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Abstract: Addressing global climate change has become a broad consensus in the international
community. Low-carbon economic development, as an effective means to address global climate
change issues, has been widely explored and practiced by countries around the world. As major
carbon emitting countries, there has been much focus on China, Japan and South Korea, and it is of
practical significance to study their low-carbon economic development. To further measure their trend
of low-carbon economic development, this paper firstly constructs a low-carbon economic efficiency
evaluation index system and uses the Slack Based Measure (SBM) model. This is a kind of data
envelopment analysis (DEA) method, with undesirable output based on global covariance to measure
the low-carbon economic efficiency of 94 provincial-level administrative divisions (PLADs) in China,
Japan, and South Korea from 2013 to 2019. Subsequently, this paper uses 10 mainstream machine
learning models and combining them with Grid Search with Cross Validation (GridSearchCV)
methods, selects the machine learning model with the best prediction effect. The model predicts
the low-carbon economic efficiency of PLADs in China, Japan, and South Korea from 2020 to 2024
based on the parameter configuration for the best prediction effect. Finally, according to the research
results, this paper proposes targeted advice for regionalized cooperation on low-carbon economic
development in China, Japan, and South Korea to jointly address global climate change issues.

Keywords: low-carbon economy; low-carbon economic efficiency; data envelopment analysis;
machine learning

1. Introduction

Global climate change is one of the most serious challenges to modern human survival
and development. It not only brings about natural problems such as rising temperatures
and melting glaciers, but also triggers global issues such as food security, energy security
and ecological security. Carbon dioxide, as the main greenhouse gas, is the most important
cause of global climate change. In the process of coping with global climate change,
countries are striving to explore effective paths for synergistic development of economic
growth and low carbon. Since the concept of “low carbon economy” was first proposed in
the British Energy White Paper “Our Energy Future: Creating a Low Carbon Economy” [1]
in 2003, this economic model has been advocated by various countries. A low carbon
economy refers to a more efficient use of resources to improve the standard of living and
quality of life. It advocates a sustainable economic development model based on low
energy consumption, low pollution and low emissions. It can be seen that the low carbon
economy is an important way to guarantee people’s quality of life and achieve sustainable
economic development, and it is also an inevitable choice to mitigate the negative effects
brought by global climate change. The low-carbon economic efficiency studied in this
paper examines the coordinated relationship between capital, labor and energy inputs
and economic outputs under the CO2 emission constraint, which is an important way to
measure the results of low-carbon economic development in each region.
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The Asia-Pacific region is currently the region with the highest CO2 emission, among
which China is currently the largest CO2 emitter in the world, and Japan and South Korea
are also among the top CO2 emitters [2]. As the core force of cooperation in the Asia-
Pacific region, China, Japan, and South Korea have strong complementarities in resources,
markets, and technologies to jointly address global climate change. As an effective unit of
global cooperation and a useful supplement to promote international cooperation, regional
cooperation between China, Japan and South Korea will also have a significant impact on
addressing global climate change issues. This paper examines the low-carbon economic
efficiency of provincial-level administrative divisions in China, Japan and South Korea, with
the aim of exploring the low-carbon economic development in each region and proposing
a targeted cooperation program for regional low-carbon economic development.

This paper selects labor force, capital stock, total energy consumption, regional GDP
and carbon dioxide emissions as input-output indicators, thus constructing a low-carbon
economic efficiency evaluation index system. The research uses a Slack Based Measure
(SBM) model with undesirable output based on global covariance to measure the low-
carbon economic efficiency values of 94 provincial-level administrative divisions (PLADs)
in China, Japan, and South Korea from 2013 to 2019. The efficiency value series from
2013–2017 and 2014–2018 are used as the input of the training samples, and the efficiency
values of 2018 and 2019 are used as the output of the training samples, resulting in a
total of 188 training samples. Based on the training samples, this paper uses 10 main-
stream machine learning models combined with the Grid Search with Cross Validation
(GridSearchCV) method to find the model with the best prediction effect. Based on the
model and parameter configuration under the best prediction effect, this paper predicts
the low-carbon economic efficiency values of PLADs in China, Japan, and South Korea for
the period of 2020–2024. Finally, on the basis of the results, this paper proposes targeted
recommendations to promote low-carbon economic development in China, Japan, and
South Korea.

The main contributions of this paper are: (1) The current studies of cross-country
low-carbon economic efficiency mainly use national-level data, and researches on PLADs
are mainly focused on China. There is a lack of cross-country research focusing on PLADs,
and this research will be further expanded in this paper. (2) This paper adopts the SBM
model with undesirable output based on global covariance, which can make the efficiency
comparison of decision-making units in all years based on the same effective frontier,
and achieve the comparability of decision-making units among different years. (3) The
data envelopment analysis (DEA) method is based on past input-output indicators to
evaluate the current low-carbon economic efficiency, and it is difficult to use this method
to predict future efficiency. This paper uses 10 machine learning models combined with
GridSearchCV method to compare predictions for the PLADs in China, Japan and South
Korea from 2020 to 2024. The prediction is based on the model and parameter configuration
under the best prediction effect, which makes up for the shortcomings of DEA method
and provides a reference for scientific decision-making. (4) This study is a methodological
expansion in the field of efficiency evaluation and prediction, combining DEA methods
and machine learning methods to form an efficiency prediction model with good fitting
ability and generalization ability.

This paper is structured as follows: The second part discusses relevant literature in this
field. The third part introduces the basic models and methods involved in this study. The
fourth part designs the evaluation index system and performs pre-processing of the index
data. The fifth part analyzes the evaluation and prediction results of low-carbon economic
efficiency. The sixth part summarizes the main conclusions and makes corresponding
suggestions based on the findings. Finally, this paper points out the limitations of the
current study and provides a perspective on future research directions.
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2. Literature Review
2.1. Economic Efficiency Evaluation Studies
2.1.1. Low-Carbon Economic Efficiency Evaluation Indicators

This paper calculates low-carbon economic efficiency through input and output indi-
cators, so the settings of input and output indicators are very important for the evaluation.
This paper summarizes the existing relevant research literature, and Table 1 outlines the in-
put and output indicators in this literature, which will provide the basis for the construction
of the low-carbon economic efficiency evaluation index system in this paper.

Table 1. Input and output indicators in some papers on low-carbon economic efficiency.

Authors/Year Inputs Outputs

Hu and Kao (2007) [3] Labor input, capital input, energy input Gross domestic product
Zhou and Ang (2008) [4] Capital stock, labor force Gross domestic product, CO2 emissions

Wang et al. (2012) [5] Capital input, labor input, energy input The gross product value of industrial enterprises
above a designated size

Wang et al. (2013) [6] Energy consumption, labor input, capital input Gross domestic product, CO2 emissions

Wang and Wei (2014) [7] Labor input, capital input, energy input
Total volume of industrial sulfur dioxide

emissions, total volume of industrial carbon
dioxide emissions

Wang et al. (2014) [8] Capital stock, energy consumption, labor Gross domestic product, environmental pollutants

Wang and Feng (2014) [9] Capital stock, labor, energy consumption Gross domestic product, positive
environmental indicator

Zhang et al. (2017) [10] Labor employment, capital stock, total
energy consumption Gross domestic product, CO2 emissions

Dong et al. (2017) [11] Capital stock, labor, CO2 emissions Gross domestic product
Cheng et al. (2019) [12] Labor, capital stock, energy consumption Gross domestic product, CO2 emissions

Li et al. (2020) [13] Labor, capital stock, energy consumption Gross domestic product, CO2 emissions
Wang et al. (2021) [14] Labor, capital stock, energy consumption Gross domestic product, CO2 emissions

Xue et al. (2022) [15] Manpower input, capital investment,
energy input Gross domestic product, CO2 emissions

Niu et al. (2022) [16] Labor force, capital stock, total
energy consumption Gross regional product, carbon dioxide emissions

2.1.2. Low-Carbon Economy Efficiency Evaluation Methods

In terms of low carbon economic efficiency evaluation methods, the frontier analysis
method is the mostly used. It mainly includes two methods, Stochastic Frontier Analysis
(SFA) [17] and DEA [18]. The difference between them is that SFA method is a parametric
method, which needs to set the production function form in advance. If the function form is
set wrong, it will cause measurement errors. However, the DEA method is a non-parametric
method, which does not need to set the function form in advance, and it is applicable to the
production function model with multiple inputs and outputs. Therefore, the DEA method
is the most popular method for low-carbon economic efficiency evaluation.

Xi and Li [19] measured the low-carbon economic efficiency of seven economic regions
in China in 2006 and 2007, using the CCR model based on constant returns to scale in the
DEA method. Fan and Fang [20] considered the undesirable output indicators, and took
the reciprocal of the undesirable output indicators as the desirable output to complete
the evaluation index system. Then they used the CCR model and the BCC model based
on variable returns to scale to evaluate the level of circular economic development of
Chinese provinces in 2017, and compared the scale efficiency of the two models. However,
it should not be ignored that the CCR and BCC models are radial DEA models, which
cannot measure the full range of slack variables. Liu et al. [21] measured CO2 emission
efficiency of 30 provinces in China from 2000 to 2011 using the SBM model with undesirable
output. The above models yielded an efficiency value of up to 1. If there are many decision-
making units in an efficient state, these models will not be able to further distinguish them.
Some studies [10,22,23] combined super efficiency and SBM models to form a Super-SBM
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model to distinguish decision-making units with an efficiency value of 1. The efficiency
values measured by the radial DEA, the SBM and Super-SBM models are all based on cross-
sectional data, and each set of cross-sectional data constitutes a different effective frontier. If
intertemporal comparisons are required, the efficiency values cannot simply reflect changes
in their own technical efficiency, but also include the impact of changes in the effective
frontier on the efficiency values. Therefore, some scholars used the window DEA model
to evaluate low-carbon economic efficiency [24–26], which took all the decision-making
units in the window period as the reference set and constructed the effective frontier, so as
to achieve the intertemporal comparability within the window period. Nevertheless, the
window DEA model still does not achieve a global covariance.

