any analysis using AI-based models. To further analyze the
predictive performance of the model, point-by-point probability plots were generated
between the observed and predicted values for the best models, as depicted in Figure 15.
From the plots, it can be observed that higher agreement between the observed and
predicted values was achieved by LSTM-M1. For this reason, quantitative analysis of the
models can be performed using the determination coefficient (R2). LSTM-M1 increased
the prediction accuracy of the best RF by 4% in the calibration phase and by 2% in the
verification phase.

Figure 14. Radar chart for all of the models for R2 and R.

The data used in the second scenario were pre-analyzed using a variety of techniques
including normalization and reliability tests. The conceptual understanding of each input
parameter is critical in assessing the strength of predictive models in soft-computing analy-
sis. As a result, all of the study regions were subjected to stationery and consistency studies
utilizing Cronbach’s alpha technique and unit root test. It should be noted that the prelimi-
nary examination of a single parameter or input for any time series is extremely important
because their forecast accuracy might significantly add to the models’ improved perfor-
mance. According to Dickey et al. [22], the ADF test is essential for obtaining trustworthy
and valid results that ensure the stationarity of all variables. All of the criteria mentioned
were met by the experimental data used in this study. The findings demonstrate that the
computational modeling methodologies explored have varied levels of appropriateness
when considering the evaluation criteria. Furthermore, the aggregate findings showed that
EML was the most effective simulation in terms of performance requirements. Though it
is impossible to rank the methods according to their acquired precision, the ELM method
model had the best forecast accuracy, with a fit to the data of above 97%. The error plots in
Figure 16 present a visual comparison of the model combinations with regards to MSE. For
the total goodness-of-fit, an error plot depicts the level of agreement between the observed
and projected load. The error map clearly reveals that the ELM method model is more
accurate than the RF and LSTM models.
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Figure 15. Results of cumulative distribution function for all of the single models.

Figure 16. Error performance in term of MSE for all of the models.

The above findings are supported by the capacity of the ELM approach to handle
non-linear systems. Unlike RMSE, MSE seems to have a more natural standard measure
error and is explicit. It is a model performance measure that is commonly employed in
regression analysis. The MAE for a test set is the average of the basic values of all instances
in the verification set’s forecast errors. Table 4 also demonstrates its promise in terms of
error values. According to the literature, the lowest MSE values suggest the best results and
vice versa. The ensemble model’s efficiency can be linked to the hybrid model’s ability to
produce more promising outcomes than a single model. For both research and engineering,
it is critical to report how dependable AI-based models are.
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The overall judgement between the best single model and ensemble learning is pro-
vided using a two-dimensional Taylor diagram, as presented in Figure 17. By considering
the actual and estimated values, a Taylor diagram highlights and summarizes several
statistical indices such as R, RMSE, and standard deviation [48]. Taylor diagrams can
be found in a wide range of fields, including applied and social sciences. Surprisingly,
to the best knowledge of the researchers, this is the first study to employ this graph in FK
forecasting. In addition, this graphic can be used to compare the internal consistency of
different models. As a result, the diagram can be viewed as a collection of polar plot points.
A detailed description and discussion of the Taylor diagram can be found in [49]. In the
testing phase, the ELM approaches obtained greater goodness of fit with a value of R = 0.98,
as shown in Figure 17. These findings show that deep learning and ensemble techniques
are capable of capturing complicated non-linear patterns between load demand factors for
both training and testing.

Figure 17. Taylor graphical representations of ensemble models.

5. Conclusions

This study estimated and evaluated the forecast performance of four distinct ARIMA
models: ARIMAML, ARIMAGLS, AUTOARIMA, and ARIMAML-ARIMAGLS. The mod-
els were estimated using CCC time series data for four countries (Brazil, Turkey, Libya,
and South Africa). Two sub-samples were employed: 75% for training and 25% for testing.
For the training subsample, AUTOARIMA was found to be the best model for Libya,
ARIMAGLS for Turkey, and ARIMAML for Nigeria and South Africa. For the testing
sample, AUTOARIMA had the best predictive ability for Libya and Nigeria, while ARI-
MAML was the best for Turkey and South Africa. No evidence was found that ensembling
ARIMAML and ARIMAGLS produced the best forecast accuracy in both sub-samples.
The results of this study can serve as a reference for modeling the CCC and devising
health-related policies.

