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Abstract: Constraint-induced movement therapy (CIMT) has been delivered in the stroke population
to improve lower-extremity functions. However, its efficacy on prime components of functional
ambulation, such as gait speed, balance, and cardiovascular outcomes, is ambiguous. The present
review aims to delineate the effect of various lower-extremity CIMT (LECIMT) protocols on gait
speed, balance, and cardiovascular outcomes. Material and methods: The databases used to collect
relevant articles were EBSCO, PubMed, PEDro, Science Direct, Scopus, MEDLINE, CINAHL, and Web
of Science. For this analysis, clinical trials involving stroke populations in different stages of recovery,
>18 years old, and treated with LECIMT were considered. Only ten studies were included in this
review, as they fulfilled the inclusion criteria. The effect of CIMT on gait speed and balance outcomes
was accomplished using a random or fixed-effect model. CIMT, when compared to controlled
interventions, showed superior or similar effects. The effect of LECIMT on gait speed and balance
were non-significant, with mean differences (SMDs) of 0.13 and 4.94 and at 95% confidence intervals
(Cis) of (−0.18–0.44) and (−2.48–12.37), respectively. In this meta-analysis, we observed that despite
the fact that several trials claimed the efficacy of LECIMT in improving lower-extremity functions,
gait speed and balance did not demonstrate a significant effect size favoring LECIMT. Therefore,
CIMT treatment protocols should consider the patient’s functional requirements, cardinal principles
of CIMT, and cardiorespiratory parameters.

Keywords: lower-extremity CIMT; stroke; gait speed; balance; cardiovascular; functional ambulation

1. Introduction

Stroke is the second leading cause of death, and its rising incidence, mortality, and
disability impose a significant global burden [1]. Stroke is pronounced in low- and middle-
income countries, diverse age groups, and gender [2]. Six and twelve months following
a stroke, the mortality and disability rates increase dramatically (55.9% and 61.0%, re-
spectively) [3]. The number of new cases, the prevalence of functional disability, and
the mortality rate associated with stroke indicate the need for improved rehabilitation
techniques that reduce the time to recovery [3].

Home- and community-based ambulation are important rehabilitation goals for post-
stroke patients [3–5]. Inter-limb coordination, proprioception, muscle strength, static and
functional balance, gait speed, stance phase of the non-paretic leg, and cardiovascular fitness
showed a strong relationship with walking ability among post-stroke participants [6–10]. The
gait parameters of post-stroke patients are affected by sensorimotor impairments, muscle
paresis, impaired proprioception, and motor control [11–15]. Among the gait parameters,
gait speed has shown a prominent association with other spatiotemporal, kinematic, and
kinetic gait variables [15].
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Physical inactivity leads to vascular impairments and reduction in cardiovascular fit-
ness among post-stroke subjects, which, if not improved, results in recurrent strokes [16–18].
Following a stroke, cardiorespiratory fitness and the vascular system are severely com-
promised [18–21]. The neurological impairments and loss in cardiorespiratory endurance
and blood supply to the muscles lead to physical intolerance and higher energy expen-
diture [17,22], while the autonomic dysregulation that follows a stroke leads to aberrant
blood pressure and uncontrolled heart rate [23]. The disparities observed in the motor
recovery process, balance, muscle strength, and confidence levels are the factors for a wide
range of gait speeds (0.76–1.09 m/s) in people who have suffered from a stroke [24,25].

In the first month following a stroke, muscle weakness and incoordination determine
gait functions, whereas cardiorespiratory endurance substantially influences gait results
after one month [26]. Determinants of walking ability are usually outlined by factors
such as cardiorespiratory endurance, mobility, and balance. The parameters for walking
ability govern goal achievement and community participation in chronic stroke patients.
Moreover, a reasonable relationship exists between cardiovascular endurance, walking
parameters, and balance with the distinguishable enhancement of walking ability in post-
stroke subjects [6,8,26–28].

