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Abstract: The literature on probabilistic hazard and risk assessment shows a rich and wide variety of
modeling strategies tailored to specific perils. On one hand, catastrophe (CAT) modeling, a recent
professional and scientific discipline, provides a general structure for the quantification of natural
(e.g., geological, hydrological, meteorological) and man-made (e.g., terrorist, cyber) catastrophes. On
the other hand, peril characteristics and related processes have yet to be categorized and harmonized
to enable adequate comparison, limit silo effects, and simplify the implementation of emerging
risks. We reviewed the literature for more than 20 perils from the natural, technological, and socio-
economic systems to categorize them by following the CAT modeling hazard pipeline: (1) event
source→ (2) size distribution→ (3) intensity footprint. We defined the following categorizations,
which are applicable to any type of peril, specifically: (1) point/line/area/track/diffuse source,
(2) discrete event/continuous flow, and (3) spatial diffusion (static)/threshold (passive)/sustained
propagation (dynamic). We then harmonized the various hazard processes using energy as the
common metric, noting that the hazard pipeline’s underlying physical process consists of some energy
being transferred from an energy stock (the source), via an event, to the environment (the footprint).

Keywords: multi-hazard; standardization; power-law; extreme value; analytical expression; cellular
automaton; agent-based model; energy metric

1. Introduction

Catastrophe (CAT) modeling has developed in the past 40 years from pilot applica-
tions [1] to the standard that it is today, used by insurers and reinsurers, public agencies,
and corporations [2–4]. The process is a computational pipeline (Figure 1) where a mapping
is performed between hazard intensity I(x, y) and loss L(x, y) via a vulnerability function
fD. It is defined as

L = A· fD(I, θA), (1)

where A is the exposed asset value, θA the asset exposure characteristics, and D = fD(I, θA)
the damage level, such as the mean damage ratio (MDR). Equation (1) represents the Risk
Triangle with L depending on the following three elements: exposure A, vulnerability
fD, and hazard I [5]. For a given event i, losses are aggregated for all the geographical
locations of coordinates (x, y) impacted by the event, with Li = ∑x ∑y L(x, y) the total event
loss. This mapping is repeated for each event for a specific region and peril, typically an
earthquake, a storm, or a flood. Considering a set of n stochastic events yields the event loss
table (ELT) that lists the event identifier i, its rate λi, and its loss Li. Risk metrics can then be
computed from the ELT using various actuarial methods for portfolio analysis, including
the average annual loss (AAL) and exceedance probability (EP) curves [2,4]. At each step
of the process, uncertainties can be implemented via various statistical distributions. Site
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effects and other correcting factors can also be added at any location (x, y). The Monte
Carlo method can also be used to simulate a year loss table (YLT) which provides more
flexibility in the treatment of uncertainties, the aggregation of losses, and the inclusion of
processes beyond the homogeneous Poisson process (e.g., clustering [6], seasonality [7],
cascading effects and other loss amplifying factors [8]). For the interested reader, more
details can be found in [4].
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The probabilistic risk assessment part is standardizable across different perils since
a common damage metric can consistently be used (e.g., the MDR). Moreover, vulner-
ability functions could, in theory, be developed following similar engineering methods
independently of the hazard stressor type [9]. It is only the probabilistic hazard assessment
component that remains peril-specific and requires expert knowledge—for example in
seismology, meteorology, or hydrology. Hence, the only heterogeneous, silo-type, parts of
the CAT modeling pipeline are all the steps leading to the assessment of the hazard intensity
footprint I and of its rate λ. While the most common perils in CAT models [10–12] remain
earthquakes [13,14], tropical and extratropical cyclones [15,16], and floods [17,18], others
have been progressively added, such as convective storms with hail and tornados [19,20],
cyber-attacks [21,22], epidemics [23,24], terrorist attacks [25,26], and wildfires [27]. Sec-
ondary perils, also included in some CAT models, include fire-following earthquakes [28],
storm surges [29], and business interruption [30]. Other perils, primary or secondary, also
recently considered in the CAT modeling framework include landslides, tsunamis, and
volcanic eruptions [4,12]. Others have yet to be fully integrated in the CAT modeling
paradigm, such as heatwaves [31], crop failures [32], and asteroid impacts [33,34]. Social
unrest and war, to only cite a few additional perils, have yet to be implemented to the best
of the author’s knowledge, although computational methods are already available [35,36].
A peril is often not implemented if not yet demonstrated to be insurable, which is most
commonly due to a lack of data or models to assess risk and set premiums [26]. It has
also been argued that some man-made risks are not calculable [37] or simply too costly
to insure.

For each peril considered, a different set of terms, concepts, and models is employed.
This hampers comparisons and makes the implementation of any new peril in the CAT
modeling framework a challenge. To improve comparability and find equivalences in
physically different hazard processes, this article reviews the different steps involved in
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probabilistic hazard assessment for more than 20 perils and categorizes them in terms
of event source (Section 2.2), event size distribution (Section 2.3), and hazard intensity
footprint (Section 2.4). Finally, the hazard process is harmonized in terms of energy transfer
since it is applicable to any peril (Section 3). This review serves several purposes. Peda-
gogical and encyclopedic in nature, it first illustrates the richness of the space of potential
hazards faced by society. Second, by treating and quantifying all perils and their hazards
in a common way, it provides the basic knowledge needed to develop CAT modeling
as an independent scientific discipline. Finally, this review can be viewed as a prelimi-
nary step to developing multi-risk models that would consider all the interconnections
between the natural, technological, and socio-economic systems, within the context of CAT
accumulation risk.

2. Review of Hazard Modeling Parameterization per Peril

We reviewed the literature on CAT modeling, as well as other works which can provide
inputs to CAT models. We attempted to cover as many perils as possible for the three
hazard steps (Sections 2.2–2.4). Note that we distinguish peril, a potential cause of damage,
from hazard, the danger arising from a peril [4]. In other words, a peril can be an earthquake,
a storm, or an industrial explosion, while their matching hazards (in terms of intensity) are
ground shaking, strong wind, and blast overpressure, respectively. The term event then
represents one instance from a given peril (one earthquake, one storm, etc.). To make this
review tractable, we only consider first-order processes and mention seminal studies and
reviews for the reader to explore each peril in more detail. For each step of the probabilistic
hazard assessment procedure, peril characteristics are listed in alphabetical order. Some
perils can display different hazardous phenomena, in which case each phenomenon is
associated to a sub-peril. Not all perils are described systematically in Sections 2.2–2.4. Note
that the proposed categorization is aimed at facilitating peril comparison, not at forcing
them into strict boxes. For convenience, Table A1 of Appendix A provides a list of the
variables and parameters mentioned in this review.

2.1. Data

To illustrate some of the possible models (mainly for source-type description and size
distribution parameterization—see Sections 2.2 and 2.3), the following databases were used:

• Asteroid impacts (fireballs): The Fireballs Reported by US Government Sensors [38]
dataset for the period 15 April 1988–21 August 2022, available online: https://cneos.
jpl.nasa.gov/fireballs/ (accessed on 31 August 2022).

• Blackouts: Dataset of numbers of customers affected in electrical blackouts in the
United States between 1984 and 2002 [39], available online: https://aaronclauset.
github.io/powerlaws/data/blackouts.txt (accessed on 31 August 2022).

• Cyber-attacks: The 2005–2018 Privacy Rights Clearinghouse (PRC) catalogue [40] for
category hacking/malware, available online: https://privacyrights.org/data-breaches
(accessed on 31 August 2022).

• Earthquakes: The 1900–2012 International Seismological Centre-Global Earthquake
Model (ISC-GEM) Global Instrumental Earthquake Catalogue [41], available on-
line: http://www.isc.ac.uk/iscgem/ (accessed on 31 August 2022); the fault source
model of the 2013 European Seismic Hazard Model (ESHM13) [42], available on-
line: http://hazard.efehr.org/en/Documentation/specific-hazard-models/europe/
overview/active-faults/ (accessed on 31 August 2022).

• Epidemics: The Global Epidemics Dataset [43], available online: https://zenodo.org/
record/4626111 (accessed on 31 August 2022).

• Heatwaves: Temperature data for July 2022 in France from the Météo-France data
portal [44], available online: https://donneespubliques.meteofrance.fr/donnees_
libres/Txt/Synop/Archive/synop.202207.csv.gz (accessed on 31 August 2022).

• Landslides: Inventory of events triggered by the 2008 Wenchuan, China, earthquake,
courtesy of Dr. G. Li and Prof. J. West [45].
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• River flooding: Dataset of flood peaks at the Potomac River between 1895 and 1986,
provided in Table 1 of [46], a textbook example.

• Terrorism: Dataset of the severity of terrorist attacks worldwide from 1968 to 2006,
measured as the number of directly resulting deaths [39,47], available online: https://
aaronclauset.github.io/powerlaws/data/terrorism.txt (accessed on 31 August 2022).

• Tropical (and extra-tropical) cyclones: The International Best Track Archive for Cli-
mate Stewardship (IBTrACS) [48], available online: https://www.ncei.noaa.gov/
products/international-best-track-archive?name=ibtracs-data (accessed on 31 August
2022).

• Tsunamis: The NCEI/WDS Global Historical Tsunami Database [49], here for the
selected period 1900–2022, available online: https://www.ngdc.noaa.gov/hazard/
tsu_db.shtml (accessed on 31 August 2022).

• Volcanic eruptions: The global database on large magnitude explosive volcanic
eruptions (LaMEVE) [50], available online: https://www2.bgs.ac.uk/vogripa/view/
controller.cfc?method=lameve (accessed on 31 August 2022).

• Wildfires: The FRY global database of fire patches [51], available online: https://
data.oreme.org/doi/view/0e999ffc-e220-41ac-ac85-76e92ecd0320#FRY (accessed on
31 August 2022).

While most datasets are global, the others go from regional to local. Different time peri-
ods are also represented. These spatiotemporal heterogeneities have, however, no significant
impact on the present review since the data are mainly used for illustration purposes with
no quantitative comparison being provided. Moreover, most datasets are annualized. A
color scheme has been developed to distinguish between different peril categories in the
next figures. The scheme is given in Table A2 of Appendix A.