In summary, this paper selects the SBM model with undesirable output based on
global covariance to evaluate the low-carbon economic efficiency in China, Japan and
South Korea. The model makes the efficiency measurement more accurate compared with
the radial DEA model and achieves the comparability among decision-making units in
different years. There are 21 PLADs achieving efficiency values of 1 in different years,
which accounts for only 3.19% of the 658 evaluation results (94 decision-making units per
year × 7 years = 658), so the research does not use Super-SBM model for evaluation. This
also avoids its computational drawback, i.e., the problem of no feasible solution may occur.

2.2. Low-Carbon Economic Efficiency Predicting Studies

There are very limited studies on low-carbon economic efficiency prediction, and most
studies stop at evaluation. Niu et al. [16] used a time-recursive neural network model
to predict the efficiency of carbon emissions and achieved good prediction results. Some
scholars have focused on predicting the input or output variables in the evaluation index
system of low-carbon economic efficiency. Wang and Li [27] used a GM(1,1) gray prediction
model to predict energy consumption in Hebei, China. Pao et al. [28] used an improved gray
prediction model to predict carbon dioxide emissions, energy consumption, and economic
growth in China. In addition to gray models, some scholars used an Autoregressive
Integrated Moving Average (ARIMA) model for forecasting: Nyoni and Bonga [29] used
annual time series data of CO2 emissions in India from 1960–2017 to predict the emissions
in the period 2018–2030. Ning et al. [30] selected Beijing, Henan, Guangdong, and Zhejiang
in China, and used ARIMA model to forecast CO2 emissions and trends in the next three
years based on CO2 emissions data from 1997–2017. Lotfalipour [31] used a gray prediction
model and an ARIMA model to predict CO2 emissions in Iran, comparing the prediction
effects of two models, and found that the gray prediction model has better prediction
effects. With the rise of machine learning techniques, these are widely used in the field of
forecasting. Rehman et al. [32] used a neural network model for forecasting CO2 emissions
from energy, transport and manufacturing sectors of Pakistan. Ma et al. [33] applied a
support vector machine approach for forecasting building energy consumption in China
and achieved good prediction results with generalization ability of the model. Bakay
and Ağbulut [34] used electricity production data of Turkey to forecast greenhouse gas
emissions based on deep learning, support vector machine and artificial neural network
algorithms. Further, some studies have compared machine learning methods with ARIMA
models [35–37] and also machine learning methods with gray prediction models [38–40],
where machine learning methods possess higher prediction accuracy. Both gray prediction
models and ARIMA are essentially linear regression models, whereas machine learning
models can generally handle both linear and nonlinear relationships in sample data, and
this feature determines the greater advantage of machine learning models in prediction.

Through the literature review, it was found that there are very limited related re-
searches in the field of low-carbon economic efficiency prediction, but that the prediction
of some input or output indicators in the low-carbon economic efficiency evaluation index
system have achieved satisfactory results, which provide support for efficiency predic-
tion. This paper further selects 10 mainstream machine learning models for prediction of
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low-carbon economic efficiency; the models cover traditional machine learning models,
tree-based machine learning models and integrated machine learning models.

3. Modeling Method
3.1. SBM Model with Undesirable Output Based on Global Covariance
3.1.1. SBM Model with Undesirable Output

In 1978, Charnes, Cooper, and Rhodes [18] proposed the first DEA model, the CCR
model, which was named using the three individuals’ initials of last names. They extended
the concept of single-input, single-output engineering efficiency to the evaluation of the
relative efficiency of multiple inputs and multiple outputs. Since the CCR model belongs
to the radial DEA model, the efficiency values of non-effective decision-making units only
reflect the part of equal proportional improvement, while the part of slack improvement
is not reflected in the measurement. For consideration of improvements, Tone [41] pro-
posed the non-oriented SBM model with the planning equation of Equation (1), which
measures the inefficiency condition from both input and output perspectives. This model
takes into account the input-output slack problem, which makes the measurement results
more accurate.

minρ =
1− 1

m

m
∑

i=1

s−i
xik

1+ 1
q

q
∑

r=1

s+r
yrk

s.t.
n
∑

j=1
xijλj + s−i = xik

n
∑

j=1
yg

rjλj − s+r = yrk

s−, s+, λ ≥ 0

(1)

In the formula, ρ is the objective function, that is, the efficiency value of the decision-
making unit; its value range is (0, 1]. xik(i = 1, 2, . . . , m) represents the ith input of the
kth decision-making unit. yrk(r = 1, 2, . . . , q) represents the rth output of the kth decision-

making unit. λ represents the weight vector, and (
n
∑

j=1
xijλj,

n
∑

j=1
yg

rjλj) is the objective value

of the kth decision-making unit being evaluated. s− and s+ is the input slack variable and
output slack variable. When and only when ρ = 1, s− = 0 and s+ = 0, the decision-making
unit is valid. Otherwise, the decision unit is relatively non-valid.

To solve the problem that the SBM model cannot measure the efficiency of the decision-
making unit with undesirable outputs, Tone [42] then proposed the SBM model with
undesirable outputs, and its planning equation is Equation (2). Compared to Equation (1),
q1 outputs are further divided into q1 desirable outputs and q2 undesirable outputs, s−, sg

and sb are input slack variables, desirable output slack variables, and undesirable output
slack variables, respectively. The decision-making unit is valid when and only when ρ = 1,
s− = 0, sg = 0 and sb = 0.

minρ =
1− 1

m

m
∑

i=1

s−i
xik

1+ 1
q1+q2

(
q1
∑

r=1

sg
r

yg
rk
+

q2
∑

r=1

sb
r

yb
rk

)

s.t.
n
∑

j=1
xijλj + s−i = xik

n
∑

j=1
yg

rjλj − sg
r = yg

rk

n
∑

j=1
yb

rjλj + sb
r = yb

rk

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

(2)
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3.1.2. Global Covariance Method

Since the efficiency values measured by the SBM model with undesirable output are
based on different effective frontiers in different years, it is not possible to compare the
efficiency values in different years. This paper combines the global covariance method [43],
which treats the same decision-making unit in different years as different decision-making
units, so as to construct an effective frontier for efficiency measurement based on all
panel data, and this method can achieve comparability of decision-making units between
different years.

3.2. Machine Learning Models

Based on the regression problem, this paper selects 10 mainstream machine learning
models with supervised learning. These are then combined with GridSearchCV method
for parameter tuning and prediction. Machine learning models cover traditional machine
learning models, tree-based machine learning models and integrated machine learning
models, and this section briefly introduces the main contents of these models.

3.2.1. Linear Regression (LR)

LR [44] is a typical regression model that predicts the target y by Equation (3), where ŷ
is the predicted value of the predicted target y, x =

(
x1, · · · xp

)
is the input characteristic

variable, w =
(
w1, · · ·wp

)
is the weight vector, and w0 is the intercept term in the linear

regression model.
ŷ(w, x) = w0 + w1x1 + . . . + wpxp (3)

3.2.2. Support Vector Machine (SVM)

SVM [45] is a supervised algorithm that can be used for classification and regression
problems, and it shows many unique advantages in solving small sample, nonlinear, and
high-dimensional pattern recognition. The objective function of the SVM model is shown in
Equation (4), where n represents n data points, w is a normalization vector, C represents the
penalty parameter, and the kernel function f (x) is used to measure the similarity between
two data points xi and xj. The common types of kernel functions include: linear kernels
function, radial basis function, polynomial kernels function, and sigmoid kernels function.

argmin
w

{
1
n

n

∑
i=1

max{0, 1− yi f (xi)}+ CwTw

}
(4)

3.2.3. Back Propagation Neural Network (BPNN)

BPNN [46] is a widely used neural network model, consisting of an input layer, an
implicit layer, and an output layer. Through the training of sample data, BPNN constantly
corrects the network weights and thresholds, and iterates repeatedly until it reaches the
minimum error sum of squares and approximates the desired output.

3.2.4. Decision Tree (DT)

DT is a tree structure, and this paper adopts the CART (Classification And Regression
Tree) algorithm [47] for the regression problem. CART mainly divides the feature space
into a number of non-overlapping regions, and each division cell has a specific output.
By assigning the sample data to a cell according to its characteristics, the corresponding
prediction value is obtained, which is the arithmetic average of the values taken by each
sample in the training set in that region. The measure of the division is the mean square
error of the labeled and regression values of the samples, positioned in Equation (5), where
n represents the training sample set with n samples, yi represents the labeled value of the
ith sample, and y represents the mean value of all samples.

E(D) =
1
n

n

∑
i=1

(yi − y)2 (5)
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3.2.5. Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Extreme Gradient
Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM)

Single decision trees are often unsatisfactory for fitting complex data, while integrated
learning methods based on decision trees use decision trees as individual learners. By com-
bining multiple learners, integrated learning models based on decision trees can generally
obtain better generalization performance than individual learners. Common integrated
decision tree-based learning methods include RF, GBDT, XGBoost and LightGBM.

RF [48] adds the random selection of features to the random sampling of samples
in Bagging. When dealing with regression problems, for one input sample, N trees will
have N outputs, and the mean value of each decision tree output is the final output of the
random forest.

GBDT [49] is an iterative decision tree algorithm. The core of GBDT is that in each
iteration, the latter decision tree is trained using the residuals of the previous decision
trees following the negative gradient. The negative gradient residuals can be calculated by
Equation (6).

rti = −
[

∂L(y, f (xi))

∂ f (xi)

]
f (x)= ft−1(x)

(6)

where rti denotes the negative gradient of sample i at the iteration of tth times. L(y, f (xi))
represents the loss function, which can be expressed as Equation (7).

L(y, f (x)) = log(1 + exp(−y f (x)) (7)

XGBoost [50] adds a regularization term to the objective function to avoid overfitting.
The model is shown in Equation (8), where k denotes the number of decision trees in the
model, xi denotes the ith input sample, ŷi denotes the predicted value of the training sample
after the kth iteration, fk(xi) denotes the predicted value of the kth tree, and F is the set of
all decision trees.

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (8)

LightGBM [51] takes GBDT as its core. It uses Gradient-based One-Side Sampling
(GOSS) and Exclusive Feature Bundling (EFB) to adapt the algorithm to high-dimensional
data and improve its computational efficiency by making some improvements on sampling
methods and feature merging.