Constraint-induced movement therapy (CIMT) proved to be an effective rehabilitation
tool in remedying several impairments encountered by the stroke population [29–33]. The
previous success of CIMT as a treatment strategy for upper-limb rehabilitation has inspired
researchers to further investigate its utility in lower-limb rehabilitation among the stroke
population [34,35]. The application of constraint to the unaffected limb enhanced the use of
the affected limb while performing functional activities significantly but failed in achieving
skillful activities [36]. Restraining the unaffected extremity and intensive training of the
affected extremity in various functional-oriented tasks emphasizing repeated practice and
task shaping improved both paretic limb participation and the ability to perform daily
activities [37]. The enhancement and commitment of affected limb participation in day-to-
day functional activities attained through the continuous change in the behavior of internal
properties of a task are called a “transfer package” [38]. The efficient application and
modification of restraint to the unaffected extremity, type of functional task and its practice,
and shaping and behavior of internal properties of the task will yield purposeful and
meaningful results. The shaping technique comprises identifying the task and providing
ideal feedback to attain the task, followed by the gradual increase in the task’s difficulty.
Restraint of the non-paretic extremity used in unilateral motor deficits cannot be applied
to the lower extremities because humans are predominantly bipedal. Such restraint may
affect gait symmetry, speed, and inter-limb coordination [39,40]. The shift in the paradigm
from learned non-use to learned misuse has removed the barriers to applying CIMT
in bilateral motor deficits and lower-limb training [37,40]. The use-dependent cortical
reorganization promoted through emphasis and repetitive practice of the paretic limb
discouraged non-paretic restraint in CIMT training [41]. Thus, intensive exercise with
more repetitions, task shaping, and transfer package remained an essential component of
lower-extremity CIMT (LECIMT) training. Previous reviews on gait training approaches
in improving independent ambulation recommended intensive and repeated practice,
individually tailored functional tasks, task shaping, and behavioral strategies. Expert panel
recommendations and neuroimaging evidence suggest a rationale for the applicability of
LECIMT in post-stroke subjects [42–44]. However, the flexible nature of CIMT allowed
researchers to incorporate all or some of the components into LECIMT. Recent studies on
LECIMT reported significant improvements in gait parameters and balance and traceable
effects on functional mobility, ambulation, motor functions, and cardiovascular parameters.

Even though CIMT is a suitable treatment approach for improving upper extremity
functions, its effects on the lower extremities are debatable due to ambiguity in applying
integral components of CIMT and a lack of well-designed protocols. Therefore, the current
review and meta-analysis were conducted to substantiate and create evidence of various
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LECIMT protocols and their effects on gait speed, balance, and cardiovascular parameters,
which were prime elements contributing to functional ambulation.

2. Materials and Methods
2.1. Selection Criteria of Studies for This Review

RCTs that compared lower-limb training utilizing the principles of CIMT with conventional
therapy or other neurorehabilitation techniques were considered for this review. Randomized
controlled trials (RCTs), which included first-time or recurrent, hemorrhagic or ischemic post-
stroke subjects aged above 18 years, were considered. Studies that measured and analyzed
the gait speed, balance, and cardiovascular parameters were primarily included in the review
(Protocol registered under Prospero database with registration no: CRD42021260203).

2.2. Literature Search and Study Selection

Two independent reviewers (DRS and RSR) searched for pertinent English-language
articles published between 2000 and 2022. In the initial phase, one reviewer (KG) reviewed
recognized titles and references for their relevance. Later, studies were screened based on
the selection criteria for their relevance. Finally, the expert reviewer (PKK) resolved the
differences in the studies.

We searched the databases PEDro, Web of Science, PubMed, Scopus, EBSCO, MED-
LINE, CINHAL, and Science Direct for relevant publications. The MeSH keywords in-
cluded: stroke (chronic, subacute, acute), CIMT, forced use, restricted limb or extremity
cerebrovascular accidents, hemiparesis, hemiplegia, gait speed, cardiovascular, balance,
blood pressure, and percentage of heart rate maximum. Table 1 provides a summary of the
search strategy’s specifics.

Table 1. Search strategy utilized in the study.

Databases
PICO Format Search with Bullion Keywords (And) (OR)

Patient Intervention Comparison Outcome

EBSCO, PubMed,
PEDro, Science
Direct, Scopus,
MEDLINE,
CINAHL,
and Web of
Science

Stroke
OR
Hemiplegia
OR
Hemiparesis
OR
Cerebrovascular
accident

CIMT
OR
Constraint Induced
Movement therapy
OR
Restricted
Limb/Extremity
OR Forced use

Proprioceptive Neuromuscular
Facilitation OR PNF
OR
Neuro-Developmental Treatment
R NDT
OR
Conventional Physical Therapy
OR CPT OR Physiotherapy OR
Exercise OR
Or traditional rehabilitation
OR
Standard Physical Therapy

Gait speed OR Gait
velocity OR Balance OR
Center of Gravity
OR Base of Support
OR Center of Pressure
OR Cardiovascular
parameters OR Blood
pressure OR percentage
of heart rate maximum.