Nevertheless, for the DL results, AI-based models were developed based on sensitivity
analysis to estimate forest knowledge using RF and LSTM models. The performance criteria
were evaluated using R2, R, MSE, and RMSE. The predictive results demonstrated that
AI-based models could predict forest knowledge with less input combination. The results
further indicated that all deep learning approach models are capable and satisfactory
tools for modeling forest knowledge. Deep learning LSTM-M1 emerged as the best and
most reliable estimation model among the AI models analyzed. Although it is difficult
to rank the models by their achieved accuracies, the ELM techniques approach showed
the best relative prediction accuracy, attaining a goodness of fit greater than 97%. The
outcomes also suggested the development of AI-based models in this field. Other non-linear
models and optimization techniques should be employed, such as non-linear ensemble
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techniques (NET), gaussian process regression models (GPRM), gradient boasting (GB),
extreme learning machines (ELM), genetic algorithms (GA), emerging optimization (EO),
and kernel models (KM) to improve the estimation accuracy. It is also suggested to expand
these techniques to other geo-environmental locations across the globe. This is in line
with Areepong and Sunthornwat, [50] who concluded that future research should focus on
estimating the maximum number of visitors that can enter a country while maintaining
control of the number of COVID-19 cases. It may also be of interest to investigate the use of
both forecasting models to anticipate and assess the spread of COVID-19 in other nations.
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42. Kazienko, P.; Lughofer, E.; Trawiński, B. Hybrid and ensemble methods in machine learning J. UCS special issue. J. Univers.
Comput. Sci. 2013, 19, 457–461.

43. Abba, S.I.; Elkiran, G.; Nourani, V. Non-linear ensemble modeling for multi-step ahead prediction of treated cod in wastewater
treatment plant. In Proceedings of the International Conference on Theory and Application of Soft Computing, Computing with Words and
Perceptions; Springer: Cham, Switzerland, 2019.

44. Pham, Q.B.; Sammen, S.S.; Abba, S.I.; Mohammadi, B.; Shahid, S.; Abdulkadir, R.A. A new hybrid model based on relevance
vector machine with flower pollination algorithm for phycocyanin pigment concentration estimation. Environ. Sci. Pollut. Res.
2021, 28, 32564–32579. [CrossRef]

45. Abba, S.I.; Abdulkadir, R.A.; Sammen, S.S.; Usman, A.G.; Meshram, S.G.; Malik, A.; Shahid, S. Comparative implementa-
tion between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen
concentration. Hydrol. Sci. J. 2021, 66, 1584–1596. [CrossRef]

46. Sammen, S.S.; Ehteram, M.; Abba, S.I.; Abdulkadir, R.A.; Ahmed, A.N.; El-Shafie, A. A new soft computing model for daily
streamflow forecasting. Stoch. Environ. Res. Risk Assess. 2021, 35, 2479–2491. [CrossRef]

47. Abba, S.I.; Abdulkadir, R.A.; Sammen, S.S.; Pham, Q.B.; Lawan, A.A.; Esmaili, P.; Malik, A.; Al-Ansari, N. Integrating feature
extraction approaches with hybrid emotional neural networks for water quality index modeling. Appl. Soft Comput. 2022, 114,
108036. [CrossRef]

48. Shamshirband, S.; Esmaeilbeiki, F.; Zarehaghi, D.; Neyshabouri, M.; Samadianfard, S.; Ghorbani, M.A.; Mosavi, A.; Nabipour,
N.; Chau, K.W. Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and
multilayer perceptron for predicting soil temperature at different depths. Eng. Appl. Comput. Fluid Mech. 2020, 14, 939–953.
[CrossRef]

49. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [CrossRef]
50. Areepong, Y.; Sunthornwat, R. Forecasting modeling of the number of cumulative COVID-19 cases with deaths and recoveries

removal in Thailand. Sci. Eng. Health Stud. 2020, 15, 21020004.

http://doi.org/10.1016/j.jiph.2021.04.015
http://doi.org/10.2166/wst.2018.477
http://www.ncbi.nlm.nih.gov/pubmed/30629534
http://doi.org/10.1007/s11356-021-12792-2
http://doi.org/10.1080/02626667.2021.1937179
http://doi.org/10.1007/s00477-021-02012-1
http://doi.org/10.1016/j.asoc.2021.108036
http://doi.org/10.1080/19942060.2020.1788644
http://doi.org/10.1029/2000JD900719

	Introduction 
	Materials and Methods 
	ARIMA Model 
	Random Forest (RF) 
	Long Short-Term Memory Neural Network (LSTM) 

	Data Processing and Validation 
	Results and Discussion 
	Result for Various Type of ARIMA 
	Result of Deep Learning Model 

	Conclusions 
	References