3.2.6. Adaptive Boosting (AdaBoost) and Bootstrap Aggregating (Bagging)

In addition to the machine learning model based on decision trees in Section 3.2.5,
there are two mainstream integrated learning models, namely AdaBoost and Bagging.

Adaboost [52] was proposed by Freund and Schapire. The base classifier of this
model is weighted, and the final prediction result is a weighted sum of the base classifier
prediction results. The weight values of the training samples are dynamically updated by
each iteration, and the samples with large error rates will have their weight values increased
in the next iteration. The model focuses on the training samples with large error rates.

Bagging [53] performs multiple sampling of the training sample set, each with a put-
back. Then it uses the sample dataset formed by each sampling to train the base learner,
and calculates the mean value of the prediction results of each base learner as the final
prediction result. Compared with the way Adaboost decides the weight values of the
training samples based on the error rate situation, Bagging considers each training sample
to have equal weight values.

3.2.7. GridSearchCV

To be able to fit and predict better, we need to tune the parameters of the machine learn-
ing model. GridSearchCV [54] provides us with a parameter tuning method, which consists
of two parts: grid search and cross validation. Among them, grid search searches for
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combinations of parameter configurations, i.e., adjusting different parameters sequentially
in steps within a specified parameter range, and using the adjusted parameter combinations
to train the machine learning model, so as to find the parameter combination with the
highest accuracy in the test set. In this paper, the coefficient of determination R2 is used as a
measure to evaluate the accuracy of the regression model. For regression models, R2 is the
best indicator of the predictive effect because Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) both suffer from the absence of upper and lower bounds [55]. R2

represents the ratio of the explained sum of squares of deviations to the total sum of squares
in the model, and the formula is expressed as Equation (8). y(i) is the true value, ŷ(i) is the

predicted value, ∑
i
(ŷ(i) − y(i))

2
is the error arising from the prediction, and ∑

i
(y− y(i))

2
is

the error arising from the mean. When our prediction model does not have any error, R2

gets the maximum value of 1. When our model is equal to the benchmark model, R2 = 0.
When R2 < 0, it means that the model is not as good as the benchmark model.

R2 = 1−
∑
i

(
ŷ(i) − y(i)

)2

∑
i

(
y− y(i)

)2 (9)

In order to avoid the influence of the randomness of the training samples on the
accuracy, in this paper, the R2 of parameter combinations in each group is evaluated by
grid search combining the ten-fold cross-validation method. We divide all the data in the
training set into 10 equal parts, take 1 part as the validation set, and the remaining 9 parts as
the training set for cross-validation. Finally, we get 10 R2, and take their mean values as the
final R2 of parameter combinations. We take the one with the highest R2 as the parameter
setting of the subsequent prediction model.

4. Evaluation Index System and Research Data
4.1. Decision-Making Unit

This paper takes 94 PLADs in China, Japan and South Korea as decision-making units,
including: (1) Provinces, municipalities, and autonomous regions in mainland China. Due
to the lack of data in the Tibet Autonomous Region, there are 30 decision-making units in
total; (2) Prefectures in Japan, a total of 47 decision-making units; (3) Special city, special
municipality, metropolitan cities, provinces and special autonomous provinces in South
Korea, a total of 17 decision-making units.

4.2. Low-Carbon Economic Efficiency Evaluation Index System

According to the literature review above in “2.1.1 Low-Carbon Economic Efficiency
Evaluation Indicators”, this paper finally selects labor, capital stock and total energy
consumption as input indicators, the desirable output indicator is GDP, and the undesirable
output indicator is carbon dioxide emissions. The specific measurement methods and units
of the input-output indicators are shown in Table 2.

4.3. Data Sources and Descriptive Statistics

The data sources of input-output indicators are shown in Table 3. The indicator data
from the websites of the statistical bureaus of provinces, municipalities and autonomous
regions in China can be accessed through the website of the National Bureau of Statistics of
China, so the links to the websites of the statistical bureaus of provinces, municipalities
and autonomous regions in China are not cited.
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Table 2. Low-carbon economic efficiency evaluation index system.

Input-Output Indicator Measurement Unit

Input indicator 1 Labor Number of employed population at
the end of the year in PLADs ten thousand people

Input indicator 2 Capital Stock
Real Gross Fixed Capital in PLADs

(deflated with 2015 as the
base period)

RMB 100 Million Yuan

Input indicator 3 Total Energy
Consumption

Total energy consumption
in PLADs

Ten thousand ton of Standard
Coal Equivalent

Desirable output indicator GDP Real GDP in PLADs (deflated with
2015 as the base period) RMB 100 Million Yuan

Undesirable output
indicator Carbon Dioxide Emission Carbon dioxide emissions in PLADs Million Tons

Table 3. The data sources of input-output indicators.

Input-Output
Indicators China Japan South Korea

Input indicator 1 Labor
The Bureau of Statistics of
provinces, municipalities

and autonomous regions [56]

Portal Site of Official
Statistics of Japan [57]

Korean Statistical
Information Service [58]

Input indicator 2 Capital Stock National Bureau of Statistics
of China [56]

Cabinet Office, Economic
and Social Research

Institute [59]

Korean Statistical
Information Service [58]

Input indicator 3 Total Energy
Consumption

The Bureau of Statistics of
provinces, municipalities

and autonomous regions [56]

Agency for Natural
Resources and Energy [60]

Korea Energy Statistical
Information System [61]

Desirable output
indicator GDP National Bureau of Statistics

of China [56]

Cabinet Office, Economic
and Social Research

Institute [59]

Korean Statistical
Information Service [58]

Undesirable
output indicator

Carbon Dioxide
Emission

China Emission Accounts
and Datasets (CEADs) [62]

Agency for Natural
Resources and Energy [60]

Korea Energy Statistical
Information System [61]

Table 4 provides descriptive statistics on the input-output indicators. The statistical
items include the mean, standard deviation, minimum value, maximum value, and coef-
ficient of variation. The statistical samples are divided into PLADs of China, PLADs in
Japan, and PLADs in South Korea, and a full sample of China, Japan and South Korea. This
paper believes that the following three aspects are worth paying attention to:

1. The average value of labor, capital stock, and total energy consumption in Chinese
PLADs is 2.87, 2.75, and 2.69 times the average of the full sample. The average GDP
as an indicator of desirable output is 1.99 times the average of the full sample, and the
average carbon dioxide emission as an indicator of undesirable output is 2.86 times
the average of the full sample. The average value of labor, capital stock, and total
energy consumption in the PLADs of Japan are 0.11, 0.17 and 0.16 times the average
of the full sample, respectively. The average GDP of the output indicator is 0.56 times
that of the full sample, and the average value of carbon dioxide emissions is 0.10 times
that of the full sample. The average value of labor, capital stock, and total energy
consumption in the PLADs of South Korea is 0.16, 0.19 and 0.33 times the average of
the full sample. The average GDP is 0.47 times the average of the full sample, and
the average of carbon dioxide emissions is 0.21 times the average of the full sample.
The multiple of the mean of labor force in Chinese PLADs/the mean of full sample
is 26.38 and 17.70 times that of Japan and South Korea, respectively. The multiple
of the mean of capital stock in Chinese PLADs/the mean of full sample is 15.91 and
14.56 times that of Japan and South Korea, respectively. The multiple of the mean of
total energy consumption in Chinese PLADs/the mean of full sample mean is 16.33
and 8.16 times that of Japan and South Korea. The multiple of the average of GDP
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in Chinese PLADs/the mean of full sample is 3.56 and 4.23 times that of Japan and
South Korea. In addition, the multiple of the mean of carbon dioxide emissions in
Chinese PLADs/the mean of full sample is 28.18 times that of Japan and 13.93 times
that of South Korea. It can be seen that the multiple of the overall mean of PLADs in
China/the mean of full sample is much higher than that of Japan and South Korea in
terms of input and undesirable output indicators, while the GDP as an indicator of
desirable output is only 3.56 and 4.23 times higher than that of Japan and South Korea.
Higher input costs and undesirable outputs, as well as lower desirable outputs, will
lead to inefficiencies in a low-carbon economy.

2. The standard deviation, minimum value and maximum value show the data distribu-
tion of the PLADs of China, Japan, and South Korea, also the full sample.

3. The coefficient of variation is used as a relative index to measure the degree of
dispersion of data, which can compare the degree of dispersion among several samples
under variables with the same dimension but greatly different mean values. Statistics
show that among the five input-output indicators, the PLADs of China is smaller
than Japan and South Korea, indicating that the distribution difference of various
input-output indicators among China is smaller than that of Japan and South Korea.
The coefficient of variation of Japanese PLADs is larger than that of South Korea in
terms of labor force, capital stock, total energy consumption, and GDP. As for carbon
dioxide emissions, the coefficient of variation of Japanese PLADs is smaller than that
of South Korea, but the difference between the two is small, only 0.04.

Table 4. Descriptive statistics of input-output indicators.