2.3. Data Extraction

Two independent reviewers (SD and APG) were involved in the process of collecting
relevant data from the included studies. The third reviewer (PKK) was invited to sort
out discrepancies between the two reviewers in authenticating the data. The information
extracted from the studies was based on 1. patients’ features, 2. PEDro score, 3. sample
size, 4. eligibility standards, 5. outcome dimensions, and 6. constraint applications.

2.4. Evaluation of Methodological Quality and Level of Evidence

PEDro scale, which consists of 10 domains, was used to assess the methodological
quality of included studies. RCTs with a score of 9–10 on the PEDro scale were assigned
as “excellent”, 6–8 as “good”, 4–5 as “fair”, and less than four as “poor” methodological
quality. Two independent assessors (JST and SD) used the PEDro scoring to evaluate the
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methodological quality of the studies. The third assessor was contacted to resolve the
disparity in assigning the score.

Further to the criteria mentioned above, high-quality RCTs with PEDro≥ 6 are considered
as level 1 evidence and have been divided into two subcategories, level 1a (>1 study with
PEDro ≥ 6) and level 1b (1 study with PEDro ≥ 6). Low-quality RCTs with PEDro < 6
designated as Level 2 evidence. This categorization was imbibed from Sackett et al.’s criteria
outlined by Dixit and Gular [45]. Outcome measures in the current study were categorized as
levels 1a, 1b, and 2 based on the number of quality trials supporting it.

2.5. Risk of Bias Assessment

Review manager 5.4.1 software (London, UK) was utilized to evaluate and synthesize
the risk of bias among included studies. Two reviewers (KG and SD) independently
rated individual studies on the following domains: 1. allocation concealment, 2. random
sequence generation, 3. blinding of participants, 4. blinding of outcome data, 5. incomplete
outcome data, 6. selective reporting, 7. discrepancy of intervention between the group,
and 8. other biases. Usually, descriptors such as high risk, low risk, and unclear were used
to report the domains. An expert reviewer (RSR) was invited to resolve the variance of
opinion between the reviewers in designating the descriptors.

2.6. Data Synthesis

Meta-analysis was performed to determine the effect size of CIMT on gait speed,
balance, and cardiovascular outcome measures, which were observed in the included
studies. An outcome measure assessed in 2 or more trials was considered for meta-analysis.
When descriptive values were reported as the median and range in the included studies, the
mean and standard deviations were calculated using the conversion formulae. If data were
not reported, the relevant authors were contacted through email and requested to provide
the information. Review manager 5.4.1 software was used to conduct meta-analysis.

The heterogeneity analysis (I2 statistics) was performed. Statistics were generated for
the treatment effects on outcome measures if we found no clinical heterogeneity regarding
the included subjects’ characteristics. The present meta-analysis considered I2 statistics
with more than 50% value as considerable heterogeneity [46]. A random-effects model was
used for analysis to obtain results. A pooled standardized mean difference (SMD) was
calculated for outcome measures.

3. Results
3.1. Search Results

Ten studies were included in the review process. Details regarding the process of
database searches and exclusion and inclusion of studies are provided in Figure 1.
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Figure 1. Flowchart depicting the process of synthesis of included studies for this review. 
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Figure 1. Flowchart depicting the process of synthesis of included studies for this review.

3.2. Characteristics of Included Studies

Among the ten studies, 329 subjects participated in the trials (212 males and 117 females).
The stroke controlled-trial population consisted of middle-aged and elderly adults aged
40 to 70 years. All participants involved in the trials suffered either ischemic or hemorrhagic
strokes. Considering the mean and standard deviation for the stroke duration throughout
the analyzed studies, one study included subacute strokes [47], six studies included suba-
cute/chronic [48–53], and three studies included chronic stroke population [54–56] ranging
from 1.5 to 6.5 years.

