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Abstract: After the Chinese government introduced a series of policies to strengthen the control of air
pollution, the concentration of particulate matter has decreased, but the concentration of ozone has
increased, and the problem of complex air pollution still exists, posing a serious threat to public health.
Therefore, disentangling the health effect of multi-pollutants has been a long-discussed challenge in
China. To evaluate the adverse effects of complex air pollution, a generalized additive model was
used to assess the health risks of different pollution types in eight metropolises in different climates
in China from 2013 to 2016. Instead of directly introducing multiple pollutant concentrations, we
integrated the concentration levels of PM2.5, NO2, and O3 into a set of predictors by grouping methods
and divided air pollution into three high single-pollutant types and four high multi-pollutant types
to calculate mortality risk in different types. The comprehensive results showed that the impact of
high multi-pollutant types on mortality risk was greater than that of high single-pollutant types.
Throughout the study period, the high multi-pollutant type with high PM2.5, NO2, and O3 and the
high multi-pollutant type with high PM2.5 and NO2 were more associated with death, and the highest
RRs were 1.129 (1.080, 1.181) and 1.089 (1.066, 1.113), respectively. In addition, the pollution types
that most threaten people are different in different cities. These differences may be related to different
pollution conditions, pollutant composition, and indoor–outdoor activity patterns in different cities.
Seasonally, the risk of complex air pollution is greater in most cities in the warm season than in
the cold season. This may be caused by the modifying effects of high temperature on pollutants in
addition to different indoor–outdoor activity patterns in different seasons. The results also show that
calculating the effect of individual air pollutants separately and adding them together may lead to an
overestimation of the combined effect. It further highlights the urgency and need for air pollution
health research to move towards a multi-pollutant approach that considers air pollution as a whole
in the context of atmospheric abatement and global warming.

Keywords: complex air pollution; mortality; generalized additive model; pollution types

1. Introduction

Nowadays, air pollution is one of the major health issues facing the world’s metropolitans,
especially in developing countries [1–5]. As the largest developing country in the world, China
has a large population, higher energy consumption and more serious pollution problems.

Although the Chinese government has issued a series of policies to step up the fight
against air pollution, the situation remains grim. On the one hand, most of the policies,
such as the Action Plan for The Prevention and Control of Air Pollution mainly aim at
the emission reduction policy of inhalable particulate matter. As the emission of ozone
and other pollutants has not been effectively limited, the problem of complex air pollution
is prominent, especially in key cities and regions. On the other hand, the World Health
Organization (WHO) issued the latest revised Global Air Quality Guidelines [6], tightened
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the annual average target value of PM2.5, PM10, NO2, and other long-term exposure
indicators based on new evidence of the health effects of low concentration levels and long-
term exposure to pollutants. By 2020, although the overall annual average concentration of
PM2.5 was reduced to 33 µg/m3 for the first time, 34% lower than in 2015 [7], there was
still a big gap between the new AQG target value of 5 µg/m3 [6]. Therefore, the problem
of complex air pollution is not only prominent now but also continues to exist at least
for a while. Under the background of atmospheric emission reduction and global climate
change, it is an important challenge to strengthen the coordinated control and treatment
of multiple pollutants and effectively solve the regional and complex pollution problems
represented by PM2.5 and ozone, so as to protect public health. At the same time, it also
puts forward higher requirements for research in the field of air pollution and health.

Previous research on air pollution and health has focused on the health effects of
individual pollutants. Many studies [8–10] have been conducted to ascertain the effects of
air pollution on mortality by single-pollutant models, which assess the health effect of one
pollutant, primarily the effect of particulate matter (PM) [11,12] (e.g., particulate matter
< 10 µm in aerodynamic diameter (PM10) and particulate matter < 2.5 µm (PM2.5)) and
gaseous pollutants [13–15] (e.g., nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone
(O3)) on health, especially mortality outcomes. However, complex air pollution exists as a
complex mixture whose nature and consequences are without doubt multi-dimensional.
The results of both epidemiologic and laboratory research indicate that even if single
pollutants can dominate certain effects when multiple air pollutions co-exist, their overall
toxicity may differ from that found in investigations specific to individual pollutants [16].
The World Health Organization also focused on “Multi-pollutant effect estimates as a basis
for joint health impact assessment” in the discussions for updating the global air quality
guidelines [17]. Now is the time to shift the emphasis of air pollution health research toward a
more comprehensive, forward-looking, multipollutant perspective in view of the increasing
trend toward multipollutant regulatory strategies.