2.2. Event Source and Event Size

The size S of an event is constrained by the source from which it originates. A source is
here defined as the energy stock that drives the event. Each source represents a unique object
with peril-specific characteristics. For instance, a tropical cyclone manifests itself from an at-
mospheric low-pressure system that moves along a track, while an earthquake corresponds
to the rupture of a fault plane under tectonic loading—two very different objects. We define
five categories of sources: point sources (Section 2.2.1), line sources (Section 2.2.2), area sources
(Section 2.2.3), track sources (Section 2.2.4), and diffuse sources (Section 2.2.5). For each peril,
we use the most common size metrics and, of those, preferentially the one most closely
related to energy (see Section 3). We only list one model per peril to estimate the event size
as a function of the source parameters, based on first principles and other simple empirical
relationships. References to more sophisticated models are given for completeness.

2.2.1. Point Source

The point source of coordinates (x0, y0) is the simplest source type. The event size
depends on the energy stock implicitly encoded in that point.

• Asteroid (or comet) impacts: The source is the impact site, which is random and
uniform in space (Figure 2). The stored energy is defined by the characteristics of the
impactor and the event size is directly expressed in terms of kinetic energy E [J],

E =
1
2

mv2, (2)

with m [kg] the mass of the body and v [m/s] its velocity. The typical characteristics of
the impactor are a density of ρ ≈ 3 g/cm3 (stony asteroid), 8 g/cm3 (iron asteroid),
or 0.5 g/cm3 (comet) and a velocity of v ≈ 20 km/s (asteroid) or 50 km/s (comet) [52].
Equation (2) is an oversimplification of the process and does not consider atmospheric
deceleration, disruption, or ablation processes, nor ground penetration [34,52,53].

• Explosions (accidental): The source is a container of explosive material. Sources of
severe accidental explosions are located at industrial sites, so-called Seveso sites. The
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size of the event is defined by the blast energy E [kJ], which is a function of the mass
and chemical characteristics of the explosive substance. It is usually described in TNT
mass equivalent mTNT [kg]. For a vapor cloud explosion (VCE), or fuel-air explosion,
we have

mTNT =
E

∆Hc(TNT)
=

ηmv∆Hc(gas)

∆Hc(TNT)
, (3)

where η is the explosion efficiency, or fraction of available combustion energy par-
ticipating in blast wave generation, ∆Hc(gas) [kJ/kg] is the heat of combustion of the
material, and mv [kg] is the mass of flammable vapor release, itself a percentage of the
total mass of hazardous material. ∆Hc(TNT) ≈ 4200 kJ/kg is the heat of combustion of
TNT. For an explosion at a fuel storage site or refinery, ∆Hc(gasoline) ≈ 46.4 MJ/kg and
η = 0.1 [54,55] can be used as an example. Another type of explosion is the boiling
liquid-expanding vapor explosion (BLEVE), resulting from the sudden vaporization
of a liquid [56]. Related perils include fire and toxic material release [57,58].

• Explosions (armed conflicts, terrorism): The source is a bomb, whose size is known
by design. For conventional blasts, Equation (3) can be used with high explosives
considered as source material (e.g., TNT). For non-conventional blasts, such as a
nuclear explosion, a simple equation of the yield is

E ∼ mtot

8

(
∆R· log n

τ

)2
, (4)

where mtot is the total mass of the spherical bomb (core + tamper), ∆R is the difference
between the expanded radius and the initial radius of the sphere, τ is the time required
for a neutron born in a fission to subsequently strike and fission another nucleus, and
n is the number of neutrons liberated per fission (n = 2.637 for Uranium 235 and
n = 3.172 for Plutonium 239) [59]. In contrast to accidental explosions, sources of
intended explosions are mobile and correlate with population density and specific
(critical) infrastructure targets [26]. It can be considered a sub-peril of armed conflicts
and terrorist attacks, which have a diffuse source (see Section 2.2.5). A related peril is
radiation in the case of a nuclear attack.

• River floods: The source is a river system associated to a catchment basin. It can,
however, be represented by (or concentrated at) a point source characterized by the
peak discharge Qp [m3/s] at a point of the river. For a small basin (≈1 km2), it is
estimated with the Rational Formula

Qp = η
hc

tc
A, (5)

with η the runoff coefficient (which depends on soil conditions and surface characteris-
tics, such as asphalt versus grass), hc [m] the critical rainfall, tc the concentration time
[s] (function of flow distance and terrain slope), and A the catchment area [m2] [60,61].
If tc is defined as the duration of the rainfall event, hc/tc then represents the rainfall
intensity with the role of slope included in η. For greater basins, non-linearities must
be included, such as the topography and the non-stationary flow observed on hydro-
graphs [60]. An empirical relationship approximating the process can otherwise be
used with

E
[
Qp
]
= c1 Ac2 hc3 φc4 , (6)

where E
[
Qp
]

is the expected annual peak discharge [m3/s], A [km2] the catchment
area, h the annual average rainfall in the catchment [mm], φ the upstream catchment
slope [m/km], and c1 to c4 empirical parameters [62].

• Volcanic eruptions: An active volcano transfers heat and matter from the Earth’s
interior to outside the volcanic edifice. Most eruptions occur along the Ring of Fire
(Figure 2). The event size is the volume of matter ejected V [km3], which is also the
main parameter of the Volcanic Explosivity Index (VEI) [63]. Other characteristics



Int. J. Environ. Res. Public Health 2022, 19, 12780 6 of 32

of the magma, such as temperature T, allow the thermal energy released during the
eruption to be estimated [64] (see Section 3).
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10,000 years in the LaMEVE database [50].

2.2.2. Line Source

The line source is composed of n segments with coordinates ((x1, · · · , xn+1), (y1, · · · ,
yn+1)). For a “line source” with a time stamp, see Section 2.2.4 on track sources. Various
source characteristics can be associated to each point or segment.

• Earthquakes: The source is a fault, i.e., a planar rock fracture which shows evidence
of relative movement. There is often no need to explicitly define an area source as
the line carries dip and width information (Figure 3a). The seismic energy released
by an earthquake is proportional to the seismic moment M0 = µAu [N·m], with
µ = 3.3× 1010 Pa the rock shear modulus, A [m2] the rupture surface area, and u [m]
the average displacement on the fault. The earthquake’s size is, however, commonly
described in terms of moment magnitude [65]

Mw =
2
3

log10

(
M0·107

)
− 10.7, (7)

Usually, empirical relationships linking magnitude and fault geometry are used instead
of the other physical characteristics of the rupture, such as

Mw = c1 + c2 log10 l, (8)

with l the surface rupture length and c1 and c2 fitting parameters as a function of the
fault mechanism (normal, reverse, or strike-slip) [66] (Figure 3b).

• Storm surges: The source is a storm, and more precisely the low-pressure region
above the water mass combined with strong winds. It may be considered a line source
since the event size is defined in terms of the water height h along the coastline [29].
The storm surge can be related to storm maximum windspeed vmax, for example with
a polynomial function of the form

h = c1vmax + c2v2
max + c3v3

max, (9)
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where the empirical parameters c1, c2, and c3 are site-specific [67]. Although the
match between hurricane windspeed and storm surge height ranges is given on the
Saffir–Simpson Hurricane Wind Scale, the vmax indicator is often not sufficient for
estimating the actual storm surge [68].

• Tornados: The simplified source of a tornado track is a line with no intensity variability
along its length [20] (otherwise it is modelled as a track source—Section 2.2.4). The
event size is defined in terms of maximum wind speed vmax, which is the main
parameter of the Enhanced Fujita Scale [69]. Additional parameters of the source,
such as location, length, and width (or maximum radius), are sampled from historical
data [70].

• Tsunamis (triggered by an earthquake): In this case, the source is an underwater
fault line. The size of the event is commonly defined by both wave velocity and wave
height at arrival on the coast, which is equivalent to the hazard intensity footprint.
This applies also to tsunamis generated by other non-meteorological sources, includ-
ing asteroid impacts, landslides, and volcanic eruptions. For an earthquake trigger,
the initial size of the tsunami above the rupture can be estimated in terms of potential
energy E [J] (following the box-shaped ‘waterberg’ method) by

E =
1
2

ρwglwu2, (10)

with ρw = 1000 kg/m3 the water density, g the gravitational acceleration, l the
earthquake rupture length [m], w the wavelength or width of the area displaced
[m], and u the upward rupture displacement [m] [71]. For other formulations, see [72].

Int. J. Environ. Res. Public Health 2022, 19, x  8 of 34 
 

 

 

Figure 3. Example of line sources (earthquake case). (a) Fault segments in the 2013 European Seismic 

Hazard Model (ESHM13) [42]; (b) mean magnitude 𝑀𝑤 versus effective fault segment length 𝑙 in 

the ESHM13, compared to Equation (8) (dashed line) with 𝑐1 = 5.08 and 𝑐2 = 1.16 [66]. 

2.2.3. Area Source 

An area source is a localized surface large enough that it cannot be simplified by a 

point source (Section 2.2.1) and small enough that it is not a diffuse environmental source 

(Section 2.2.5). There is no strict definition of an area source. It can be characterized by a 

geometrical shape, such as a rectangle or an ellipse, or by an irregular patch defined by 

the coordinates of its contour. All physical characteristics are assumed to be spatially ho-

mogeneous within the source. An area source, such as a large warehouse stocked with 

explosive material, is commonly simplified by a point source [73]. An area source may 

represent a region in which the peril process is kept hidden, such as a territorial division 

in a compartmental epidemic model (with integration method). However, the heteroge-

neity of the real-world environment makes the use of a diffuse source more realistic in 

many cases (e.g., landslides—see Section 2.2.5). Finally, an area source can also represent 

uncertainty on a fault line [42], while a line source may suffice to characterize an area (e.g., 

an earthquake rupture plane or tornado path, as previously shown). Perils for which an 

area source is most common are: 

• Hail: The source is a convective storm, with hail as a sub-peril alongside strong 

winds, tornados, lightning, and heavy rain. It is described by the area in which hail-

stones are found, with the size of the event defined in terms of the maximum hail-

stone diameter 𝑙 [cm] [19]. Hail cells have been approximated by so-called storm 

boxes [19] or ellipses [74]. Their location, size, and shape are constrained by meteor-

ological observations [74]. The temporal evolution during an event can also be con-

sidered, in which case a track source should be used [74]. Note that it is a case where 

event source and hazard footprint cover the same area (see Section 2.4.2). 