All included RCTs compared LECIMT with conventional physiotherapy or neurore-
habilitation techniques. Six studies compared LECIMT with conventional physiother-
apy [48,50,51,53–55], one study compared LECIMT with neuro-developmental therapy
(NDT) [42], and three studies compared conventional physiotherapy as an adjunct to LEC-
IMT with conventional physiotherapy [50,52,56,57]. The type of constraint utilized in the
controlled trials was either restraint of a non-paretic lower extremity or augmentation of
a paretic lower extremity. Restraining of a non-paretic lower extremity was provided by
applying an ankle mass in five studies [50,51,53,54], immobilization of the knee in addition
to a shoe insert in one study [56], and a negative kinematic restraint applied to a non-paretic
lower extremity induced by robotic-assisted gait training (RAGT) in one study [55]. The
mode of augmentation delivered to a paretic lower extremity among three clinical trials
was diverse, with a compelling bodyweight shift to the paretic side (CBWS) [56], auditory
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feedback using a cane on the unaffected side [52], and enhancing the practice of the affected
lower limb in training sessions and daily activities [58]. The total duration of constraint
application was 20 min in two studies, 4.5 h in four studies, 90% of waking hours in one
study, and applying while performing daily living activities in another study.

The duration of intervention in the clinical trials ranged from 20 min to 55 h. Two clini-
cal trials observed the immediate effects of single-session LECIMT intervention
(20 min) [54,55]. However, in seven studies, the participants were intervened for less
than 20 h, and in three studies, the intervention was delivered for more than 20 h. A
diverse duration of intervention was observed among the studies with the single session
to 32 sessions, and each session ranged from 20 min to 2 h 45 min per session. Table 2
summarizes the details of the included subjects, intervention, and outcomes.
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Table 2. Characteristics of studies on lower-extremity constraint-induced movement therapy (LECIMT).

Author/Year Age Chronicity Intervention Outcome Measures Inferences

Experimental Control Duration

Aruin AS et al., 2012 57.7 ± 11.9 Chronic

A shoe insert is provided
on the unaffected side to

shift body weight onto the
affected side to promote

muscle strength and
weight-bearing capability.

The treatment
encompasses the

promotion of
weight-bearing towards

the affected side to
promote balance and

muscle strength.

60 min per session, one
session per week, six
sessions in total, 6 h.

Symmetrical weight
bearing, gait speed (m/s),

BBS, Fugl-Meyer for
lower extremity.

Post and follow-up retention were
observed in the experimental group for
symmetrical weight bearing, gait speed,

and BBS in the experimental group.

Bonnyaud C et al., 2013 50.03 ± 13.1 Chronic

Treadmill training with
ankle mass

on non-paretic
lower extremity.

Treadmill training. 20 min, single session.

Cadence (steps/min), step
length (cm), peak hip and

knee flexion and
dorsiflexion, vertical GRF
(N/Kg), peak propulsion

(N/Kg), peak
breaking (N/Kg)
gait speed (m/s).

The experimental and control group
showed similar effects for

gait variables.

Bonnyaud C et al., 2014 50.6 5 ± 11.65 Chronic

Asymmetrical gait
training group: RAGT

providing negative
kinematic restraint

applied to non-paretic
lower extremity.

Symmetrical RAGT
gait-training group. 20 min, single session.

Symmetry ratio, stance
time, double support time,
static and dynamic GRF.

Peak knee flexion range was improved
in the asymmetrical robotic raining

group, and other gait variables
improved equally among symmetrical

and asymmetrical RAGT groups.

Jung K et al., 2015 56.35 ± 14.1 Subacute/chronic

Auditory feedback
provided while walking

with a cane in addition to
standard therapy.

Walking with a cane in
addition to

standard therapy.

Gait training: 5 days per
week for four weeks, 30

min per session.
Standard therapy:

Five days per week for
four weeks, 30 min

per session.

Gluteus medius and
vastus medialis oblique
muscle activity, single
support phase of the
affected side (% GC)

vertical peak force of the
cane (% BW) and gait

speed (m/s).

The experimental group showed
significant improvement in muscle

activation and gait speed.
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Table 2. Cont.

Author/Year Age Chronicity Intervention Outcome Measures Inferences

Experimental Control Duration

Ribeiro T et al.,
2017 57.75 ± 3.75 Subacute/chronic

Gait training on a treadmill,
applying weight on the

unaffected side.
Gait training on a treadmill.

The nine training
sessions, 30 min, two
consecutive weeks.

Step length, hip, knee and
ankle ROM, and
gait speed(m/s).