In fact, to make up for the lack of studying health risks from the perspective of single
pollutants, some scholars have studied the health effects of multiple pollutants. The general
idea of these methods is to estimate each single pollutant effect while controlling for the
presence of the others, and then define the multi-pollutant effect as the sum of the effects of
each air pollutant [18–20], regardless of interactions or nonlinear effects. Since interactions
among ambient air pollutants are plausible, partially false conclusions would have been
reached by estimating the effects of each pollutant separately and adding them up [16].
In addition, even if there is research that can define similar statistical models to account for
higher-order interaction, so as to capture the health burden associated with simultaneous
exposure to more than two pollutants [10,21], when some highly correlated pollutants are
simultaneously included in the regression model, the results can become highly unstable
and often inaccurate [22]. Therefore, disentangling the health effect of multi-pollutants has
been a long-discussed challenge.

Considering these problems, instead of directly introducing pollutant concentrations,
we classified complex air pollution into different types based on different predominant
pollutants and transformed them into a set of predictors to estimate mortality risk for different
pollution types. At the same time, due to China’s vast territory and regional differences in
climate and emission structure, it is necessary to conduct studies in multiple cities with
significant climate differences. Eight large Chinese cities with a population of more than
3 million and located in different climate regions were selected to investigate the relation-
ship between complex air pollution and mortality, with a view to strengthening the capacity
of coordinated, health-led air pollution control based on local conditions and providing a
basis for the formulation of multi-pollution air quality standards that meet local needs.
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2. Methods
2.1. Study Area

A multicity time-series study was conducted to assess the adverse effects of short-term
exposure to high single-pollutant or high multi-pollutant types on daily mortality in eight
metropolises in China. The cities, which were not chosen randomly but because there
were relatively complete data in each and these are large cities with a population of more
than 3 million [23] in different climate regions of China, were Changchun, in the Jilin
province (short for CC, temperate continental monsoon climate, Northeast China), Urumqi,
in Xinjiang Uygur Autonomous Region (short for WLMQ, temperate continental arid and
semi-arid climate, west of Northwest China), Beijing, the capital of China (short for BJ,
warm temperate semi-humid climate, North China), Xian, in the Shaanxi province (short
for XA, temperate semi-arid monsoon climate, east of Northwest China), Nanjing, in the
Jiangsu province (short for NJ, the transition zone between warm temperate zone and
subtropical zone, East China), Wuhan, in the Hubei province (short for WH, subtropical
humid monsoon climate, Central China), Kunming, in the Yunnan province (short for
KM, subtropical, tropical plateau monsoon climate, Southwest China), and Guangzhou
in the Guangdong province (short for GZ, subtropical—tropical humid monsoon climate,
South China).

2.2. Data Collection

For the period 2013–2016, daily mortality counts for all nonaccidental causes (Inter-
national Classification of Diseases, Revision 10 (ICD-10, A00-R99)) in each district of the
eight cities were obtained from the Chinese Center for Disease Control and Prevention.
Based on the district code, the total number of non-accidental deaths per day for each city
was calculated.

Air pollutant concentration observations including ozone, nitrogen dioxide, and
particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) were acquired from
the Ministry of Ecology and Environment of the People’s Republic of China. After hourly
values greater than 500 µg/m3 were converted into lacking values to protect against
outliers [24], the daily mean values of PM2.5 and NO2 and the 1-h maximum ozone at each
monitor were calculated. For assessing the population exposure level in a city, a single
monitoring station is unlikely to be sufficient [25]. To reduce random errors, multiple-site
averages for a city were applied to reflect the population’s exposure risk [26,27]. These daily,
within-city average concentrations were used as the average exposure of the population at
risk in each city.

Daily average meteorologic data regarding mean temperature, relative humidity,
air pressure, wind speed, and precipitation were obtained from the China Integrated
Meteorological Information Service System of National Meteorological Information Center,
China Meteorological Administration. Because the variability of mean temperature and
relative humidity within the city limits is small [28], the weather conditions for each city
were derived entirely from one monitoring station there.

2.3. Category of Pollution Types

To estimate the health effects of multiple pollutants, we selected the pollutants in this
study. According to WHO [17], PM, O3, NO2, and SO2 are pollutants in its “Group 1”,
which “should be considered of greatest importance in the process of updating the WHO
Air Quality Guidelines”. Since PM2.5 and PM10 are strongly correlated, PM2.5, which with
smaller particle size and is more harmful to human health [29], is chosen to represent PM
in the current study. Considering that the emissions of SO2 have been drastically cut in
recent years [30], in this paper, PM2.5, O3, and NO2 were selected to evaluate the health
effects of complex air pollution.