• Urban fires and wildfires: Fires in both wildland and urban areas were originally 

modelled as ellipses, with the fire spread rate 𝑅 [m/min] defined as 

𝑅 = 𝑅𝑛𝑢𝑙𝑙(1 + |𝜙𝑠 + 𝜙𝑤|)
1−𝜀

1−𝜀 cos𝜙
, (11) 

with 𝑅𝑛𝑢𝑙𝑙 the spread rate on flat terrain and without wind as a function of the com-

bustible characteristics (i.e., the source), 𝜙𝑠 the direction of maximum slope, 𝜙𝑤 the 

wind direction, 𝜀 the eccentricity function of windspeed and terrain slope, and 𝜙 

an arbitrary direction [75,76]. Despite its simplicity, Equation (11) produces reasona-

ble estimates of fire spread in a uniform environment. It is now more common to use 

cellular automata to model fires by considering diffuse sources instead [28] (see 

Figure 3. Example of line sources (earthquake case). (a) Fault segments in the 2013 European Seismic
Hazard Model (ESHM13) [42]; (b) mean magnitude Mw versus effective fault segment length l in the
ESHM13, compared to Equation (8) (dashed line) with c1 = 5.08 and c2 = 1.16 [66].

2.2.3. Area Source

An area source is a localized surface large enough that it cannot be simplified by a
point source (Section 2.2.1) and small enough that it is not a diffuse environmental source
(Section 2.2.5). There is no strict definition of an area source. It can be characterized by
a geometrical shape, such as a rectangle or an ellipse, or by an irregular patch defined
by the coordinates of its contour. All physical characteristics are assumed to be spatially
homogeneous within the source. An area source, such as a large warehouse stocked with
explosive material, is commonly simplified by a point source [73]. An area source may
represent a region in which the peril process is kept hidden, such as a territorial division in a
compartmental epidemic model (with integration method). However, the heterogeneity of
the real-world environment makes the use of a diffuse source more realistic in many cases
(e.g., landslides—see Section 2.2.5). Finally, an area source can also represent uncertainty on
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a fault line [42], while a line source may suffice to characterize an area (e.g., an earthquake
rupture plane or tornado path, as previously shown). Perils for which an area source is
most common are:

• Hail: The source is a convective storm, with hail as a sub-peril alongside strong winds,
tornados, lightning, and heavy rain. It is described by the area in which hailstones
are found, with the size of the event defined in terms of the maximum hailstone
diameter l [cm] [19]. Hail cells have been approximated by so-called storm boxes [19]
or ellipses [74]. Their location, size, and shape are constrained by meteorological
observations [74]. The temporal evolution during an event can also be considered,
in which case a track source should be used [74]. Note that it is a case where event
source and hazard footprint cover the same area (see Section 2.4.2).

• Urban fires and wildfires: Fires in both wildland and urban areas were originally
modelled as ellipses, with the fire spread rate R [m/min] defined as

R = Rnull(1 + |φs + φw|)
1− ε

1− ε cos φ
, (11)

with Rnull the spread rate on flat terrain and without wind as a function of the com-
bustible characteristics (i.e., the source), φs the direction of maximum slope, φw the
wind direction, ε the eccentricity function of windspeed and terrain slope, and φ
an arbitrary direction [75,76]. Despite its simplicity, Equation (11) produces reason-
able estimates of fire spread in a uniform environment. It is now more common to
use cellular automata to model fires by considering diffuse sources instead [28] (see
Sections 2.2.5 and 2.4.3). Yet, ellipses can be used to define the seed events from which
greater fires can propagate [76].

2.2.4. Track Source

The track source is the combination of a point source and of a line source, with
the event footprint defined at any given time from a point along the line, i.e., the track
((x1, · · · , xn), (y1, · · · , yn), (t1, · · · , tn)). This applies to storms, such as windstorms, tropi-
cal cyclones, and other related perils (note that the point source could be replaced by an
area source, for example in the case of hail). Examples of hurricane tracks are shown in
Figure 4a.

• Tropical cyclones: The source is an area of low pressure over a large water surface,
which moves along a track over time t. The genesis point, trajectory, and end point of
the storm are stochastic and derived from past observations [77]. The event size at any
given time is defined by the maximum wind speed

vmax(t) =

√
B[pn − pc(t)]

ρe
, (12)

with pc [Pa] the cyclone’s central pressure, pn [Pa] the ambient pressure outside the
cyclone, ρ = 1.15 kg/m3 the air density, 1 ≤ B ≤ 2.5 the Holland B parameter, and e
Euler’s number [78]. Notice the anticorrelation between vmax(t) and pc(t) in Figure 4b,
in agreement with Equation (12). The windspeed can then be used to estimate the event
size on the Saffir–Simpson Hurricane Wind Scale. Along the track, the windspeed
progressively increases, as the tropical cyclone grows, and then decreases, as the
storm makes landfall, weakens, and dies off (Figure 4b). One can define the size of
an individual storm in terms of total power dissipation by integrating over the wind
profile along the entire track [79] (see Figure 5 and Section 3).



Int. J. Environ. Res. Public Health 2022, 19, 12780 9 of 32

Int. J. Environ. Res. Public Health 2022, 19, x  9 of 34 
 

 

Sections 2.2.5 and 2.4.3). Yet, ellipses can be used to define the seed events from which 

greater fires can propagate [76]. 

2.2.4. Track Source 

The track source is the combination of a point source and of a line source, with the 

event footprint defined at any given time from a point along the line, i.e., the track 

((𝑥1, ⋯ , 𝑥𝑛), (𝑦1, ⋯ , 𝑦𝑛), (𝑡1, ⋯ , 𝑡𝑛)). This applies to storms, such as windstorms, tropical 

cyclones, and other related perils (note that the point source could be replaced by an area 

source, for example in the case of hail). Examples of hurricane tracks are shown in Figure 

4a. 

• Tropical cyclones: The source is an area of low pressure over a large water surface, 

which moves along a track over time 𝑡. The genesis point, trajectory, and end point 

of the storm are stochastic and derived from past observations [77]. The event size 

at any given time is defined by the maximum wind speed 

𝑣𝑚𝑎𝑥(𝑡) = √
𝐵[𝑝𝑛−𝑝𝑐(𝑡)]

𝜌𝑒
, (12) 

with 𝑝𝑐 [Pa] the cyclone’s central pressure, 𝑝𝑛 [Pa] the ambient pressure outside the 

cyclone, 𝜌 = 1.15 kg/m3 the air density, 1 ≤ 𝐵 ≤ 2.5 the Holland 𝐵 parameter, and 

𝑒 Euler’s number [78]. Notice the anticorrelation between 𝑣𝑚𝑎𝑥(𝑡) and 𝑝𝑐(𝑡) in Fig-

ure 4b, in agreement with Equation (12). The windspeed can then be used to estimate 

the event size on the Saffir–Simpson Hurricane Wind Scale. Along the track, the 

windspeed progressively increases, as the tropical cyclone grows, and then de-

creases, as the storm makes landfall, weakens, and dies off (Figure 4b). One can de-

fine the size of an individual storm in terms of total power dissipation by integrating 

over the wind profile along the entire track [79] (see Figure 5 and Section 3). 

 

Figure 4. Example of track sources (tropical cyclone case). (a) Tracks of recent Atlantic hurricanes 

(2020–2022) in the IBTrACS database [48]; (b) windspeed 𝑣𝑚𝑎𝑥 versus central pressure 𝑝𝑐 along 

the track of 1992’s Typhoon Yvette, based on IBTrACS data as shown in [48]. 

2.2.5. Diffuse Source 

The diffuse source is the part of the environment—natural, technological, or socio-

economic—which acts as a spatially extended energy stock. The environment, or system, 

can be defined on an 𝑛𝑥 × 𝑛𝑦  geographical grid with coordinates 

Figure 4. Example of track sources (tropical cyclone case). (a) Tracks of recent Atlantic hurricanes
(2020–2022) in the IBTrACS database [48]; (b) windspeed vmax versus central pressure pc along the
track of 1992’s Typhoon Yvette, based on IBTrACS data as shown in [48].

2.2.5. Diffuse Source

The diffuse source is the part of the environment—natural, technological, or socio-
economic—which acts as a spatially extended energy stock. The environment, or sys-
tem, can be defined on an nx × ny geographical grid with coordinates ((x1,1, · · · , xnx ,ny),
(y1,1, · · · , ynx ,ny)). It may also be represented as a graph composed of n nodes with spa-
tial coordinates ((x1, · · · , xn), (y1, · · · , yn)) and links defined in an adjacency matrix (as,
for example, in the case of connected infrastructures). It could finally be a set of n moving
agents with coordinates ((x1, y1)(t), · · · , (xn, yn)(t)). Each element of the diffuse source
has additional characteristics necessary for the estimation of event size. In contrast to other
source types, the event size is not well constrained without dynamical modeling, except
for the maximum possible size maxS often being the size of the system itself. This section
describes the source of a seed event, which can be a point or an area which does not charac-
terize the event in its entirety. The event size S depends on how the event grows, which is
described in Section 2.4.3 on hazard footprint modeling. In some of those cases, event size
and footprint intensity can be indistinguishable and described by the same metric.

• Armed conflicts (incl. terrorism): The source is a hierarchical group of individuals,
ranging from small terrorist organizations to large (trans)national armies. The size
of the seed event is constrained by the funds and people power at the disposal of
the attacker, as well as by the group’s network structure and utility function. The
process is highly dynamic, as the various agents are mobile and opponents can allocate
resources to defend against an attack [25,26]. The size of an event depends directly on
the type and number of weapons. It can be a group of fighters (with firearms or non-
firearms—see Section 2.4.3), conventional weapons (expressed as a TNT-equivalent,
e.g., Equation (3)), or non-conventional weapons, including chemical, biological (see
epidemic), radiological, nuclear (e.g., Equation (4)), and cyber- attacks. Those weapon
types, which require different hazard modeling strategies, can be considered different
sub-perils of an armed conflict. The event size S is commonly defined in terms of
the fatality count N summed over all attacks taking place during the conflict (N then
directly represents the human loss L in the risk component of the CAT model).

• Blackouts: The source of a blackout is a current overload due to a local disturbance
in the power grid. This system is composed of generator nodes (i.e., power plants),
transmission nodes, and distribution nodes connected via transmission lines. A seed
event can correspond to the tripping of several lines due to tree contact for example,
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which can be caused by lack of tree trimming or by a storm [80]. The event is only
called a blackout if a relatively large number of consumers N is affected by the loss
of electricity. The event size can also be defined in terms of unsupplied energy E
[MWh]. The event size depends on how the overload propagates through the power
grid through cascading failures.

• Business interruptions: The source is any business that is shut down due to direct
damage by some natural or man-made event. Although a business location can be
represented by a point source or extended area source, a catastrophic event consists of
the aggregation of disruptions at many locations in the built environment, which may
include a supply chain network in the case of contingent business interruption. The
event size is directly defined in terms of revenue loss [30].