Spatio-temporal and kinematic gait
parameters improved in both

groups equally.

e Silva EMG de S
et al., 2017 57.75 ± 3.75 Subacute/chronic

Gait training on a treadmill,
applying weight on the

unaffected side.
Gait training on a treadmill.

The nine training
sessions, 30 min, two
consecutive weeks.

BBS, stride time(s), TUG,
symmetry ratio, stride

width(m), turn
speed(m/s), and
stride length(m).

Spatio-temporal gait parameters
balance and functional mobility

improved in both groups equally.

Candan SA et al.,
2017 56.4 ± 13.45 Subacute/chronic

m-CIMT includes intensive
practice, restrain of

non-paretic lower extremity
and transfer package.

NDT program.
120 min per session, five

sessions per week for
two weeks.

BBS, step length ratio,
cadence (steps/min),

postural symmetry FAC,
and gait speed.

The m-CIMT group showed significant
improvements on all variables when

compared to the NDT group.

Ribeiro T et al.,
2017 57.75 ± 3.75 Subacute/chronic

Gait training on a treadmill,
applying weight on the

unaffected side.
Gait training on a treadmill.

30 min per session, nine
training sessions for

two consecutive weeks.

SPB (mmHg), DPB
(mmHg), % of HR max,

distance covered (m),
gait speed (m/s).

Kinetic gait parameters improved in
both groups equally. Restraint of a
non-paretic limb did not show any

effect. No changes have been observed
in cardiovascular parameters between

pre and post sessions.

Ribeiro T et al.,
2020 57.75 ± 3.75 Subacute/chronic

Gait training on a treadmill,
applying weight on the

unaffected side.
Gait training on a treadmill.

The nine sessions, 30
min, two

consecutive weeks.

Stance time(s), static and
dynamic (GRF), double

support time (s),
symmetrical weight

bearing, and
symmetry ratio.

The experimental and control group
showed similar effects for

gait variables.

Notes: BBS: Berg balance scale; (m/s): (meters/second); (m): (meters); (cm): centimeters, GRF: ground reaction force; (N/Kg): (newtons/kilogram); (% GC): percentage of gait cycle;
(% BW): percentage of body weight; ROM: range of motion; TUG: time up and go test; FAC: functional ambulation category; SPB: systolic blood pressure; DPB: diastolic blood pressure;
% of HR max: percentage of heart rate maximum; RAGT: robotic-assisted gait training; NDT: neuro-developmental therapy; m-CIMT: modified constraint-induced movement therapy.
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3.3. Outcome Measures

Gait speed was pronouncedly observed in eight studies; compared to the control group,
gait speed in the experimental group improved significantly in four trials [52,56,58,59]
and showed similar improvements in four trials [48,50,54,55]. Berg balance scale in the
experimental group showed marked improvements in two studies [56,59] and similar
effects as a control group in one study [53]. Cardiovascular parameters, blood pressure,
and percentage of heart rate maximum were reported in one study with the CIMT group
showing no changes between pre- and post-sessions [50].

3.4. Methodological Quality and Level of Evidence

Among the comprised studies, three studies scored four [55,56,59], two studies scored
five [47,50], one study scored seven [52], and three studies scored eight [50,51,53] on the
Pedro scoring system. Therefore, based on the assessment, five studies were rated as fair,
and five were rated as good. Details of the Pedro scores attained by the comprised studies
are provided in Table 3. The gait speed and balance are supported by level 1b evidence,
whereas cardiovascular outcomes with level two evidence. The level of evidence LECIMT
on outcomes is summarized in Table 4.

Table 3. Quality assessment for randomized control trials (RCTs) using Physiotherapy Evidence
Database (PEDro) scale.

Study ID Eligibility
Criteria

Random
Alloca-

tion

Concealed
Alloca-

tion

Baseline
Compa-
rability

Blinding
of Partic-

ipants

Blinding
of Thera-

pist

Blinding
of

Assessor

Adequate
Follow-

Up
(>85%)

Intention
to Treat

Between-
Group

Compar-
ison

Point
Estimates

and
Variability

Pedro
Score
(10)