Input-Output
Indicators Sample Mean Standard

Deviation Minimum Maximum Coefficient
of Variation

Labor (ten
thousand person)

PLADs of China 2755.57 1772.51 314.20 6995.00 0.64
PLADs of Japan 104.45 149.05 9.91 1071.46 1.43

PLADs of South Korea 155.69 165.87 6.01 704.30 1.07
Full Sample 959.82 1590.51 6.01 6995.00 ——

Capital Stock (RMB
100 Million Yuan)

PLADs of China 26,144.13 19,876.77 2045.71 97,440.07 0.76
PLADs of Japan 1643.43 1981.59 265.66 13,826.07 1.21

PLADs of South Korea 1796.19 1850.10 291.74 9813.82 1.03
Full Sample 9490.43 16,076.81 265.66 97,440.07 ——

Total Energy
Consumption (Ten

thousand ton of Standard
Coal Equivalent)

PLADs of China 15,205.01 8863.27 1720.33 41,390.00 0.58
PLADs of Japan 931.17 945.00 143.38 4810.90 1.01

PLADs of South Korea 1862.99 1722.99 61.94 5995.70 0.92
Full Sample 5655.17 8300.57 61.94 41,390.00 ——

GDP (RMB
100 Million Yuan)

PLADs of China 24,927.67 19,916.15 1702.01 97,953.88 0.80
PLADs of Japan 7001.23 10,155.97 909.19 72,968.51 1.45

PLADs of South Korea 5886.29 6578.05 395.10 27,885.23 1.12
Full Sample 12,520.79 16,058.50 395.10 97,953.88 ——

Carbon Dioxide
Emission (Million tons)

PLADs of China 384.67 320.51 44.05 1700.04 0.83
PLADs of Japan 13.65 15.83 1.19 83.67 1.16

PLADs of South Korea 27.62 33.04 0.41 120.45 1.20
Full Sample 134.59 249.78 0.41 1700.04 ——

4.4. Data Pre-Processing
4.4.1. China

The units of input-output indicators of all samples in China, Japan and South Korea
need to be consistent. This paper takes Chinese statistical data units as the benchmark,
so only the units of samples from Japan and South Korea need to be adjusted. The data
pre-processing of the Chinese part mainly goes through the following two steps:

1. The capital stock and GDP collected in this paper are nominal values, which have
not been adjusted for inflation and cannot accurately measure the actual level of the



Int. J. Environ. Res. Public Health 2022, 19, 12709 11 of 28

indicators. Therefore, this paper uses 2015 as the base period for constant prices and
calculates the actual value in other years. The reason for choosing 2015 is that the data
of Japan and South Korea on these two indicators are the actual values obtained by
deflating 2015 as the base period. To facilitate the calculation, those two indicators
in China are also deflated with 2015 as the base period. The specific calculation
method is that the data value in 2015 × the GDP deflator in 2016 compared with 2015,
and the actual value in 2016 can be obtained. The calculation method is also used
for 2017–2019. For the real values in 2014, derived from 2015 data values/the GDP
deflator in 2015 compared with 2014, and the same for 2013. Among them, the GDP
deflator measures the current price level relative to the price in base year, and the data
comes from the website of the National Bureau of Statistics of China [56].

2. China no longer publishes capital stock data after 2018, so the average growth rate of
the previous three years is used, that is, the growth rate in 2015 compared with 2014,
the growth rate in 2016 compared with 2015, and the growth rate in 2017 compared
with 2016. The average growth rate is used as the growth rate of 2018 compared with
2017, to supply data for this indicator in 2018. Take the growth rate of 2016 compared
with 2015, the growth rate of 2017 compared with 2016, and the growth rate of 2018
compared with 2017 to calculate the average value. The average growth rate is used
as the growth rate of 2019 compared with 2018, and the data requirement for this
indicator in 2019 is fulfilled.

4.4.2. Japan

The data pre-processing of the Japanese part mainly goes through the following
6 steps:

1. Convert the unit of labor force from thousand to ten thousand.
2. Complete the missing data of capital stock. In terms of capital stock indicators, Aomori,

Fukui, Nara, Okinawa and Tokushima lack data in 2019, so the average growth rate
of the previous three years is used, that is, the growth rate in 2016 compared with
2015, the growth rate in 2017 compared with 2016, and the average growth rate in
2018 compared with 2017. The average growth rate is used as the growth rate in 2019
compared with 2018, so as to supply data for this indicator in 2019.

3. Complete the missing data of GDP. In terms of GDP indicators, Aomori, Fukui, Nara,
Okinawa, and Tokushima still lack data for 2019.The filling method of the indicator
data in 2019 is consistent with the method of the capital stock indicator.

4. Convert the unit of capital stock and GDP. The unit of capital stock and regional gross
domestic product, one million yen is converted into one hundred million yuan, and is
converted by the standard price in the foreign exchange rate announced by the Bank
of China on December 31 of that year. The data comes from the Bank of China [63].

5. Convert the unit of total energy consumption. The unit of total energy consumption,
converting trillion Joules to ten thousand tons of coal equivalent. According to the
International Energy Agency conversion standard [64], 1 trillion joules = 34.12 tonne(s)
of coal equivalent (tce); after conversion to tce, divide by 10,000 to convert to ten
thousand tons of coal equivalent.

6. Convert the unit of carbon dioxide emissions. The molecular weight of carbon is 12,
and the molecular weight of carbon dioxide is 44. 44/12 = 3.67, which means that
1 ton of carbon can produce about 3.67 tons of carbon dioxide after burning in oxygen.
The carbon emissions in Japan (unit: 103 t) is converted into carbon dioxide emissions
(unit: ton t), the indicator needs to be multiplied by 3.67 and then divided by 103 to
complete the conversion.

4.4.3. South Korea

The data pre-processing of the South Korean part mainly goes through the following
five steps:

1. Convert the unit of labor force from thousand to ten thousand.
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2. Convert the unit of capital stock and regional GDP indicators. One million won is con-
verted into one hundred million yuan. The standard price in the foreign exchange rate
announced by the Bank of China on December 31 of that year is used for conversion.
The data comes from the Bank of China [63].

3. Complete the data of Sejong in 2013. Among the indicators of total energy con-
sumption and carbon dioxide emissions, Sejong lacks data in 2013. In 2013, the two
indicators of Sejong were collected by Chungcheongnam-do. This paper calculates
the growth rate of 2015 compared with 2014, the growth rate of 2016 compared with
2015, and the growth rate of 2017 compared with 2016. The three-year average growth
rate is calculated as the growth rate of 2014 compared with 2013, so as to calculate the
data of Sejong in 2013, and deduct the corresponding data from Chungcheongnam-do
to correct the 2013 data of this indicator for Chungcheongnam-do.

4. Convert the unit of total energy consumption. According to the conversion stan-
dard of the International Energy Agency [64], 1 toe= 1.429 tce, and the unit of total
energy consumption is 103 tonne(s) of oil equivalent (toe), which is 1429 tce, and
divided by 10,000 after conversion to tce. The result obtained is ten thousand tons of
coal equivalent.

5. Convert the unit of carbon dioxide emissions. Since there is no published data
on carbon dioxide emissions, this paper calculates CO2 emissions based on CO2
emission factors from the combustion of different energy sources published by the
Intergovernmental Panel on Climate Change [65]. First, convert the energy unit,
and 1000 toe is converted into 41.87 TJ [64], then multiplied by the CO2 emission
factor (unit: Kg/TJ) to obtain the kilogram carbon dioxide emission value. According
to the standard 1 ton = 1000 Kg, it is converted into ten thousand tons of carbon
dioxide emissions.

5. Empirical Research
5.1. Analysis of Low-Carbon Economic Efficiency Evaluation Results

This paper uses Matlab to construct an SBM model with undesirable output based
on global covariance. Firstly, this paper measures the low-carbon economic efficiency
values of 94 PLADs of China, Japan, and South Korea from 2013 to 2019. The measurement
result of 1 indicates that the low-carbon economic efficiency of that division is effective
relative to others, and the lower the result, the lower the low-carbon economic efficiency
of that division. Further, the PLADs of China, Japan, and South Korea whose average
low-carbon economic efficiency does not reach 1 are selected for redundancy analysis of
input indicators and undesirable output indicators, and for deficiency analysis of desirable
output indicators.

As can be seen from Table 5, the average low-carbon economic efficiency in China
from 2013 to 2019 was 0.094, which was far lower than the effective value of 1, but the
change trend showed a steady rise. Guangdong and Jiangsu both achieved efficiency
values of 1.000 in 2019, and the eastern PLADs such as Beijing, Shanghai and Fujian
ranked in the forefront of the carbon emission efficiency value, while the average efficiency
of Heilongjiang, Jilin and Liaoning in the northeast region ranked at the lower end for
China, even not reaching 0.1. Overall, Chinese low-carbon economy efficiency is higher
in the eastern region, followed by the western region, lower in the central region, and the
lowest in the northeastern region. The overall low-carbon economic efficiency is lower,
and the efficiency values of most PLADs are even less than 0.1. There is much room
for improvement.
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Table 5. Evaluation results of low carbon economic efficiency value in China from 2013 to 2019.