• Crop failures (due to pest): The source is a pest, such as an insect, a virus, a grazing
animal, or some other invasive species that damages the crops. The size of an event
depends on the complex interactions between the pest and crop growth within the crop
production system where natural predators and/or pesticides may also participate [32].
Note that crop failure can also be due to climatic stress, represented by extreme
temperature changes, droughts, as well as meteorological (hail), hydrological (flood),
and ecological (field fire) events. In those cases, crops only represent the exposure
layer of the CAT model. The event size is commonly defined in economic terms, such
as farming production yield loss. However, it could, in theory, be defined by pest
biomass before any consideration of crop damage.

• Cyber-attacks: The source of a cyber-attack is a malicious agent (a hacker) acting
for personal gain or on behalf of a governing entity. Cyber-attacks can include theft
of data or currency, ransoms, business interruption, or some other forms of system
destabilization. The attack occurs, by definition, via electronic communication net-
works and virtual reality [21]. One particularity of cyber-attacks is that they are not
geographically bound. They can cascade into greater events [22] via highly dynamic
processes [21]. Their size is defined in terms of the number of data breaches N in the
common case of data exfiltration. However, this depends on how the initial attack
propagates through the IT system. Since N is often the number of actual breaches
and not of attempted breaches, the event size directly reflects the loss in the risk
domain after considering the level of vulnerability of the exposed system. Hazard
and risk are intertwined since both the type and size of a cyber-attack depend on the
attacked system. For example, a cyber-heist on a banking system is different from
a distributed denial of service (DDoS) attack (with S here expressed in gigabits per
second [Gbps]), itself different from a cyber-attack on a power grid or other connected
critical infrastructure. Many other types of events exist which could go as far as a
cyber-war [22].

• Epidemics: The source of an epidemic is the first infection in the human population.
This requires the pathogen and susceptible hosts to be in contact in adequate numbers.
The size of an event can be the number of infections N, which depends on how the
epidemic propagates, as a function of the basic reproduction number

R0 = βNtot∆t, (13)

where β is the transmission parameter, ∆t the recovery delay, and Ntot the total
population. The parameters β and ∆t depend on the vector, which can be a virus,
bacterium, fungus, or parasite [24]. When an epidemic spreads to multiple continents,
it becomes a pandemic. The total number of fatalities, which is the number of infections
times the mortality rate, is the final loss. However, it may also be considered as the
event size since the mortality rate also depends on the pathogen, and not only on the
human vulnerability (function of age, gender, and health condition).

• Landslides: The source is the set of terrain patches with an unstable slope φ, which
is controlled by topographic and soil characteristics. The size of the seed event can
be the area A [km2] or volume V [km3] of each patch or set of patches. The area that
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is unstable is defined by a Factor of Safety (Fs) lower than 1, since it is the ratio of
resisting forces to driving forces. A simple formulation is

Fs =

C
ρsgh + cos φ

(
1− η

ρw
ρs

)
tan φint

sin φ
, (14)

where h [m] is the depth perpendicular to surface (or thickness) of the soil, g is the
gravitational acceleration, C [N/m2] is the soil cohesion, ρs [kg/m3] is the soil density,
ρw = 1000 kg/m3 is the unit weight of water, φ is the slope angle, φint is the internal
friction angle of the soil, and η = hw/h is the relative wetness representing the ratio
between water column height hw and soil height h. For additional formulations,
see [81,82]. An increase of η due to heavy rain further decreases Fs, making previously
stable slopes unstable [82]. Fs is also involved in landslide triggering by earthquake
ground shaking [83].

• Social unrest: The source of social unrest is the part of the population which has a
high level of grievance against the governing entity [35]. The first individuals turning
violent, who can be anyone in the system, can lead to a riot, i.e., an aggregate act of
violence against individuals and property, which includes looting and setting fires as
sub-perils [84]. The event can, however, be avoided if enough security is at the disposal
of the government [35]. The dynamics is reminiscent of what can occur during an
armed conflict (see above), with an extreme social unrest event potentially turning
into a revolution. The event size could, in theory, be defined in terms of the number of
rioters N.

• Urban fires (accidental or malicious): Fire can be considered a sub-peril of industrial
accidents [58], armed conflicts [85], and social unrest [84], as well as a secondary peril
of earthquakes [28]. The source is some combustible material that is set alight. The
event size, defined in terms of burnt area A, depends on how the fire propagates in the
environment, as in the case of a wildfire (see below). If an elliptical event is realistic in
a uniform environment (Equation (11)), it is not in most real-world situations.

• Wildfires: The source of a wildfire has two components: a trigger for ignition and
some combustible material (i.e., vegetation). The main cause of wildfires globally is
anthropogenic, with fires started intentionally or accidentally. This ranges from power
line ignition to arson via a forgotten cigarette butt [86]. Lightning strikes are the most
important natural ignition trigger for wildfires [87]. In this case, the occurrence of a
seed event depends on the continental lightning rate [flashes/min]

λ f lash = c·3.44·10−5·h4.9, (15)

A function of the convective cloud top height h [km] and a resolution- and model-
dependent scaling factor c [87,88]. The size of the event, described in terms of burnt
area A, depends on the propagation process, a function of the characteristics of the
environment, such as terrain, fuel, and meteorological conditions (see Equation (11)).
Conditions are more favorable for a wildfire during a drought [89]. In the CAT
modeling context, losses occur in the wildland–urban interface, defined as an area
covered by more than 50% vegetation with more than one housing unit per 1.62 ha [27].
An ignition index can be calculated to map the potential size of an event as a function
of dead fuel moisture, temperature, and vegetation species flammability among other
parameters [90].

2.3. Event Size Distribution

The probabilistic nature of a hazard is described by the rate of events λi as a function
of the event size Si (or by the return period ∆Ti = 1/λi). There are two main statistical
approaches, commonly the power-law distribution [39,91,92], for discrete events, and the
Generalized Extreme Value (GEV) distribution and Generalized Pareto distribution (GPD) [93],
for events derived from continuous flows. Figure 5 shows the size distribution of the perils



Int. J. Environ. Res. Public Health 2022, 19, 12780 12 of 32

from Section 2.1 that can be fitted by a power-law, GEV, or GPD. Any peril can, however,
be described by various statistical distributions, with the choice often depending on the
discipline’s most accepted approach for event definition and event count [94–96]. We
here assume the independence of events as well as the stationarity of event occurrences
over time.

2.3.1. Power-Law Distribution

The complementary cumulative distribution function (CCDF) of a power-law is

Pr(S) =
∫ +∞

S
pr(u)du =

(
S

Smin

)−(α−1)
, (16)

with S the event size, Smin the minimum event size threshold, and α the power exponent [39].
The size distribution of a hazard is most often described by the annual rate

λ(≥ S) = λ(≥ Smin)Pr(S) = λ(≥ Smin)

(
S

Smin

)−(α−1)
, (17)

generally expressed in the following empirical form

log10 λ(≥ S) = a− b log10 S, (18)

with a = log10

(
λ(≥ Smin)Sα−1

min

)
and b = α − 1 the slope of the size distribution in a

log–log plot (also called the shape parameter of the classical Pareto distribution). We will
consistently use b (i.e., cumulative form) in the following review.

• Armed conflicts (incl. terrorism): The size distribution follows Equation (18), with
S = N as the number of fatalities [97]. In Ref. [97], a value of b ≈ 1 was obtained
for various types of conflicts (war, banditry, gang warfare). In Ref. [98], a value of
b ≈ 0.5 was obtained for interstate wars taking place between 1820 and 1997 and the
1465–1965 European great power wars. In Ref. [39], a value of b = 0.7 was calculated
for wars between 1816 and 1980. In the case of terrorism worldwide from 1968 to
2006, we obtain a = 2.714 and b = 1.45 (Figure 5), close to the value of b = 1.4 found
by [39,47] for the same dataset.

• Asteroid impacts: The flux of small near-Earth objects colliding with our planet
follows a power-law in the form of Equation (18), with S = E [kton] as the energy and
a = 0.5677 and b = 0.90 globally [99]. In Ref. [92], a value of b = 1.02 was obtained
when including more recent data. Considering data up to 2022, we obtained a = 0.468
and b = 0.99 (Figure 5).

• Blackouts: The size distribution follows Equation (18), with S = N as the number of
customers affected. In Ref. [100], the range 0.5 ≤ b ≤ 1.0 was observed for different
countries. For data from the United States, Ref. [39] obtained b = 1.3, while we
obtained a = 6.812 and b = 1.18 (Figure 5) for the same dataset.

• Cyber-attacks: The size distribution follows Equation (18), with S = N the number of
personal identity losses or data breach volume (used as the example in this case). In
Ref. [101], a value of b = 0.7 was obtained when using data from the Open Security
Foundation for the 2000–2008 period. Considering hacking events from the public
dataset published by the Privacy Rights Clearinghouse [40], we obtained a = 3.184
and b = 0.4 for the 2005–2018 period.

• Earthquakes: Although the size distribution of earthquakes also follows a power-law
in the seismic energy domain with S = E (Equation (18), as with the a = 11.004 and
b = 0.65 values shown in Figure 5, and with log10 E ∝ 1.5M) [102], the Gutenberg–
Richter (exponential) law is used in virtually all cases [103], as a function of the
magnitude M. It yields a Gutenberg–Richter slope of 1.5b = 0.98 globally [41] which
is close to unity, known as the standard value for tectonic earthquakes.

• Landslides: The size distribution follows Equation (18), with S = A [km2] the land-
slide area or S = V [km3] the landslide volume. Conversion from area to volume



Int. J. Environ. Res. Public Health 2022, 19, 12780 13 of 32

can be performed with the empirical scaling relationship V = cA1.5 [104]. For S = A,
a review of more than 20 analyses provides b = 1.3± 0.6 [105]. For landslides trig-
gered by the 2008 Wenchuan earthquake for instance [45], we find b = 1.99 at the tail
of the distribution (Figure 5), which is in agreement with [106] who obtained b = 2.07.

• Tsunamis: The size distribution follows Equation (18), with S = hmax the maximum
wave height (i.e., tsunami runup). Ref. [107] obtained 0.8 ≤ b ≤ 1.3 for different
locations along Japan. For global data [49], we find a = 0.967 and b = 1.11 (Figure 5).