Aruin AS
et al., 2012 Y Y N Y N N N × N Y Y 4

Bonnyaud
C et al.,

2013
N Y N Y N N N N N Y Y 4

Bonnyaud
C et al.,

2014
N Y N Y N N N N N Y Y 4

Jung K
et al., 2015 Y Y Y Y N N Y Y N Y Y 7

Zhu Y
et al., 2016 Y Y N Y N N Y N N Y Y 5

Ribeiro T
et al., 2017 Y Y Y Y N N Y Y Y Y Y 8

e Silva
EMG de S
et al., 2017

Y Y Y Y N N Y Y Y Y Y 8

Candan SA
et al., 2017 Y Y N Y N N Y Y N Y Y 6

Ribeiro T
et al., 2017 N Y N Y N N N Y N Y Y 5

Ribeiro T
et al., 2020 Y Y Y Y N N Y Y Y Y Y 8

Notes: “Y”: yes; “N”: no.

Table 4. Level of evidence for outcome measures included in the review.

Outcome Measures Level of Evidence Quality of the Studies

Gait parameters Gait speed Level 1b Good

Cardiovascular parameters • SPB (mmHg), DPB (mmHg), % of HR max Level 2 Fair

Balance • BBS and Postural symmetry Level 1b Good

Notes: BBS: Berg balance scale; SPB: systolic blood pressure; DPB: diastolic blood pressure; % of HR max:
percentage of heart rate maximum.

The scores of the risk-of-bias assessment revealed that 50% of studies showed a high
risk for concealed allocation and detection bias. In total, 75% of studies suffered from
attrition bias and 100% of studies from participant bias. The included studies scored low
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risk for reporting bias and treatment imbalance. Details of the risk-of-bias assessment are
given in Figure 2.
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3.5. Quantitative Synthesis

Due to their single session, two of the ten included clinical trials were excluded from
the analysis. A meta-analysis was performed for gait speed and balance because these
factors were observed in six and three RCT studies, respectively.

The CIMT group could not display a significant difference in gait speed compared to
the control groups; the standard mean difference (SMD) was 0.13 at a 95% CI = −0.18–0.44,
p = 0.42, with heterogeneity among the studies of I2 = 4% at p = 0.39. Furthermore, on
post-follow-up, the CIMT group was unable to display a significant difference in gait speed
when compared to the control groups (SMD = 0.32 at 95% CI = −0.21–0.85, p = 0.24) with
the heterogeneity among the studies being I2 = 0% at p = 0.99 (Figure 3).
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The meta-analysis results for balance in the post-treatment CIMT group were unable
to display a significant difference in balance when compared to the control groups; the SMD
was 4.94 at 95% CI = −2.48–12.67, p = 0.19, with substantial heterogeneity among the studies
(I2 = 92% at p < 0.001). In addition, in studies reporting follow-up of treatment sessions,
the CIMT group was unable to display a significant difference in balance when compared
to the control groups (SMD = 3.84 at 95% CI = −2.33–10.01, p = 0.22); the heterogeneity
among the studies was I2 = 88% at p = 0.004 (Figure 4).
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4. Discussion

This review discusses the qualitative and quantitative effects of LECIMT on the numer-
ous parameters that determine functional ambulation. The current review is unique com-
pared to previous reviews because it primarily observed gait and balance cardiopulmonary
parameters exclusively among RCTs. The gait outcome measures were extensively reported
in seven studies [50–52,54–56,58,59], followed by balance in four studies [53,56,58,59], car-
diovascular fitness [50], functional mobility [53], functional ambulation [59], and motor
functions [52]. In two trials, LECIMT showed superior effects for outcome measures
when compared to its respective control group [58,59]. Eight studies exhibited an im-
provement in post and follow-up sessions similar to the control group for all outcome
measures [48,51,52,54–56], except for cardiovascular parameters, where there were no clear
changes from pre- to post-sessions [50]. Similar findings in earlier reviews support the pos-
itive effects of LECIMT on gait speed, balance, functional mobility, functional ambulation,
and motor functions [60]. However, compared to the control group, LECIMT protocols
exhibited ineffectiveness in improving the speed of walking and functional balance in the
present meta-analysis.

We found equivalent or better results in the experimental groups, including all or some
of the core principles (intensive practice with repetitions, shaping, and transfer package) of
CIMT. The beneficial effects of restraining a non-paretic upper limb in ULCIMT are due to
the opportunity of engaging a paretic limb independently in functional task practice. In
contrast, lower-extremity functions are typically bipedal, resulting in the paretic limb being
used forcibly during LECIMT. This issue may explain why there were similar influences on
the outcomes of the included studies regardless of the application of constraints.