2013 2015 2017 2019 7-Year
Average

Redundancy
Rate of
Labor

Redundancy
Rate of
Capital
Stock

Redundancy
Rate of Total
Energy Con-

sumption

Deficiency
Rate of

Regional
GDP

Redundancy
Rate of

CO2
Emissions

Guangdong 0.082 0.148 0.527 1.000 0.417 52.63% 47.04% 56.51% 0.00% 58.42%

Jiangsu 0.086 0.095 0.424 1.000 0.366 50.17% 54.16% 63.81% 0.00% 69.80%

Beijing 0.115 0.122 0.130 0.138 0.126 77.11% 79.38% 88.42% 0.00% 91.34%

Shanghai 0.100 0.108 0.117 0.125 0.113 78.31% 79.91% 91.91% 0.00% 95.11%

Fujian 0.079 0.082 0.094 0.100 0.088 87.60% 80.65% 92.57% 0.00% 96.64%

Zhejiang 0.080 0.085 0.090 0.094 0.087 87.10% 81.08% 93.02% 0.00% 96.99%

Hainan 0.087 0.086 0.087 0.087 0.087 92.75% 80.09% 88.75% 0.00% 96.05%

Chongqing 0.075 0.079 0.089 0.089 0.083 89.27% 81.00% 92.99% 0.00% 95.93%

Hubei 0.069 0.073 0.079 0.084 0.076 90.56% 81.82% 93.77% 0.00% 96.63%

Shaanxi 0.070 0.073 0.077 0.080 0.075 90.38% 81.26% 94.58% 0.00% 98.97%

Jiangxi 0.070 0.073 0.077 0.080 0.075 92.71% 81.11% 92.81% 0.00% 96.82%

Hunan 0.067 0.071 0.077 0.083 0.074 91.66% 81.51% 93.70% 0.00% 96.74%

Anhui 0.069 0.072 0.076 0.078 0.074 93.78% 79.74% 93.42% 0.00% 98.15%

Yunnan 0.067 0.070 0.073 0.075 0.071 94.24% 79.27% 94.78% 0.00% 97.26%

Sichuan 0.065 0.068 0.072 0.076 0.070 92.94% 81.09% 94.82% 0.00% 96.63%

Henan 0.063 0.066 0.070 0.074 0.068 93.68% 81.30% 94.54% 0.00% 98.03%

Shandong 0.062 0.065 0.070 0.076 0.068 90.34% 83.70% 95.46% 0.00% 98.68%

Guizhou 0.062 0.064 0.068 0.070 0.066 93.95% 81.12% 95.44% 0.00% 98.64%

Xinjiang 0.064 0.065 0.066 0.067 0.066 91.84% 81.25% 97.46% 0.00% 99.02%

Tianjin 0.064 0.067 0.062 0.063 0.065 89.23% 87.46% 94.54% 0.00% 97.15%

Guangxi 0.059 0.062 0.064 0.065 0.063 94.19% 83.40% 94.55% 0.00% 97.41%

Qinghai 0.060 0.061 0.063 0.065 0.062 93.91% 83.41% 95.14% 0.00% 95.33%

Gansu 0.059 0.060 0.062 0.063 0.061 95.51% 81.61% 95.62% 0.00% 98.08%

Shanxi 0.057 0.059 0.060 0.064 0.060 93.17% 82.41% 97.55% 0.00% 99.70%

Hebei 0.056 0.058 0.060 0.063 0.059 93.06% 83.43% 97.02% 0.00% 98.68%

Inner
Mongolia 0.054 0.056 0.061 0.064 0.059 89.99% 86.26% 97.49% 0.00% 99.44%

Ningxia 0.058 0.058 0.058 0.059 0.058 94.88% 82.60% 96.31% 0.00% 98.78%

Liaoning 0.053 0.056 0.058 0.063 0.057 90.73% 86.49% 96.76% 0.00% 98.87%

Jilin 0.051 0.054 0.059 0.060 0.056 92.69% 87.72% 94.63% 0.00% 98.18%

Heilongjiang 0.053 0.054 0.057 0.060 0.056 93.65% 85.38% 96.01% 0.00% 98.74%

China 0.069 0.074 0.101 0.139 0.094 88.40% 80.22% 92.15% 0.00% 95.21%

From the input indicators in Table 5, non-DEA effective PLADs of China have a
large degree of input redundancy, indicating that the input indicators have low utilization
efficiency. Among them, the input redundancy rate of total energy consumption is the
largest. Except for Guangdong and Jiangsu which reached the efficiency value of 1 in 2019,
the input redundancy of total energy consumption in other divisions is close to 90%. These
divisions need to significantly reduce energy consumption to improve their low-carbon
economic efficiency. There is also redundancy in the labor and capital stock, which greatly
affects the efficiency. From the perspective of output indicators, the deficiency rate of the
desirable output GDP is 0, that is, there is no need to further pursue high-speed growth of
GDP to achieve high low-carbon economic efficiency. There is a problem of excessive CO2
emissions. Except for Guangdong and Jiangsu, the inefficiency of CO2 emissions in other



Int. J. Environ. Res. Public Health 2022, 19, 12709 14 of 28

divisions is at a high redundancy level of more than 90%, that is, excessive CO2 emissions
have a great effect on urban low-carbon economic efficiency.

As shown in Table 6, the average low-carbon economic efficiency in Japan from 2013
to 2019 reaches 0.533, and the change trend shows the characteristics of rising fluctuations.
Among them, Tokushima, Tokyo, and Nara achieved an efficiency value of 1.000 in 2019.
From the 7-year data, their average low-carbon economic efficiency is also in the top 5. An-
other two divisions in the top five are Tottori and Yamanashi, with efficiency values of 0.932
and 0.837, while Ehime, Yamaguchi, Hiroshima, Oita and Okayama are the last 5 divisions
in the 7-year average ranking of low-carbon economic efficiency. Compared with China,
the low-carbon economic efficiency value of Japan has been greatly improved, but there are
still large differences between divisions, and there is room for further improvement.

Table 6. Evaluation results of low carbon economic efficiency value in Japan from 2013 to 2019.

2013 2015 2017 2019 7-Year
Average

Redundancy
Rate of
Labor

Redundancy
Rate of
Capital
Stock

Redundancy
Rate of Total
Energy Con-

sumption

Deficiency
Rate of

Regional
GDP

Redundancy
Rate of

CO2
Emissions

Tokushima 1.000 1.000 0.844 1.000 0.939 6.17% 0.00% 4.04% 0.00% 6.30%

Tottori 0.856 1.000 0.833 0.955 0.932 8.02% 0.00% 9.34% 0.00% 2.49%

Tokyo 1.000 0.758 0.848 1.000 0.875 19.35% 0.08% 7.67% 0.00% 9.59%

Yamanashi 0.700 0.829 0.904 0.907 0.837 10.23% 1.39% 11.52% 0.00% 21.85%

Nara 0.623 0.700 0.697 1.000 0.779 25.39% 0.00% 18.07% 0.00% 21.38%

Saga 0.645 0.740 0.741 0.751 0.715 25.72% 0.00% 23.77% 0.00% 33.73%

Kochi 0.599 0.681 0.679 0.733 0.709 14.46% 0.05% 24.28% 0.00% 48.90%

Shimane 0.601 0.664 0.736 0.647 0.676 34.00% 0.00% 24.22% 0.00% 38.95%

Yamagata 0.570 0.634 0.684 0.675 0.644 38.84% 0.00% 27.97% 0.00% 41.84%

Nagasaki 0.577 0.603 0.634 0.638 0.625 24.51% 0.76% 37.89% 0.00% 52.88%

Fukui 0.533 0.648 0.571 0.600 0.604 25.73% 1.24% 42.17% 0.00% 54.83%

Kyoto 0.534 0.556 0.618 0.622 0.577 23.67% 1.43% 49.73% 0.00% 60.67%

Nagano 0.439 0.552 1.000 0.514 0.571 21.14% 12.05% 49.18% 0.00% 61.88%

Shiga 0.494 0.586 0.603 0.585 0.559 14.54% 9.14% 54.65% 0.00% 64.87%

Ishikawa 0.523 0.579 0.613 0.551 0.556 35.35% 3.20% 45.24% 0.00% 59.65%

Gunma 0.491 0.559 0.590 0.594 0.547 10.71% 14.78% 54.96% 0.00% 68.08%

Tochigi 0.515 0.529 0.622 0.589 0.545 17.08% 6.72% 56.95% 0.00% 68.77%

Kagawa 0.518 0.521 0.551 0.562 0.542 32.03% 7.13% 45.54% 0.00% 64.74%

Kagoshima 0.487 0.498 0.545 0.599 0.541 37.32% 0.00% 49.72% 0.00% 62.58%

Okinawa 0.530 0.523 0.543 0.624 0.537 42.01% 1.84% 44.65% 0.00% 63.21%

Toyama 0.402 0.530 0.504 0.586 0.510 22.49% 7.74% 61.87% 0.00% 72.17%

Akita 0.499 0.532 0.508 0.539 0.509 45.52% 1.69% 51.46% 0.00% 63.56%

Miyagi 1.000 0.396 0.411 0.477 0.507 24.79% 23.30% 56.87% 0.00% 67.54%

Miyazaki 0.499 0.464 0.557 0.508 0.507 35.76% 6.43% 54.14% 0.00% 67.89%

Kumamoto 0.507 0.516 0.488 0.504 0.507 28.09% 8.57% 57.67% 0.00% 70.68%

Hokkaido 0.434 0.402 0.398 0.473 0.506 32.65% 1.79% 66.45% 0.00% 74.55%

Wakayama 0.413 0.424 0.432 0.426 0.498 19.35% 23.00% 62.92% 0.00% 72.73%

Shizuoka 0.467 0.470 0.473 0.499 0.471 33.28% 14.08% 62.40% 0.00% 69.62%

Gifu 0.409 0.466 0.502 0.469 0.463 30.59% 14.42% 64.82% 0.00% 74.26%

Fukushima 0.463 0.437 0.488 0.478 0.461 22.33% 27.47% 60.74% 0.00% 73.86%
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Table 6. Cont.

2013 2015 2017 2019 7-Year
Average

Redundancy
Rate of
Labor

Redundancy
Rate of
Capital
Stock

Redundancy
Rate of Total
Energy Con-

sumption

Deficiency
Rate of

Regional
GDP

Redundancy
Rate of

CO2
Emissions

Osaka 0.438 0.430 0.484 0.489 0.457 34.33% 10.90% 65.70% 0.00% 76.24%

Saitama 0.425 0.427 0.439 0.482 0.453 40.10% 16.38% 60.78% 0.00% 69.00%

Iwate 0.444 0.436 0.479 0.496 0.452 26.06% 27.11% 59.68% 0.00% 76.45%

Niigata 0.411 0.417 0.438 0.475 0.440 29.18% 18.77% 68.72% 0.00% 77.46%

Aomori 0.423 0.457 0.414 0.419 0.432 55.39% 15.87% 54.40% 0.00% 69.04%

Aichi 0.428 0.382 0.421 0.445 0.418 32.30% 21.14% 69.60% 0.00% 82.23%

Fukuoka 0.432 0.378 0.413 0.426 0.408 39.34% 17.08% 70.46% 0.00% 83.11%

Hyogo 0.403 0.370 0.399 0.438 0.407 30.43% 19.15% 75.20% 0.00% 86.96%

Ibaraki 0.374 0.374 0.441 0.415 0.397 22.89% 22.32% 82.28% 0.00% 89.76%

Mie 0.420 0.413 0.375 0.365 0.387 37.19% 12.32% 82.43% 0.00% 89.16%

Kanagawa 0.378 0.373 0.367 0.406 0.383 40.27% 15.76% 78.68% 0.00% 87.87%

Chiba 0.403 0.379 0.403 0.395 0.379 20.63% 22.26% 89.71% 0.00% 94.68%

Ehime 0.360 0.370 0.403 0.367 0.370 45.00% 21.31% 75.98% 0.00% 84.12%

Yamaguchi 0.372 0.366 0.375 0.372 0.369 30.21% 20.45% 87.28% 0.00% 93.27%

Hiroshima 0.358 0.364 0.383 0.346 0.367 34.26% 27.19% 79.16% 0.00% 89.99%

Oita 0.375 0.357 0.397 0.331 0.358 44.84% 10.41% 87.37% 0.00% 93.27%

Okayama 0.337 0.341 0.342 0.338 0.340 37.38% 23.87% 88.69% 0.00% 94.21%

Japan 0.513 0.520 0.544 0.556 0.533 28.96% 10.86% 54.40% 0.00% 64.91%

Judging from the redundancy and deficiency of Japanese input-output indicators, the
redundancy rate of total energy consumption is the largest, followed by the redundancy
rate of labor, and the redundancy rate of capital stock is the lowest. Several divisions
with a 7-year average of low-carbon economic efficiency rank among the top 9, including
Tokushima, Tottori, Nara, Saga, Shimane and Yamagata, and the capital stock redundancy
rate of these 6 divisions is 0. In addition, the capital stock redundancy rate of Kagoshima
is also 0, and this indicator does not need to be further optimized. The remaining input
indicators for the above divisions and three input indicators for the remaining divisions
still exist, so there is room for further improvement in the resource allocation efficiency.
The desirable output GDP of the 47 PLADs is not insufficient, but the CO2 emissions are
a significant factor affecting the low-carbon economic efficiency of most divisions. The
redundancy rate of CO2 emissions in Chiba, Yamaguchi, Oita and Okayama has reached
more than 90%.