• Volcanic eruptions: The size distribution follows Equation (18), with S = V [km3]
as the erupted volume. Considering all volcanic eruptions which occurred after
the year 1000 in the LaMEVE database [50], we obtain a = −1.156 and b = 0.66
(Figure 5). A recent review of large VEI eruptions indicates that VEI-7 events recur
every 500–1000 years [108]. Our parameters lead to 300–1300 years for the V range of
VEI-7 events.

• Wildfires: The size distribution follows Equation (18), with S = A [km2] as the size of
the wildfire as defined by the burned area A. Ref. [109] reviewed the literature and
mentioned 1.1 ≤ b ≤ 1.8 for China and the United States. Ref. [39] calculated b = 1.2
for U.S. federal land. Ref. [92] found b = 0.82 for fires in Angola and b = 1.28 for fires
in Canada. For the FRY catalogue [51], we obtained a = 8.553 and b = 1.23 (Figure 5).

2.3.2. Generalized Extreme Value (GEV) Distribution

Events such as storms and floods, which originate from continuous flows (wind and
water discharge, respectively), must be defined as extreme instances. To define an event,
a threshold or maximum estimate is then considered, following the rules of Extreme Value
Theory [93]. When considering the maximum value Xmax over a fixed period (i.e., the block
maxima approach), the Generalized Extreme Value (GEV) family of distributions applies
which, in CDF form, is

Pr(Xmax ≤ S) =


exp

[
−
{

1 + ξ
(

S−µ
σ

)}− 1
ξ

]
for ξ 6= 0

exp
[
− exp

{
−
(

S−µ
σ

)}]
for ξ = 0

, (19)

with the “size” S termed the return level (“zp”) in GEV parlance, µ the location parameter,
σ the scale parameter, and ξ the shape parameter. ξ > 0 corresponds to the Fréchet
distribution, ξ < 0 to the Weibull distribution, and ξ = 0 to the Gumbel distribution [93].
Considering the probability of exceedance instead,

Pr(Xmax > S) = 1− Pr(Xmax ≤ S) =
!

∆T
, (20)

where ∆T is the return period. Inverting Equation (20) gives the so-called return level plot

S =


µ− σ

ξ

[
1−

{
− log

(
1− 1

∆T

)}−ξ
]

for ξ 6= 0

µ− σ log
{
− log

(
1− 1

∆T

)}
for ξ = 0

, (21)

Introducing yp = −1/ log(1− 1/∆T) (i.e., a return period) in Equation (21) yields [110]

S =

µ + σ
ξ

[
yξ

p − 1
]

for ξ 6= 0

µ + σ log yp for ξ = 0
, (22)

(see flood case below).
An alternative representation of extremes that uses more of the available data consists

of analyzing excesses over a high threshold (the so-called Peak-Over-Threshold, POT,
method). In this case, the Generalized Pareto distribution (GPD), a type of power-law [91],
applies. Its CCDF takes the form
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Pr(X > S|X〉µ) =


[
1 + ξ

(
S−µ

σ

)]− 1
ξ for ξ 6= 0

exp
[
− S−µ

σ

]
for ξ = 0

, (23)

with µ the location parameter (i.e., the chosen high threshold), σ the scale parameter,
and ξ the shape parameter, which is related to the power exponent of Equation (16) via
ξ = 1/(α− 1) = 1/b. If ξ < 0, the distribution has the upper bound Smax = µ + σ/|ξ|. For
the case ξ = 0, the exponential distribution is retrieved [93]. It follows that

Pr(X > S) =
1
n
=

ζ
[
1 + ξ

(
S−µ

σ

)]− 1
ξ for ξ 6= 0

ζ exp
[
− S−µ

σ

]
for ξ = 0

, (24)

where “size” S is exceeded on average once every n observations (i.e., a return period) and
where ζ = Pr(X > µ) is naturally estimated as the sample proportion of observations (or
“events”) exceeding µ. The return level plot of the GPD is [93]

S =

µ + σ
ξ

[
(nζ)ξ − 1

]
for ξ 6= 0

µ + σ log nζ for ξ = 0
, (25)

(see epidemic case below).
Since extreme values are commonly retrieved from individual sensors, the parameter

set θ = (µ, σ, ξ) is usually site-specific. Parameter values are only provided below when
associated to regional or global datasets (e.g., epidemics) and/or when a fit is provided in
Figure 5:

• Epidemics: Considering a global dataset, [43] showed that epidemic sizes (per mil/year)
follow a GPD (Equation (25)), with σ = 0.0113 ‰/yr and ξ = 1.40 for a fixed
µ = 10−3 ‰/yr in addition to ζ = 0.38. We retrieved σ = 0.0110 ‰/yr and ξ = 1.41
(i.e., α = 1.71 or b = 0.71) for the same data and threshold (Figure 5).

• River floods: With the event size defined from the maximum discharge maxQp ob-
served in a year of daily measurements, flood sizes are described by the GEV distri-
bution [111,112]. Taking the Potomac River dataset [46] as a textbook example, we
obtained µ = 2461.7 m3/s, σ = 1171.7 m3/s, and ξ = 0.19 (Figure 5). A power-law
behavior has also been proposed [95].

• Storms (tropical cyclones and other windstorms): Both GEV and GPD distributions
have been used to describe the size distribution of storms (S = vmax) and related
perils. Parameterizations for specific cities and coastline segments can be found in
the literature [113–116]. It can be noted that defining storm size in terms of total
dissipation of power yields a power-law distribution with a relatively high exponent
2.28 ≤ b ≤ 4.15 [92]. Using such a proxy by summing over the cube of vmax records
per ∆t interval for each track duration [t0, tmax], i.e., S = ∑tmax

i=t0
v3

max,i∆t [m3/s2] [79,92],
we obtain b = 3.01 for global data [48] (Figure 5).

2.4. Hazard Intensity Footprint

Once the size distribution λ = fλ(S) is defined for a given peril, the impact of each
event on the environment must be assessed. We use the term intensity I to describe the
physical quantity that leads to damage (i.e., a variable of the vulnerability function fD).
The area impacted by said intensity is known as the event footprint. A hazard intensity
footprint I(x, y) can be modelled by following three main approaches: (i) an analytical
expression of spatial diffusion with the value of I decreasing away from the event source
(Section 2.4.1); (ii) a threshold model with I as a passive function of the variability on the
underlying environment layer that is sliced (Section 2.4.2); or (iii) a numerical model
of dynamic propagation of the event with I potentially increasing in the diffuse source
(Section 2.4.3).
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for the values of the fitting parameters.

2.4.1. Analytical Expressions of Static Event Spatial Diffusion

Although every hazard process is dynamical in nature, the process can be simplified
to a static footprint where the event source is localized in most cases. For both point- and
line-sources, the footprint is

I(x, y) = f I(S, r), (26)

with (x, y) the spatial coordinates, S the event size, and r the distance to the event source.
For track-sources, we can define

I(x, y) = max
t

f I(S, r, t), (27)

which takes the maximum intensity observed at a given location over all timelapses t.

For a point source, r =
√
(x− x0)

2 + (y− y0)
2 with (x0, y0) as the source coordinates.

For both line- and track-sources, r = min
i

√
(x− x0,i)

2 + (y− y0,i)
2 with (x0,i, y0,i) as the
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source coordinates (for an area source, these could correspond to the surface’s contour).
Modifications may be applied to describe second-order variations in the footprint. Site-
specific conditions can be modeled by simply adding a modifying factor to f I(S, r), as a
function of (x, y). All the equations listed below are empirical relationships which are
parameterized for some generic conditions. Epistemic uncertainties are not assessed but
can be assumed to be large as only the simplest models are considered in this review. The
reader is referred to the articles mentioned below for other functions, parameterizations,
and calibrations.

• Asteroid (and comet) impacts: The kinetic energy E of the celestial body transforms
into destructive explosive energy at impact, which is described by peak overpres-
sure p [psi]. The simplest approach consists of defining a binary intensity footprint,
for instance

R = 2.09h− 0.449h2E−
1
3 + 5.08E

1
3 , (28)

with R the 4-psi overpressure radius [km], E [Mton] the event impact energy, and h
[km] the burst altitude [34]. Due to lack of data for calibration, the blast footprint
formula is usually calibrated to data from nuclear tests [33,52,118] (see also the com-
parison between Equation (28) and the industrial explosion footprint case below and
in Figure 6). Damage can also occur due to thermal radiation [34].

• Earthquakes: The general formulation of a ground motion prediction equation (GMPE) is

log10 I = c1 + c2M + c3r + c4 log10 r, (29)

with M the earthquake magnitude and r [km] the distance to the source [119,120]. The
intensity I is often taken as the peak ground acceleration but can also be peak ground
velocity, peak ground displacement, or spectral acceleration of felt intensity [121]. One
of the simplest parameterizations is c1 = −1.34, c2 = 0.23, c3 = 0, and c4 = −1, with I
as the PGA [g] and r =

√
d2 + z2 [km], d being the distance to the surface projection of

the fault rupture, and z the fault depth [122] (Figure 6).
• Explosions (accidental or malicious): A simple empirical relationship linking blast

overpressure p [kPa] to the explosive mass mTNT [kg] is

p =
1772

r3∗
− 114

r2∗
+

108
r∗

, (30)

with r∗ as the dimensional scaled distance according to Hopkinson–Cranz law
r∗ = r/ 3

√
mTNT and with r [m] as the distance to the source [123]. This is, for example,

consistent with the binary footprint model (Equation (28)) proposed for asteroid im-
pact CAT modeling (for an impact on the ground with h = 0 and 1 psi = 6.89476 kPa).
This is illustrated in Figure 6. The overpressure field for very large yields is cali-
brated to nuclear tests [118] and therefore also applicable to the blast component of
nuclear explosions.

• Tornados: The mean wind field for a stationary tornado is calculated as the sum of
the tangential and radial velocities vtan and vr, with both wind velocity components v
based on the Rankine vortex model,

v =

{
vmaxrR−1

max if r ≤ Rmax

vmaxr−1Rmax if r > Rmax
, (31)

with r the distance from the tornado origin, vmax the maximum (tangential or radial)
velocity, and Rmax the radius of the maximum (tangential or radial) velocity. An exam-
ple of parameterization is vtan,max = 60 m/s, vr,max = 30 m/s, and Rmax = 75 m [124].
The intensity footprint of the tornado is obtained by adding the forward motion
velocity v f to the wind field (e.g., v f = 15 m/s).