Even though we expect the neuroplastic changes within six months following a stroke
to enhance functional recovery [61], post-six months, functional improvements are not
impossible [62]. Moreover, after six months of post-stroke intense practice simulating
practical tasks, functional improvements are inevitable in stroke patients [42,63]. However,
we observed that many studies did not include the core principles of CIMT, including
shaping, hence emphasizing the progressive modifications among the treatment parameters,
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such as number, type, and complexity of the tasks [64–66]. Typically, therapists withhold
treatment training due to a plateau in functional improvements in chronic stroke patients;
however, with CIMT treatment, strategies including repetitive high-intensity training could
produce neuroplasticity and functional improvements even after reaching a plateau in their
improvements [67–70]. Many studies designed to maintain the same level of task training
without progressing to the next level of challenge would have failed to achieve any better
results than the conventional practice.

Lower-extremity motor recovery is more complex and delayed in stroke populations.
Community ambulation is an integral component in improving quality of life (QOL),
for which therapists require gait training, including multi-tasking, obstacle training, and
training on different surfaces rather than simple task-specific training [42,63]. Some studies
showed further improvements through LECIMT by emphasizing that stroke patients
should perform multiple functional tasks at home and by promoting social support, self-
monitoring, and motivation for better adherence as a part of a “transfer package” [56,59].

The predictable walking ability, functional capacity, and QOL of stroke patients are
strongly associated with cardiovascular efficiency [6,71,72]. Variations in blood pressure
are an essential indicator of the possibility of hypertension in stroke, cardiovascular disease,
high risk of recurrent stroke, renal failure, and all-cause mortality [73]. Hence, blood
pressure variability should be used in clinical trials to evaluate the efficacy of treatment
against cardiovascular-related mortality in stroke [73].

Promoting low-to-moderate physical activity is essential in stroke risk management.
Moreover, aerobic exercise regimes increase the production of new blood vessels, nerve
cells, and synaptic connections [74,75]. In the initial phases of the stroke, muscle strength
and balance play a key role in determining functional ambulation. In later stages, cardio-
vascular capacity plays a significant role along these factors [23]. Despite being an essential
component in stroke recovery, most studies included in the analysis surprisingly missed it
as an outcome measure.

In this review, most studies preferred treadmills for gait training, improving cardio-
vascular capability. However, most studies missed setting the target level of intensity for
cardiovascular conditioning and its progression, which is a crucial factor in improving
cardiovascular fitness [76–79].

The gait speed and balance meta-analysis did not show any significant effect size.
The type of gait training prescribed in experimental and control groups, heterogeneity
in the restraint used, unequal treatment durations, small sample size, chronicity of the
stroke, a smaller number of studies, and low methodological quality were to be credited
for insignificant differences between the groups.

CIMT demands highly specific training for its efficient usage in clinical practice. However,
therapists require expertise in identifying individuals’ functional needs, determining and
framing the functionally related tasks for practice, setting targets, progressing the intensity,
monitoring improvements, and applying CIMT principles. We suggest that the in-expertise in
the application of CIMT might contribute to similar improvements in both groups [42].

In some of the studies, many authors did not demonstrate improvements due to
inefficient usage of the principles of CIMT, such as transfer package and shaping, lack
of feedback, absence of functional task training, and not progressively increasing task
complexity. Along with this involvement of various stroke populations with multiple
phases and severities of stroke, variability in treatment durations, the intensity of training,
and the type of tasks might be the reasons for equal effects in their counterparts.

The included RCTs could have been improved by providing more appropriate sample
sizes and homogeneity in their intervention plans. In addition, most RCTs did not include
various important outcome measures, such as QOL, functional mobility, and cardiovascular
parameters. Due to the scarcity of RCTs, we included some RCTs with low methodological
quality and with a single session of training. Moreover, further meta-analysis for other
gait parameters, mobility and balance variables of lower-limb-related functions, and QOL
could be warranted if sufficient RCTs are available.
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5. Conclusions

In this meta-analysis, we observed that despite the fact that several trials claimed the
efficacy of LECIMT in improving lower-extremity functions, gait speed and balance did
not demonstrate a significant effect size favoring LECIMT. Moreover, forthcoming CIMT
treatment protocols should consider the functional requirements of stroke subjects and the
appropriate application of all its principles.
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