As shown in Table 7, the average low-carbon economic efficiency of South Korea from
2013 to 2019 is 0.337, and the overall change showed a trend of slight recovery after decline.
The average low-carbon economic efficiency of Sejong in the seven-year period ranks first
within the country, reaching 0.796, which is close to the efficiency value of 1. In contrast, in
other PLADs, the average low-carbon economic efficiency is lower than 0.5, showing great
differences between regions. The overall low-carbon economic efficiency value in South
Korea is at a low level, and the efficiency values in most divisions have not reached the
effective value.
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Table 7. Evaluation results of low carbon economic efficiency value in South Korea from 2013 to 2019.

2013 2015 2017 2019
7-Year
Aver-
age

Redundancy
Rate of
Labor

Redundancy
Rate of
Capital
Stock

Redundancy
Rate of Total
Energy Con-

sumption

Deficiency
Rate of

Regional
GDP

Redundancy
Rate of

CO2
Emissions

Sejong 1.000 0.772 0.696 0.686 0.796 27.87% 6.39% 15.96% 0.00% 10.35%

Jeju 0.517 0.450 0.381 0.427 0.442 66.41% 4.32% 51.33% 0.00% 69.94%

Seoul 0.439 0.420 0.439 0.468 0.436 54.73% 3.15% 66.64% 0.00% 68.56%

Gwangju 0.412 0.434 0.423 0.438 0.426 69.99% 0.00% 62.25% 0.00% 62.33%

Daejeon 0.377 0.368 0.374 0.377 0.374 67.41% 8.29% 70.29% 0.00% 74.90%

Daegu 0.325 0.309 0.331 0.343 0.327 76.41% 26.70% 67.46% 0.00% 64.14%

Ulsan 0.335 0.327 0.309 0.318 0.324 31.02% 31.40% 93.58% 0.00% 96.29%

Busan 0.299 0.313 0.303 0.305 0.304 70.39% 27.97% 74.70% 0.00% 78.32%

Gyeongs
angnam-do 0.295 0.281 0.278 0.302 0.290 64.98% 37.83% 76.61% 0.00% 77.31%

Chungcheon
gbuk-do 0.272 0.281 0.268 0.281 0.277 64.08% 42.76% 76.47% 0.00% 80.82%

Gyeonggi-do 0.278 0.263 0.262 0.278 0.270 62.77% 41.27% 81.56% 0.00% 82.23%

Jeollabuk-do 0.245 0.245 0.282 0.287 0.263 76.28% 40.96% 75.05% 0.00% 73.02%

Gyeongs
angbuk-do 0.245 0.244 0.247 0.259 0.251 59.17% 40.25% 89.85% 0.00% 94.55%

Gangwon-do 0.246 0.237 0.251 0.260 0.249 72.66% 44.87% 76.71% 0.00% 83.71%

Incheon 0.250 0.245 0.244 0.248 0.245 70.37% 37.55% 85.23% 0.00% 90.19%

Chungch
eongnam-do 0.241 0.226 0.228 0.255 0.237 50.21% 50.57% 93.84% 0.00% 96.96%

Jeollanam-do 0.212 0.221 0.234 0.220 0.226 59.27% 44.13% 95.69% 0.00% 97.90%

South Korea 0.352 0.332 0.326 0.338 0.337 61.41% 28.73% 73.72% 0.00% 76.56%

The redundancy of labor and total energy consumption has a great impact on the
low-carbon economic efficiency. The redundancy rate of capital stock is relatively small,
and the redundancy rate of capital stock in Busan is 0. Ulsan, Chungcheongnam-do, and
Jeollanam-do have a redundancy rate of over 90% in total energy consumption, and Daegu,
Busan, Jeollabuk-do, Gangwon-do, and Incheon have over 70% redundancy in labor. There
is still much room for improvement in terms of input factors. The deficiency rate of the
desirable output GDP is 0, and the undesirable output CO2 emissions have a great impact
on the low-carbon economic efficiency of South Korea. Among them, the CO2 emissions
of Ulsan, Gyeongsangbuk-do, Incheon, Chungcheongnam-do and Jeollanam-do have an
impact of more than 90% on the low-carbon economy efficiency.

5.2. Analysis of Low-Carbon Economic Efficiency Prediction Results

In this paper, the efficiency value sequences of 94 PLADs in the two groups of China,
Japan and South Korea from 2013 to 2017 and 2014 to 2018 are used as the input of the
training samples, and the efficiency values of 2018 and 2019 are used as the output of the
training samples, forming a total of 188 training samples. Based on the training samples,
this paper uses 10 mainstream machine learning models combined with the GridSearchCV
method to find the model with the best prediction effect; the coefficient of determination,
R-squared, is used as the evaluation index to measure the prediction effect. According to
Table 8, the model with the best prediction effect is the XGBoost model, and the parameter
configuration of all models is shown in Table A1 of Appendix A. Then, we use the XGBoost
model to predict the low-carbon economic efficiency value of the PLADs of China, Japan
and South Korea from 2020 to 2024. The codes of all models are developed in Python
language and run using PyCharm 11 software.
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Table 8. R-squared of machine learning models.

Machine Learning Models R2

Linear Regression 0.791
SVR 0.803

BPNN 0.832
Decision Tree 0.837

Random Forest 0.848
GBDT 0.813

XGBoost 0.869
LightGBM 0.789
AdaBoost 0.855
Bagging 0.847

Average Value 0.828

The prediction results for China are shown in Table 9. The low-carbon economic
efficiency value of most divisions will decline slightly from 2020 to 2021, but the decline is
limited, and it will rise steadily after 2022. The PLADs where the low-carbon economic effi-
ciency will improve from 2020 to 2024 covers most of the eastern coastal central provinces,
as well as a small number of western provinces, including Guangdong, Jiangsu, Shanghai,
Fujian, Hubei, Shaanxi, Jiangxi, Hunan, Anhui, Yunnan, Sichuan, and Shandong. Among
them, the increase in Guangdong, Jiangsu and Fujian is larger than that of other provinces,
and for Jiangsu the increase is from 0.901 to 0.978, which is close to the effective value
of 1. As the developed provinces in the eastern coastal area, they are in the forefront of
the country in terms of technology and market for low-carbon economic development.
Correspondingly, the efficiency has also achieved steady growth. It is worth noting that the
western region, as the industrial area of “high-carbon economy” in the past, has benefited
from the vigorous development of new energy in Yunnan and Sichuan. The divisions where
the low-carbon economic efficiency drops significantly cover most of the western provinces,
such as Gansu, Guizhou, Qinghai, Guangxi and other provinces. Most of the provinces in
the western region of China adopt an extensive development model. Especially after the
industrial transfer from the eastern provinces to the western provinces, a large number
of industrial businesses have settled in the western region. At the same time, they also
produced a large amount of CO2 emissions. Excessive undesirable output has become
one of the bottlenecks restricting the sustainable development of the western provinces.
The low-carbon economic efficiency in Northeast China and a few eastern provinces do
not change significantly. Among them, the three provinces in Northeast China are lim-
ited by geographical location and resource conditions, and the slow transition process
results in unsmooth development of a low-carbon economy. As the leading provinces of
economic development, Beijing, Tianjin and Hebei have stagnated in the development of a
low-carbon economy. The reason is that the products of these provinces are mainly steel,
chemicals, building materials, automobiles, etc., which are the main heavy industries, and
the corresponding energy consumption intensity is relatively large.
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Table 9. Prediction results of the low-carbon economic efficiency value in China from 2020 to 2024.