• Tropical cyclones: The wind profile of a tropical cyclone can be described by
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v =

(
B
ρ
(pn − pc)

(
R
r

)B
exp

[
−
(

R
r

)B
]
+

1
4

r2c2

) 1
2

− 1
2

rc, (32)

where r [km] is the distance to the cyclone center, R [km] the radius of maximum winds,
and c [rad/s] the Coriolis parameter function of the latitude φ (see Equation (12) for the
definition of pn, pc, ρ, and B) [78] (Figure 6). Nowadays, more sophisticated models
are preferred [125], although Equation (32) remains important in CAT modeling
conditional on the proper estimation of B [126].

• Volcanic eruptions: Apart from pyroclastic and lava flows, the principal hazard arises
from the fall of airborne debris, ranging from blocks to ash, collectively known as
tephra. The ash load is calculated by the pressure p = ρgh [Pa], where ρ = 900 kg/m3

is the density of dry ash and h is the ash layer thickness [m]. The ash thickness can be
estimated from the exponential thinning law

h = h0 exp
(
−log(2)

r
R

)
, (33)

where h0 [m] is the maximum thickness and R [m] is the half-distance (Figure 6). For a
circular footprint,

R = log(2)

√
V

2πh0
, (34)

where V is the volume of tephra [127]. We remain unaware of any simple model to
estimate h0.

2.4.2. Threshold Models of Passive Event Emergence

Some hazard intensity footprints can be generated by applying a threshold on an
environment layer, such as a water level relative to sea surface on topography z(x, y) (storm
surge case) or a temperature limit on the regional wet-bulb temperature TW(x, y) (heatwave
case). A threshold model may have binary outcomes in which a value above threshold
means potential harm and a value below none. The threshold defines the spatial contour of
the hazard footprint.

• Business interruptions: There exists a lower damage threshold of ~5–10% that must
be breeched to result in a business interruption, and an upper threshold, often as low
as 50%, to cause the facility to completely shut down for repair or demolition [30].
This depends on the hazard intensity footprint of the trigger event.

• Hail: The contour of a convective storm is estimated from meteorological indicators.
A hailfall footprint (often elliptical—see Section 2.2.3) then exists if the hailstone size
(often assumed uniform in space) can exceed the threshold above which damage can
occur (usually 2 cm in diameter) [128]. The hazard intensity I is then defined as the
kinetic energy [J/m2]

E = c1lc2 , (35)

with l the maximum hailstone diameter [mm] and empirical parameters of c1 = 0.3241
and c2 = 1.843 in [128].

• Heatwaves: Heat stress can be quantified by the wet-bulb temperature Tw, measured
by covering a standard thermometer bulb with a wetter cloth and fully ventilating it. If
Tw exceeds a 35 ◦C threshold, hyperthermia follows [129]. The heat stress footprint can
be derived from the temperature T map (which could be considered an unbounded
area source; Figure 6) with the empirical expression

Tw = T·atan
(
0.151977

√
ηw + 8.313659

)
+ atan(T + ηw)− atan(ηw−

1.676331) + 0.00391838η
3
2
w·atan(0.023101ηw)− 4.686035,

(36)

where ηw is the relative humidity [130].
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• Storm surges: The so-called “bathtub” model defines a flooded area as all the loca-
tions below a certain elevation that are hydrologically connected to the coast, with the
threshold based on the size of the storm surge event. In other words, it is a projection
of a horizontal flood surface onto the topography (Figure 6). This model tends to
overestimate flood extents [131]. More realistic models are based on hydrodynam-
ics, a simplification of which are cellular automata (see Section 2.4.3). In this case,
the discharge Q [m3/s] must be used as input, defined from

Q = hwv = hw
√

gh, (37)

where h [m] is the height of water above the ground, w [m] the breach width, and
v [m/s] the velocity of the water following the weir equation [29]. The breaching
of a natural or man-made defense must also be modelled, which involves defense
vulnerability analysis between event size assessment and flood modeling [29].

2.4.3. Numerical Models of Dynamic Event Propagation

Some hazard processes cannot easily be simplified. This is especially true for perils
with a diffuse source (see Section 2.2.5). Numerical modeling is then required to describe
the dynamical process through time. In this case, energy does not dissipate but prop-
agates through the extended source (and it is assumed that the event is extinguished
immediately at the border of the source). A static footprint can still be defined with
I(x, y) = max

t
I(x, y, t). For the sake of simplicity and transparency, we here only consider

cellular automata (CA) and their extension to agent-based models (ABM). Only their basic
principles are explained. Other numerical methods could be used but cannot be condensed
in this review. Most CA represent variants of the Sandpile model [132].

It should be noted that the intensity footprint of an event occurring on a diffuse source
usually matches the event size S. The intensity is often binary: burned/not-burned in a
wildfire, electricity off/on in a blackout, or people infected/not-infected in an epidemic,
in which cases the intensity ∑x ∑y I(x, y) = S is a count or an area. When the assets at
risk are also equivalent to the source, there is no convolution operation needed between
hazard and exposure. Modeling the hazard footprint is not required in this case, a good
example being compartmental modeling for epidemics [133] where exposure, hazard, and
losses are people. However, the hazard footprint remains a critical element for some other
perils, for example landslides and river floods for which the intensity is defined as the
soil thickness and water level h at (x, y), respectively. For those specific cases, numeric
modeling is required to describe how mass movement occurs on an irregular surface (in
disregard of the surface representing a diffuse source or not).

Numerical modeling of hazard footprints is necessary or often recommended for the
following perils:

• Armed conflicts (ABM): A war is a cumulation of attacks and counterattacks, whose
dynamics can be explained with Game Theory [36]. Although highly complex and
heterogeneous in nature, some basic rules can be mentioned. The simplest model of
attrition warfare is a set of ordinary differential equations (ODEs) defined as{ dNA

dt = −cBNB
dNB

dt = −cANA
. (38)

where NA is the number of soldiers in the A army, each with offensive firepower cA
(i.e., number of enemy soldiers killed per soldier from A), and NB is the number of
enemy soldiers in the B army, each with offensive fire power cB (called Lanchester
equations after F.W. Lanchester’s 1916 work) [134]. Solving Equation (38) indicates
that the effectiveness of an army rises proportionally to the square of the number of its
soldiers, but only linearly with their fighting ability. While Equation (38) is relevant for
static trench warfare (see other ODEs in [135]), agent-based models can include spatial
variations of forces, decision making, and psychology [136]. Agents are then combat
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units with a mission and situational awareness, among other characteristics. Their
possible states S are alive, injured, or killed. The battlefield is the geographical lattice.
However, the rules would be too numerous to list here [136,137]. A much simpler
ABM for social unrest will later be provided that illustrates how different groups of
individuals may act against each other [35]. The hazard footprint of an armed conflict
would, in theory, be the sum of a heterogenous set of sub-footprints (e.g., explosion
footprints—Equation (26), agents’ individual acts of violence—see social unrest and
terrorist attack cases below, fires, etc.).

• Blackouts (CA): Cascading power failures can be modeled as a Sandpile on a network,
instead of on a regular lattice. In the simplest generic configuration [138], each power
line and generator have a region of safe operation, characterized by a load Z in a node.
Links between nodes define the neighbors to which or from which a load increment is
randomly transferred with {

Zi → Zi ± 1
Zj → Zj ∓ 1

. (39)

when the power load exceeds the margin Zc at node i, then NZ units of load are
transferred (and distributed randomly) to the failed node’s neighbors j:{

Zi → Zi − NZ
Zj → Zj + nZ,j

, (40)

with the condition ∑j nZ,j = NZ. The Sandpile network self-organizes, with cascading
failures potentially leading to large-scale blackouts [138]. The footprint of the blackout
is then defined as all the nodes that failed in one event (Figure 6).

• Crop failures (due to pests, ABM): Pest dynamics can be described by a set of ODEs
that describes inter-species interactions. They can be multiple and play at different
spatiotemporal scales in an ecosystem. The simplest model is the predator–prey
Lotka–Volterra model [139,140]

dNprey
dt = c1Nprey − c2NpreyNpred

dNpred
dt = c3NpreyNpred − c4Npred

(41)

where Nprey is the prey density (e.g., the crops) and Npred the predator density (e.g.,
the pest). Note the resemblance to the model of attrition warfare (Equation (38)). A
far more complex model is the seminal ‘insect outbreak system’ of [141], which—in
its simplest form—describes interactions between a pest (the spruce budworm), its
predator (some birds), and the exposed vegetation (the forest). Several CA and ABM
have been developed for insect pest assessment [32]. Simple agent rules can be
derived from Equation (41) by, for instance, adding a spatial component, random
agent movement, and a contact radius. The intensity of an event could be defined
by the aggregate size of the pest on the crops, S = Npred,max, or the direct damage,
Nprey,min.

• Cyber-attacks (various): Cyber-catastrophes propagate via cascading effects within
IT systems and networks. For data exfiltration cases, the final event size, or event
footprint extent, can be defined on a data breach severity scale function of the number
of lost personal records N (P3, for the range 1000–10,000, to P9, for N > 1 billion [22]).
Cyber-attacks may also cascade into critical infrastructure failures (e.g., blackout—see
above) and socio-economic events [22]. Their footprints (both virtual and physical)
are highly scenario-dependent. However, [22] indicated a 1.6 economic multiplier
when considering loss increase due to cascades in a trading network of companies.
The dynamics of a cyber-attack is mainly governed by the principle of least action,
i.e., striking targets with inferior security, and follows the rules of Game Theory [22].
Various statistical models have been proposed [21,142] which are outside the scope of
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this paper. On the physical side, epidemic models, for example (see below), have been
modified to quantify the spread of a piece of malware [143].

• Epidemics (ABM): The simplest epidemic model is the Susceptible-Infectious-Recovered
(SIR) model [133]. Many more sophisticated models exist [144,145] that derive from
the SIR set of ODEs: 

dSS
dt = −βSSSI

dSI
dt = βSSSI − 1

∆tSI
dSR
dt = 1

∆tSI

, (42)

where SS is the susceptible stock, SI the infected stock, SR the recovered stock, and
Ntot = SS + SI + SR (see Section 2.2.5 and Equation (13) for the definition of β and
∆t). The controlling parameter is the basic reproduction number R0 (Equation (13));
a feedback loop leading to an epidemic occurs for R0 > 1. While Equation (42) can
be solved by numerical integration, agent-based models attempt to capture the real-
world heterogeneous mixing of agents [146,147]. Each stock, or compartment, then
represents a state. In the simplest configuration, agents move randomly and, if an
infected agent is within infection range of a susceptible agent, SS → SI . SI → SR
after ∆t (Figure 6). Such a model can incorporate local knowledge of demographic
data, the healthcare system, and human contact networks [24].

• Floods (river flood, storm surge, tsunami—CA): Flood intensity usually refers to the
inundation depth h. Although h depends on the peak discharge Qp and the shape of
the valley [148], modeling is required to properly consider the variations in topography.
A simple CA can be defined with the following rules:

1. Define the absolute height (or motion cost) as the sum of the altitude and water
height htot = z + h;

2. Calculate the gradient (or weight) between the central cell and von Neumann
neighbor cells (zero weight for neighbors with equal or greater htot);

3. Discharge the central cell with (some of) the water distributed to the neighbor
cells, depending on their weight.

The first discharge occurs at the source of the flood, with h = Qp∆t/w2 where ∆t is
the time interval between two steps and w the cell width. The motion cost can include
soil characteristics, such as roughness and infiltration potential. The weights for water
distribution are a function of the motion cost at the central and neighbor cells [149],
which, in the simplest case, is proportional to the normalized gradients. A similar CA
strategy can apply to tsunamis [150].

• Landslides (CA): The propagation of a landslide can be modelled as a Sandpile with
the environment—or diffuse source—defined by the topography z(x, y) and the soil
thickness h(x, y). The simplest case consists of initiating mass movement in cells
(x0, y0) of unstable slope, which is defined by FS(x, y) < 1 (i.e., seed event, see
Equation (14)) [151]. The mass is transferred downward to the Moore neighbor of
maximum gradient (x1, y1), so that

z(x0, y0)→ z(x0, y0)− ∆h
h(x0, y0)→ h(x0, y0)− ∆h
z(x1, y1)→ z(x1, y1) + ∆h
h(x1, y1)→ h(x1, y1) + ∆h

, (43)

and with mass movement defined, for example, by

∆h = min
(

1
2
[z(x0, y0)− z(x1, y1)]− w tan φstable, h

)
(44)

with φstable the maximum slope angle φ for which FS ≥ 1.5. Since h(x1, y1) increases,
FS(x1, y1) can cross the instability threshold, hence further propagating the landslide
(Figure 6). Many model variants exist [152–155]. Note that the landslide source was
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previously defined as diffuse instead of an area source because part of the soil outside
the seed event may participate in landslide propagation (Equation (43)).

• Social unrest (ABM): A simple model of civil violence [35] consists of two types of
agents: population and cops. Population agents can be in one of three states (quiet
SQ, active SA, or jailed SJ). They have a fixed degree of grievance CG, a fixed degree
of risk aversion CRA, and a vision radius rv,pop. Cops have a vision radius rv,cop. All
agents are also characterized by their location (x, y). There are three rules:

1. General rule: Move to an empty cell (or where someone is jailed);
2. Population rule: If CG − CNR > T , become active (SQ → SA ), otherwise stay

quiet (SQ);
3. Cop rule: arrest a random active agent located within rv,cop (SA → SJ )

where CNR = CRAP is the net risk and T a threshold for rebellion.

P = 1− exp
[
−c

Ncop

NA + 1

]
(45)

is the arrest probability, which depends on the number of cops Ncop and the number
of active agents NA observed within rv,pop (and with c as a normalization constant).
For each jailed agent, the jail term is random and uniform in the range

[
0, ∆tJ,max

]
,

with SJ → SQ once released. Due to the form of Equation (45), a contagion process
can occur, leading to a large-scale riot [35] whose intensity could, in theory, be defined
by the total number of violent individuals NA,max = S. The duration of the riot could
be a second measure of hazard intensity.

• Terrorist attacks (ABM): Large-scale terrorist attacks generally infer the use of explo-
sives (see above). The choice of location for an attack can be explained by Game Theory,
but the modeling of agents is not required. In other types of attacks, such as a group
of terrorists attacking civilians with knifes, an ABM can be formulated. Ref. [156],
for example, combined the effect of such an attack with the risk of stampede in a
closed environment. Terrorists search targets in their radius of vision, while civilians
attempt to flee with direction and speed depending on the amount of blood lost and
collisions with other agents. Variants are too numerous to mention any specific model
in the context of this review.

• Wildfires (incl. urban fires, CA): The so-called Forest Fire model is defined by
four rules:

1. An empty space fills with a tree with probability Ptree (i.e., tree growth);
2. A tree ignites due to a lightning strike of probability Pf ire;
3. A tree burns if at least one von Neumann neighbor is burning;
4. A burning cell turns into an empty cell.

A binary footprint is defined from the clusters of burned cells (Figure 6). Standard mod-
els will include wind direction and windspeed, relative humidity, fuel moisture content, air
temperature, and topography [157–159]. More sophisticated physics-based models will also
include radiation, convection, conduction, and other processes, which can, for example, de-
scribe the pyrocumulus phenomenon associated to some mega-fires [160]. The general rules
previously described can also apply to urban fires under different parameterizations [28].
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Figure 6. Examples of hazard intensity footprints based on analytical expressions (first two columns,
Section 2.4.1), threshold models (central column, Section 2.4.2), and numerical models (last two
columns, Section 2.4.3). DIFFUSION (POINT SOURCES)—Explosion (incl. asteroid impact): over-
pressure field p(x, y) for an ad-hoc mTNT = 1 Mton event (Equation (30)) with a 4-psi dashed contour
in grey and matching 4-psi contour from Equation (28) in purple. Volcanic eruption: Ash depth map
h(x, y) for a V = 2.9 km3 (e.g., 1980, Mt St. Helens) and h0 = 1 m event (Equation (33)) with a 5-cm
dashed contour in orange. DIFFUSION (LINE SOURCES)—Earthquake: Peak ground acceleration
footprint I(x, y) of an M = 6.6 event on the ESHM13 fault segment ITCS073 with depth z = 1 km
(Equation 29) and a dashed 0.1-g contour in dark orange. DIFFUSION (TRACK SOURCES)—Tropical
cyclone: Windspeed map v(x, y) for the IBTrACS 2005 Hurricane Katrina track (Equation (32) with
pn = 1005 mb and log R = 4.0441− 1.2090× 10−2(pn − pc) + 7.2694× 10−3φ [161]) with a dashed
35-m/s wind speed contour in dark blue. THRESHOLD (AREA SOURCE)—Heatwave: Temperature
map of Southwestern France at 3 pm on 17 July 2022 [44] with a dashed 35◦-contour in dark magenta
as (ad-hoc) proxy to the heatwave. THRESHOLD (LINE SOURCE)—Storm surge: Inundation map
on a random topography (with fractal dimension D f = 2.3 [162]) with dashed 0-m altitude level as a
coastline marker. DYNAMIC PROPAGATION (DIFFUSE SOURCES)—Blackout: Ring network with
each node (power node or transmission line) connected to four others and with grey nodes as failed
(i.e., blackout) following the rules of Equations (39) and (40). Epidemic: Infected and susceptible
individuals colored in red and green, respectively, following the rules of Equation (42). Landslide:
Event footprint formed of several patches, following the rules of Equations (43) and (44), on a random
fractal topography (dotted contours with fractal dimension D f = 2.3 [162]). Wildfire: Burned areas
and vegetation represented in red and green, respectively, following the rules of the Forest Fire model.

3. Peril Harmonization via the Concept of Energy Transfer

The present review illustrated the heterogeneity of the physical processes involved
in the occurrence of different perils (e.g., Figure 6). Although they can be grouped by
source type (Section 2.2), size distribution type (Section 2.3), and intensity footprint type
(Section 2.4), event size metrics are not intelligibly exchangeable. An obvious choice for a
common size measure is the energy being released by an event [163,164]. We can indeed
describe the hazard process in terms of energy transfer, as illustrated in Figure 7 (note
that power could be another option). Following the hazard pipeline of standard CAT
modeling, the source represents the energy stock, the size distribution indicates how energy
is released via the emergence of events, and the intensity footprint characterizes how
energy dissipates in the environment. For a localized source, the energy released can only
diffuse in space from the region of high energy concentration that is the source to the
surrounding environment. For a diffuse source, the energy released by the initial event
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(or seed event) can transfer to the environment, which acts as a continuous energy stock
promoting sustained energy propagation. In this case, event size and intensity footprint
are virtually indistinguishable. Nonlinear dissipative systems are known to release energy
sporadically by following a power-law size distribution (Figure 5). This is a property
of systems in the state of self-organized criticality, which is exemplified in the Sandpile
CA [132] and believed to occur for many perils [154,165,166].

Int. J. Environ. Res. Public Health 2022, 19, x  24 of 34 
 

 

3. Peril Harmonization via the Concept of Energy Transfer 

The present review illustrated the heterogeneity of the physical processes involved 

in the occurrence of different perils (e.g., Figure 6). Although they can be grouped by 

source type (Section 2.2), size distribution type (Section 2.3), and intensity footprint type 

(Section 2.4), event size metrics are not intelligibly exchangeable. An obvious choice for a 

common size measure is the energy being released by an event [163,164]. We can indeed 

describe the hazard process in terms of energy transfer, as illustrated in Figure 7 (note that 

power could be another option). Following the hazard pipeline of standard CAT model-

ing, the source represents the energy stock, the size distribution indicates how energy is 

released via the emergence of events, and the intensity footprint characterizes how energy 

dissipates in the environment. For a localized source, the energy released can only diffuse 

in space from the region of high energy concentration that is the source to the surrounding 

environment. For a diffuse source, the energy released by the initial event (or seed event) 

can transfer to the environment, which acts as a continuous energy stock promoting sus-

tained energy propagation. In this case, event size and intensity footprint are virtually 

indistinguishable. Nonlinear dissipative systems are known to release energy sporadi-

cally by following a power-law size distribution (Figure 5). This is a property of systems 

in the state of self-organized criticality, which is exemplified in the Sandpile CA [132] and 

believed to occur for many perils [154,165,166]. 

 

Figure 7. Sketch describing the hazard process in terms of energy transfer, applicable to any peril. 

See text for details. 

Johnston [164] devised a ranking of selected historical events using energy as a com-

mon metric, comparing past earthquakes, volcanic eruptions, tropical cyclones, torna-

does, landslides, and nuclear explosions, as well as a lightning bolt on the low-energy side 

and a hypothetical 10-km asteroid impact on the high-energy side. Despite the importance 

of such a comparison, this work has only been cited 10 times over the past 30 years (Au-

gust 2022 Google Scholar search), suggesting that peril harmonization via energy has yet 

to be addressed. 