2020 2021 2022 2023 2024

Guangdong 0.901 0.721 0.791 0.896 0.927

Jiangsu 0.901 0.835 0.783 0.921 0.978

Beijing 0.129 0.129 0.129 0.129 0.129

Shanghai 0.122 0.128 0.129 0.129 0.129

Fujian 0.093 0.094 0.105 0.115 0.115

Zhejiang 0.093 0.091 0.088 0.087 0.093

Hainan 0.080 0.080 0.080 0.080 0.080

Chongqing 0.085 0.082 0.080 0.080 0.080

Hubei 0.078 0.079 0.080 0.080 0.080

Shaanxi 0.078 0.079 0.079 0.080 0.080

Jiangxi 0.077 0.078 0.078 0.080 0.080

Hunan 0.077 0.077 0.077 0.078 0.080

Anhui 0.076 0.076 0.077 0.077 0.078

Yunnan 0.072 0.072 0.071 0.072 0.075

Sichuan 0.071 0.072 0.072 0.072 0.074

Henan 0.069 0.069 0.069 0.067 0.067

Shandong 0.069 0.069 0.071 0.070 0.073

Guizhou 0.067 0.064 0.062 0.061 0.059

Xinjiang 0.063 0.060 0.059 0.059 0.059

Tianjin 0.060 0.060 0.058 0.058 0.058

Guangxi 0.060 0.059 0.058 0.058 0.058

Qinghai 0.060 0.059 0.058 0.058 0.058

Gansu 0.059 0.058 0.058 0.058 0.058

Shanxi 0.059 0.058 0.058 0.058 0.058

Hebei 0.058 0.058 0.058 0.058 0.058

Inner
Mongolia 0.059 0.058 0.058 0.058 0.058

Ningxia 0.058 0.058 0.058 0.058 0.058

Liaoning 0.058 0.058 0.058 0.058 0.058

Jilin 0.058 0.058 0.058 0.058 0.058

Heilongjiang 0.058 0.058 0.058 0.058 0.058

China 0.128 0.120 0.121 0.129 0.132

In order to further examine the dynamic evolution and regional differences of low-
carbon economic efficiency in each PLAD from 2020 to 2024, this paper analyzes it through
kernel density estimation. Figure 1 shows the kernel density estimation of low-carbon
economic efficiency values in 30 Chinese PLADs. From 2020 to 2024, the peak height of
efficiency values drops significantly and the range of change shifts to the right, indicating
that the kernel density corresponding to the peak decreases and the efficiency value in-
creases. In other words, the divisions whose low-carbon economic efficiency value is less
than 0.1 will decrease, and the efficiency values of most divisions will show an upward
trend. The second wave peak shows a trend of moving to the right as a whole, indicating
that the efficiency values of the divisions that were previously at a high level will be further
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improved. In general, the low-carbon economic efficiency value of China will increase, and
the number of PLADs that achieve effective condition will also increase.
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Table 10 shows the prediction results of low-carbon economic efficiency values for
47 PLADs in Japan from 2020 to 2024. The overall efficiency in Japan shows a steady
upward trend, with the national average efficiency rising from 0.558 to 0.576. More than half
of the divisions will achieve the improvement of efficiency. Among them, the eight divisions
that will reach the efficiency value of 0.900 in 2024 include Tokushima, Tottori, Tokyo,
Yamanashi, Nara, Saga, Kochi and Shimane. Among the above divisions, except Tokyo,
which is the leading city in domestic economic development, the economic development of
the other divisions is at a relatively low level. Most of them are dominated by agricultural
development, so CO2 emissions are relatively low, and the low-carbon economic efficiency
values are high. Divisions that do not achieve efficiency growth include Daban, Kyoto,
Gunma, Nagano and other cities in the forefront of economic development, as well as
low-income areas represented by Akita, Wakayama, and Tottori. From the perspective of
energy consumption in the divisions, the coal and crude oil used in most low-efficiency
divisions are significantly higher than the national average, while most of the high-efficiency
divisions use clean energy represented by nuclear energy, so there is a significant imbalance.
For the overall efficiency value distribution, the low-carbon economic efficiency values of
PLADs of Japan are relatively high, which also shows that clean energy is now the main
feature of the Japanese energy system.

Further analysis of the kernel density estimation of low-carbon economic efficiency
prediction in Japan is shown in Figure 2. The peak height of the density curve in 2020–2024
has a slight decrease, that is, the PLAD near the peak of 0.5 has a small decrease. The
second peak increases significantly in 2024, that is, the number of divisions near the peak
value of 0.9 increases. Overall, low-carbon economic efficiency in Japan shows a steady
upward trend; in particular, the PLADs with high efficiency values increase significantly
compared to 2020.
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Table 10. Prediction results of the low-carbon economic efficiency value in Japan from 2020 to 2024.

2020 2021 2022 2023 2024

Tokushima 0.887 0.909 0.976 0.911 0.907

Tottori 0.948 0.902 0.923 0.934 0.926

Tokyo 0.902 0.916 0.940 0.929 0.912

Yamanashi 0.922 0.949 0.937 0.910 0.916

Nara 0.924 0.929 0.931 0.932 0.930

Saga 0.859 0.915 0.975 0.933 0.916

Kochi 0.741 0.746 0.784 0.852 0.970

Shimane 0.707 0.744 0.801 0.795 0.928

Yamagata 0.688 0.710 0.728 0.742 0.796

Nagasaki 0.683 0.674 0.654 0.665 0.694

Fukui 0.606 0.609 0.609 0.608 0.600

Kyoto 0.612 0.606 0.606 0.600 0.606

Nagano 0.579 0.575 0.535 0.567 0.577

Shiga 0.600 0.593 0.596 0.608 0.603

Ishikawa 0.592 0.601 0.580 0.607 0.607

Gunma 0.602 0.598 0.601 0.610 0.598

Tochigi 0.601 0.581 0.602 0.606 0.602

Kagawa 0.555 0.538 0.584 0.569 0.564

Kagoshima 0.563 0.599 0.602 0.601 0.597

Okinawa 0.556 0.539 0.576 0.572 0.568

Toyama 0.541 0.552 0.587 0.568 0.572

Akita 0.521 0.487 0.490 0.502 0.495

Miyagi 0.460 0.478 0.471 0.464 0.467

Miyazaki 0.550 0.522 0.501 0.525 0.514

Kumamoto 0.499 0.484 0.474 0.481 0.472

Hokkaido 0.496 0.542 0.566 0.520 0.532

Wakayama 0.500 0.531 0.493 0.483 0.491

Shizuoka 0.488 0.472 0.478 0.477 0.469

Gifu 0.474 0.477 0.473 0.466 0.472

Fukushima 0.480 0.466 0.470 0.467 0.467

Osaka 0.477 0.473 0.476 0.474 0.470

Saitama 0.462 0.476 0.478 0.462 0.471

Iwate 0.486 0.463 0.476 0.483 0.463

Niigata 0.462 0.474 0.480 0.459 0.471

Aomori 0.434 0.451 0.450 0.460 0.458

Aichi 0.456 0.452 0.456 0.467 0.457

Fukuoka 0.433 0.453 0.447 0.463 0.458

Hyogo 0.466 0.453 0.463 0.464 0.469

Ibaraki 0.416 0.437 0.449 0.458 0.456
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Table 10. Cont.

2020 2021 2022 2023 2024

Mie 0.402 0.399 0.452 0.441 0.456

Kanagawa 0.414 0.435 0.425 0.435 0.429

Chiba 0.398 0.615 0.486 0.469 0.499

Ehime 0.372 0.389 0.360 0.375 0.364

Yamaguchi 0.367 0.369 0.336 0.362 0.365

Hiroshima 0.368 0.386 0.383 0.347 0.359

Oita 0.322 0.353 0.334 0.324 0.324

Okayama 0.336 0.324 0.324 0.322 0.321

Japan 0.558 0.567 0.571 0.570 0.576
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The prediction results of the low-carbon economic efficiency values in South Korea
from 2020 to 2024 are shown in Table 11. The average low-carbon economic efficiency of
South Korea rises steadily, from 0.340 in 2020 to 0.353, and more than half of the PLADs
achieve an increase in the efficiency value. Among them, the efficiency value of Sejong
increases from 0.782 to 0.963, which is close to the effective value of 1. As the administrative
capital of South Korea, Sejong always pays attention to green development. It is committed
to the development of green agriculture, clean energy, IT, biotechnology and other cutting-
edge urban industries. It is a model city for carbon reduction in South Korea. Jeju, Daejeon,
Chungcheongbuk-do and other divisions also achieve low-carbon economic efficiency
improvements. Jeju, as a test area for electric vehicles in South Korea, is supported by
various government policies and hopes to make it a net zero carbon island. Daejeon is
the science and technology center of South Korea, and it mainly develops the tertiary
industry, while Chungcheongbuk-do is dominated by agriculture. The CO2 emissions
of these industries are relatively low, which is conducive to the low-carbon economic
development in these divisions. Divisions with reduced low-carbon economic efficiency,
represented by Incheon and Gyeonggi-do, all face the same problem. The expansion of
urbanized coastlines leads to an increase in commuting distances and other changes, which
further increase energy consumption and CO2 emissions. Industrial cities such as Daegu
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and Ulsan will reduce their low-carbon economic efficiency values due to a large amount
of petrochemical energy consumption.

Table 11. Prediction results of the low-carbon economic efficiency value in South Korea from
2020 to 2024.

2020 2021 2022 2023 2024

Sejong 0.728 0.745 0.843 0.907 0.963

Jeju 0.468 0.455 0.466 0.497 0.473

Seoul 0.458 0.46 0.468 0.455 0.458

Gwangju 0.498 0.477 0.483 0.479 0.487

Daejeon 0.368 0.371 0.372 0.373 0.370

Daegu 0.325 0.320 0.308 0.302 0.303

Ulsan 0.305 0.303 0.297 0.287 0.301

Busan 0.298 0.295 0.296 0.296 0.296

Gyeongsangnam-do 0.283 0.283 0.282 0.283 0.295

Chungcheongbuk-do 0.280 0.282 0.282 0.282 0.282

Gyeonggi-do 0.275 0.274 0.273 0.273 0.273

Jeollabuk-do 0.279 0.28 0.281 0.281 0.283

Gyeongsangbuk-do 0.264 0.266 0.266 0.267 0.267

Gangwon-do 0.249 0.264 0.260 0.265 0.266

Incheon 0.252 0.242 0.243 0.243 0.243

Chungcheongnam-do 0.225 0.231 0.229 0.242 0.238

Jeollanam-do 0.222 0.224 0.227 0.214 0.210

South Korea 0.340 0.340 0.346 0.350 0.353

Figure 3 shows the estimated kernel density of the low-carbon economy efficiency
prediction in South Korea. The peak in 2024 drops significantly and the change interval
becomes larger, indicating that the number of provincial-level administrative divisions with
an efficiency value of 0.3 will decrease. The efficiency of some divisions will increase, but
at the same time the divisions with efficiency values less than 0.3 also increase. The second
peak obviously shows a right-shift trend, that is, the efficiency value of the divisions with
higher efficiency value will further increase. The overall low-carbon economic efficiency
value in South Korea is on the rise, but it is worth noting that the number of divisions with
lower efficiency values will also increase.

5.3. Discussion

This paper measures the low-carbon economic efficiency values of 94 PLADs in
China, Japan, and South Korea, and we find that the 7-year average values from 2013 to
2019 show Japan > South Korea > China, which is consistent with the results presented
in the related research literature [24,66]. This paper further investigates the low-carbon
economic efficiency values of 94 PLADs in China, Japan, and South Korea, which is different
from previous studies that mainly used national-level data to measure the low-carbon
economic efficiency. This paper uses labor force, capital stock, total energy consumption,
regional GDP, and carbon dioxide emissions data of 94 PLADs to measure their low-carbon
economic efficiency, and it enriches the study of low-carbon economic efficiency of PLADs
in different countries.
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Based on the measurement of historical low-carbon economic efficiency values, this
paper uses 10 machine learning models combined with the GridSearchCV method to predict
the low-carbon economic efficiency of PLADs in China, Japan and South Korea. According
to the coefficient of determination R2 of the model prediction effect, all the 10 machine
learning models have good prediction effect. In this paper, the XGBoost model with the
best prediction effect is selected to predict the low-carbon economic efficiency values from
2020 to 2024, which makes up for the shortcoming that DEA can only evaluate the historical
efficiency values of DMUs. The efficiency prediction model formed by combining the DEA
method and machine learning method provides a new method for efficiency evaluation
and prediction, and the prediction results will provide a reference and basis for scientific
decision making in relevant countries.

6. Conclusions and Recommendations

The main conclusions of this paper are as follows:

1. From the evaluation results, Japan had the highest average national low-carbon
economic efficiency from 2013 to 2019, followed by South Korea and China. The
low-carbon economic efficiency of Japan from 2013 to 2019 has steadily improved,
with an average value of 0.533. The low-carbon economic efficiency value of Tokyo,
Tokushima and Nara reached an effective value of 1.000 in 2019, and 20 of 47 PLADs
reached the national average efficiency value and above. From 2013 to 2019, the low-
carbon economy efficiency value of South Korea decreased, with an average value of
0.337. From the perspective of the PLADs, none reached the effective value of 1.000,
and only 5 of 17 PLADs in the country reached the national average. The low-carbon
economic efficiency of China from 2013 to 2019 shows a clear upward trend, with
an average value of 0.094. Guangdong and Jiangsu achieved an effective value of 1
in 2019. Among the 30 PLADs in the country, only 4 divisions reached the national
average efficiency value. From a country perspective, the low-carbon economic
efficiency of China, Japan and South Korea show obvious regional differences. From
a domestic perspective, only a small number of PLADs in China have reached the
national average efficiency.

2. From the perspective of input-output indicators, the input indicators of China have
serious problems of excessive input and low utilization efficiency. In China, the
redundancy rate of total energy consumption is the largest, and most of the PLADs
have reached 90%. There are also problems of excessive investment in labor and
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capital stock. Most divisions in China have a high redundancy rate of CO2 emission,
which may reach more than 90%, and there is much room for improvement. Among
the input indicators in Japan, the redundancy rate of total energy consumption is the
largest, followed by redundancy rate of labor input, and redundancy rate of capital
stock is the lowest. Undesirable output, CO2 emission, is a significant factor affecting
the low-carbon economic efficiency of most Japanese PLADs. The labor, total energy
consumption, and carbon dioxide emissions of Korea have a great impact on the
low-carbon economic efficiency.

3. From the prediction results, the overall low-carbon economic efficiency value of China
will drop slightly from 2020 to 2021, and will rise steadily after 2022. The number
of divisions that achieve low-carbon economic efficiency improvement is increasing
year by year. Among them, the efficiency value of the divisions in the coastal areas
where low-carbon technologies and markets are more developed will increase greatly,
while the low-carbon economic efficiency values of the divisions in the western and
northeastern regions, which are subject to regional resources and industrial structure,
will decrease slightly. The national low-carbon economic efficiency value of Japan
will show a steady upward trend from 2020 to 2024, and the average value will rise to
0.576 in 2024. The number of high-efficiency PLADs will increase significantly. The
low-carbon efficiency of the divisions in Japan shows non-equilibrium characteristics,
and divisions that use clean energy represented by nuclear energy have significantly
higher efficiency values than the divisions that use coal and crude oil. The low-carbon
economic efficiency value of South Korea from 2020 to 2024 will increase year by
year, and the overall average value will reach 0.353 in 2024. Both the number of
high-efficiency and low-efficiency PLADs will increase, and the GDP will continue to
expand. In South Korea, the efficiency values of divisions that are dominated by the
primary and tertiary industries are generally high, while the efficiency values of some
industrial cities show a clear downward trend.

According to the above research findings, the low-carbon economic efficiency of China,
Japan, and South Korea show a steady upward trend from 2020 to 2024, but there are still
problems such as large regional differences and low resource allocation efficiency. The
three countries share a common low-carbon economy goal, have many common interests,
and have a wide range of cooperation prospects, and this paper proposes the following
recommendations in light of the current situation of low-carbon economic development in
each country.

1. Focus on inter-regional differences and make full use of the endowment advantages
of each country. From the evaluation results, it can be seen that there are large
differences in the low-carbon economic efficiency values between China and Japan
and South Korea, and there is still a significant gap in the predicted values after
five years. In response to the different development situations of the three countries,
it is necessary to make full use of their own advantages to develop differentiated
low-carbon economic development strategies. China is a major energy producer and
consumer, especially in the development of natural gas, solar energy, wind energy and
other clean and new energy sources, and has a unique advantage. China should seize
the opportunity to take advantage of its vast territory and abundant energy resources
to increase the research, development and promotion of new energy technologies.
Japan and South Korea are small energy producing and consuming countries, with
high external energy dependence. As developed countries, both these two countries
have high domestic carbon reduction costs. Japan and South Korea have the advantage
of leading international energy-saving and emission reduction technologies, have
mastered key technologies in waste treatment, soot desulfurization and other fields,
and have accumulated rich experience in the field of energy utilization. China, Japan
and South Korea have strong complementarities in energy-saving technologies and
energy resources, and it is necessary for the three countries to form a collaboration on
emission reduction to achieve emission reduction outside at a lower cost.
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2. Optimize the energy structure and drive industrial development with new energy
sources. Based on the empirical results of this paper, a high redundancy rate of CO2
emissions is common in China, Japan and South Korea, which significantly affects
the improvement of low-carbon economic efficiency in each country, and they need
to further adjust the energy structure and reduce the proportion of fossil energy
consumption. The energy consumption of China is dominated by coal, and its energy
structure, which is determined by resource endowment, is the root cause of the
high energy carbon intensity in China. In the energy structure of Japan, the reliance
on oil is decreasing, and the use of natural gas and nuclear energy is increasing.
Japan is also focusing on clean technologies for fossil energy in order to reduce the
environmental problems caused by fossil energy. Similar to Japan, South Korea is
focusing on diversification of energy outcomes by developing nuclear energy and
importing liquefied natural gas to meet energy demand. Although China, Japan
and South Korea are in different processes of restructuring their energy institutions,
renewable energy is the focus of attention in all three countries. China is currently
a global leader in the field of renewable energy, especially in the solar photovoltaic,
wind power, hydroelectric power and other industries. While Japan and South Korea
have world-class R&D and technological advantages, their domestic resources and
environment place a non-negligible constraint on the development of the low-carbon
economy. China, Japan and South Korea should effectively integrate technical and
new energy resources and cooperate with each other, so they can achieve a diverse
low-carbon energy portfolio and obtain multi-win results.

3. Focus on international cooperation and drive regional cooperation with business
cooperation. From the prediction results, the low-carbon economic efficiency in the
eastern coastal regions of China, in Japan and South Korea, with developed science
and technology industries is generally higher; this is inseparable from international
cooperation. Especially in the context of addressing climate change, whether from
the perspective of national interests or global environmental interests, regional en-
vironmental cooperation among China, Japan, and South Korea will play a positive
role in promoting national economic development and achieving global common
interests. However, influenced by regional politics, rights, and perceptions, there are
also difficulties in regional environmental cooperation between the governments of
China, Japan, and South Korea. Thus, business-to-business cooperation is expected to
be the main vehicle for regional environmental cooperation. At present, Japan has de-
veloped corresponding projects in China through the Clean Development Mechanism
(CDM). Enterprise cooperation has become a major component of China-Japan low-
carbon economic cooperation, and is expected to become the main body of regional
low-carbon economic cooperation among China, Japan and South Korea. In the future,
enterprises in these three countries should continue to deepen their cooperation in
the fields of low-carbon technology transformation, green direct investment and low-
carbon technology trading, and then promote the low-carbon economic development
worldwide and build a community of green destiny for mankind.

Finally, we may note the limitations of this study and also the direction of our further
research in the future. (1) This paper has studied the low-carbon economic efficiency
of the PLADs of China, Japan and South Korea using macro data, and the suggestions
made are mostly at the macro level. In fact, applying evaluation and prediction models
to micro subjects such as industries and enterprises is a future research direction. (2) The
construction of the evaluation index system uses structured data and lacks research on
unstructured data. For example, it could utilize text data from mainstream social network-
ing platforms. By using natural language techniques, researchers could analyze people’s
emotional perceptions of the regional ecological environment and construct a low-carbon
economic efficiency evaluation index system. (3) Although this paper achieved good model
prediction results in the empirical study, the prediction accuracy of the machine learning
model can still be further improved by applying feature engineering.
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Appendix A

Table A1. Machine Learning Model Parameter Optimization Results.

Machine Learning
Model Optimal Parameter Combination

Linear Regression normalize = True
SVR C = 19, gamma = 0.3

BPNN hidden_layer_sizes = [5], max_iter = 100, solver = ‘lbfgs’
Decision Tree max_depth = 8, max_features = 2

Random Forest max_depth = 9, n_estimators = 500
GBDT max_depth = 5, n_estimators = 500

XGBoost learning_rate = 0.01, n_estimators = 500, max_depth = 5, subsample = 0.6
LightGBM max_depth = 6, subsample = 0.6)
AdaBoost learning_rate = 0.001, n_estimators = 100

Bagging base_estimator = Decision Tree Regressor (max_depth = 7),
n_estimators = 500
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