Figure 7. Sketch describing the hazard process in terms of energy transfer, applicable to any peril.
See text for details.

Johnston [164] devised a ranking of selected historical events using energy as a com-
mon metric, comparing past earthquakes, volcanic eruptions, tropical cyclones, tornadoes,
landslides, and nuclear explosions, as well as a lightning bolt on the low-energy side and
a hypothetical 10-km asteroid impact on the high-energy side. Despite the importance of
such a comparison, this work has only been cited 10 times over the past 30 years (August
2022 Google Scholar search), suggesting that peril harmonization via energy has yet to be
addressed.

Energy can take many forms, which can all be categorized as kinetic energy (motion) or
potential energy (stored). Kinetic energy includes radiant (electromagnetic) energy, thermal
(heat) energy, motion energy, wave energy, and electrical energy. Potential energy includes
chemical energy, mechanical energy, nuclear energy, and gravitational energy. For natural
perils, and some man-made ones, damage is due to destructive energy. However, for some
man-made perils, the damage can be a lack of energy that is needed for the functioning
of society [167], since energy is fundamentally the ability to work. The energy transforms
from when it is stored in an event source to when it is released in the environment, with
part of the original energy always converted to heat. Table 1 lists the perils considered in
this study and the main energy form(s) they take. This is indicative in nature, as a review
of the proportion of energy types per peril is outside the scope of the present invited article.
For example, for asteroid impacts, a thermal radiation model can be coupled to the blast
model [34], consistent with models of nuclear explosions [118]. For floods, both water
height h (potential energy) and flow velocity v (kinetic energy) lead to damage, which can



Int. J. Environ. Res. Public Health 2022, 19, 12780 24 of 32

be combined with the formula h + v2/(2g) [168]. For volcanic eruptions, thermal energy
depends on mass erupted, which is proportional to the volume V [64], etc.

Table 1. Energy types per peril (indicative only, non-exhaustive).

Peril Event Size S (Section 2.2)→ Intensity I (Section 2.4) Matching Energy Types

Armed conflicts Various, so far aggregated in terms of loss L (Equation (38)) Various, aggregation TBD 1

Asteroid impacts Kinetic energy E (Equation (2))→ overpressure p (Equation (28)) Motion→ wave (air) (+radiant, thermal)
Blackouts E.g., unsupplied electrical energy E (Equation (40)) Electrical (lack of )

Business interruption Revenue loss L Work done (lack of )
Crop failures So far in terms of farming production yield loss L (Equation (41)) Chemical (food) (lack of )
Cyber-attacks E.g., number of data breaches N Stored information (lack of )
Earthquakes Magnitude M (Equations (7) and (8))→ PGA (Equation (29)) Mechanical (elastic)→ wave (seismic)
Epidemics Infection count N (Equation (42)) TBD 1

Explosions (nuclear) Explosive yield E (Equation (4))→ overpressure p (Equation (30)) Nuclear→ wave (air) (+radiant, thermal)
Explosions (other) TNT mass m (Equation (3))→ overpressure p (Equation (30)) Chemical→ wave (air) (+thermal)

Floods Discharge Q (Equations (5) and (37))→ water depth h Motion + gravitational→ gravitational
(+motion)

Hail Hailstone diameter l→ kinetic energy E (Equation (35)) Gravitational→motion
Heatwaves Temperature T Thermal
Landslides Area A or volume V → soil height h Gravitational→ gravitational (+motion)

Social unrest Number of violent individuals N as possible proxy Various (thermal via arson, mechanical)
Storms Windspeed v (Equation (12))→ Equation (32)) Motion (+water latent heat)→motion

Tsunamis Potential energy E (Equation (10))→Water height h Gravitational→ wave (water) (+motion)
Volcanic eruptions Erupted volume V → ash depth h (Equation (33)) Thermal→ gravitational (+thermal)

Wildfires (incl. urban) Burnt area A Thermal (+radiant)

1 Debatable when size and/or intensity are defined in terms of human losses—see text below for a discussion.

Human losses may be used to describe the size and/or intensity of an event, for ex-
ample the number of people infected in an epidemic (which is proportional to fatalities
in the risk component of a CAT model). Heterogeneous types of destructive energy in
armed conflicts, terrorism, and social unrest are also aggregated in terms of human losses
in practice. Relating human loss to energy is, however, tricky. The metabolic heat of
a resting human body could represent the lower bound of the energy loss (~100 W of
power × lifespan [129]). If individuals are considered as workers in a society, their loss
could be defined in terms of lack of work related to muscle power or to their amplified
power by machines [169]. Their role may not be actual physical work but intellectual work,
with a connection to be made between information (as entropy) and energy [169,170]. Note
that an information-based metric could also be used to describe energy loss in a cyber-attack
(Table 1). A life has obviously far more value, which might also be related to information
content, such as memories defining part of an individual’s identity and character. These
considerations significantly stretch the idea of using energy as a simple metric to compare
different perils, but they are worth pointing out.

We already defined event size or hazard intensity in terms of energy for several
perils (see Equations (2)–(4), (10) and (35) and Table 1). A dimensional analysis shows
how different physical parameters of a hazard process can be combined to define S or
I in terms of energy, which has dimension [M1L2T−2]. Ref. [79] did so for hurricanes,
considering power instead of energy. Ref. [72] reviewed methods to assess the energy
released by tsunamis and used dimensional analysis to calculate their power. For wildfires,
the Stefan–Boltzmann constant shows that it must be multiplied by burning area A and
the fourth power of temperature, T4, to connect to a radiative energy measure [171].
The reader can do such an analysis for many of the perils physically described in this
review. Although the standard International System of Units for energy is the Joule, it is
convenient for catastrophes to instead use the explosive power equivalent to one ton of
TNT (trinitrotoluene) (e.g., Equation (3)), which converts to about 4.184·109 Joules.

4. Conclusions

This review is the first to consider so many perils while providing all the equations
necessary for basic hazard assessment in the context of CAT risk modeling. By categorizing
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perils per event source type (Section 2.2), size distribution (Section 2.3), and intensity foot-
print modeling strategy (Section 2.4), we were able to describe a heterogeneous collection of
physical and environmental processes within a common scheme. Different perils can now
be considered different flavors of what we may refer to as the catastrophe object (Figure 7).
This ontological analysis shall help with the development of CAT modeling as a distinct
scientific discipline [4]. By describing any peril in terms of event size S, size distribution
Pr(S), and intensity footprint I(x, y) = f I(S), peril-specific jargon and methods can be
minimized, and silo effects hence reduced. It should also facilitate the implementation of
emergent risks by directly following the CAT modeling paradigm.

One of the main goals of this study was to describe as many perils as possible, but
some are still missing. Those include droughts, toxic release, and financial crises among
others. They could, however, be implemented within the proposed classification strategy
in the future. Although most of the presented models remain very simple, they can be
used as a basis for the development of more sophisticated and more realistic models. These
hazard pipeline templates should help the student of risk to create new CAT models from
the fundamental concepts and laws of CAT risk science. This study has also the potential
to foster multi-risk modeling [172,173]. Ready-made models for basic hazard assessment
indeed provide the inputs necessary to implement more peril interactions than are usually
performed. In regard to global warming, the availability of simple models for many climate-
related perils should also facilitate the implementation of more of them in climate risk
modeling frameworks [16,174] and related system dynamics models [175]. Since global
warming means more energy being transferred into the atmosphere, our approach of peril
harmonization via the concept of energy transfer remains fully valid. Overall, the results of
this review will be helpful for the prototyping of more complex risk problems.

Finally, based on the synopsis provided in Section 2 and the discussion on energy
transfer in Section 3, it is now possible to compare and rank many perils, à la Johnston [164].
This will be the topic of a future article.
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Appendix A

Table A1. List of symbols used in the present article.

Symbol Dimension Description

a various Productivity parameter of the power-law
A [L2] Area
b [1] Power-law exponent in cumulative form (= α− 1)
B [1] Holland parameter for tropical cyclones
c [1] Empirical parameter, scaling factor
C [ML−1T−2] Soil cohesion
d [L] Distance



Int. J. Environ. Res. Public Health 2022, 19, 12780 26 of 32

Table A1. Cont.

Symbol Dimension Description

D [1] Damage, e.g., mean damage ratio
e [1] Euler’s number (≈ 2.718)
E [ML2T−2] Energy
fD - Damage function fD(I, · · ·)
f I - Intensity function f I(S, r, · · ·)
fλ - Frequency function fλ(S)
FS [1] Factor of safety for landslides
g [LT−2] Gravitational acceleration (≈ 9.81 m/s2)
h [L] Height, depth
I various Intensity of event
l [L] Length, diameter
L various Loss (e.g., economic, human)
m [M] Mass
M [1] Magnitude of earthquake
M0 [ML2T−2] Seismic moment
n, N [1] Number, count
p [ML−1T−2] Pressure, overpressure
pr, Pr [1] Probability (non-cumulative, cumulative)
Q [L3T−1] Water discharge
r, R [L] Radius, radial distance
R0 [1] Epidemic basic reproduction number
S various Size of event
t [T] Time increment
T [Q] Temperature
u [L] Displacement
v [LT−1] Velocity
V [L3] Volume
w [L] Width
x, y, z [L] Geographical coordinates
X various Random variable
Z various Electricity load
α [1] Power-law exponent (= b + 1)
β [T−1] Infectious disease transmission parameter
∆h [L] Thickness
∆H [L2T−2] Heat of combustion
∆T [T] Return period, time interval
ε [1] Eccentricity
ζ [1] Pr(X > µ) in GPD
η [1] Fraction, ratio
θ various Parameter set
λ [T−1] Rate of occurrence
µ various GEV and GPD location parameter
ξ [1] GEV and GPD shape parameter
ρ [ML−3] Density
σ various GEV and GPD scale parameter
τ [T] Time
φ [1] Angle
Ci various Characteristics of an agent
Si - State of an agent
T various Threshold
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Table A2. Color scheme per peril category.

Color Category Perils

� Climatological Heatwave
�/� 1 Ecological Crop failure, epidemic, wildfire

� Extraterrestrial Asteroid and comet impact
� Geophysical Earthquake, landslide, volcanic eruption
� Hydrological River flood, storm surge, tsunami

� Meteorological Convective storm (incl. hail, tornado, lightning),
(extra-)tropical cyclone, other storms

� Socio-economic Armed conflict, social unrest, terrorism
� Technological Blackout, cyber-attack, explosion, fire

1. For footprints, ecological environment in dark olive green and active footprint in red (see Figure 6).
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