Similar classification and grouping methods have been used in previous environmental
health studies. Dimensionality reduction by grouping is an effective idea in the latest
statistical research on the impact of multiple pollution-related exposures on human health.
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It transforms a large number of correlated variables (pollutants, exposures, etc.) into a set
of independent factors to estimate health outcomes [31]. Meanwhile, previous studies on
the health effects of pollutants or other factors often used the method of stratified study,
set cutoff points for the study variables, and studying the difference in health effects at
different levels above and below the cutoff point to study the heterogeneity [32–34]. So,
we created a variable with eight levels comprising every combination of levels above and
below the cutoff point of the three pollutants mentioned above, that is high and low levels
of PM2.5, NO2, and O3, and used this variable as the primary exposure in the model. The
specific definition is as follows.

First of all, in order to give consideration to sufficient data and appropriate discrimi-
nation between high and low pollution levels, we took the median of PM2.5 and NO2 in
each city and the 70th quartile of O3 (Table 1) as the cut-off point and divided the three
pollutants into low and high levels respectively. The reason why the 70th quartile of O3 is
used instead of the median as the cut-off point is that the distribution of ozone concentra-
tion is asymmetric, which is more distributed in the range of low concentration. Using the
median as a cut-off will make a large number of observations concentrated at the cut-off
point, which is difficult to distinguish between high and low concentration, resulting in
bias. The cut-off is different for each city, and its values are shown in Table 1.

Table 1. The cut-off of PM2.5, NO2, and O3 in each city (µg/m3).

City Median of PM2.5 Median of NO2 70th-Quartile of O3 (1h-Max)

Changchun 43.667 39.925 113.000
Urumqi 49.146 50.967 89.514
Beijing 62.208 46.903 138.450

Xian 58.075 44.782 119.400
Nanjing 54.501 45.483 137.450
Wuhan 61.625 45.789 142.660

Kunming 27.954 29.043 105.667
Guangzhou 38.051 44.233 140.600

Then a set of permutations of these three pollutants at different levels were grouped
as eight different types (Table 2), including one reference type, three single-pollutant types
and four multi-pollutant types. They are Type 0 (reference type): the concentrations of
the three pollutants are all below the cut-off; Type 1 (high single-pollutant type): PM2.5
concentration is above the cut-off, while the concentration of the other two pollutants is
below the cut-off; Type 2 (high single-pollutant type): NO2 concentration is above the
cut-off, while the concentration of the other two pollutants is below the cut-off; Type 3
(high single-pollutant type): O3 concentration is above the cut-off, while the concentration
of the other two pollutants is below the cut-off; Type 4 (high multi-pollutant type): PM2.5
and NO2 concentration is above the cut-off, while the concentration of O3 is below the
cut-off; Type 5 (high multi-pollutant type): PM2.5 and O3 concentration is above the cut-off,
while the concentration of NO2 is below the cut-off; Type 6 (high multi-pollutant type): O3
and NO2 concentration is above the cut-off, while the concentration of PM2.5 is below the
cut-off; Type 7 (high multi-pollutant type): the concentrations of the three pollutants are all
above the cut-off.

Table 2. The 8 types of pollution and the predominant pollutants (the pollutant whose concentration
is higher than the cut-off).

Pollution Type Predominant Pollutants

0 None
1 PM2.5 only
2 NO2 only
3 O3 only
4 PM2.5 + NO2
5 PM2.5 + O3
6 NO2 + O3
7 PM2.5 + NO2 + O3
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Types containing conditions with ozone concentrations above the cut-off occurred
very infrequently (less than 20 times) during the cold season in some cities (e.g., Type 3, 5,
6, and 7 in BJ) (Figure 1). Since too few data would lead to instability in the model, these
types with too few occurrences were excluded from the seasonal analyses of these cities.

Int. J. Environ. Res. Public Health 2022, 19, x  5 of 19 
 

 

Table 2. The 8 types of pollution and the predominant pollutants (the pollutant whose concentration 
is higher than the cut-off). 

Pollution Type Predominant Pollutants 
0 None 
1 PM2.5 only 
2 NO2 only 
3 O3 only 
4 PM2.5 + NO2 
5 PM2.5 + O3 
6 NO2 + O3 
7 PM2.5 + NO2 + O3 

Types containing conditions with ozone concentrations above the cut-off occurred 
very infrequently (less than 20 times) during the cold season in some cities (e.g., Type 3, 
5, 6, and 7 in BJ) (Figure 1). Since too few data would lead to instability in the model, these 
types with too few occurrences were excluded from the seasonal analyses of these cities. 

 
Figure 1. Frequency distribution of different pollution types in 8 cities ((A) all-year results; (B) sea-
sonal results). The type of pollution and the pollutant classified as high level in this type are as 
follows, 0: reference type, none; 1: only PM2.5; 2: only NO2; 3: only O3; 4: PM2.5 and NO2; 5: PM2.5 and 
O3; 6: NO2 and O3; 7: PM2.5, NO2 and O3; NA: lacking values. 

2.4. Data Analysis 
Because daily mortality counts typically follow a Poisson distribution, we used a gen-

eralized additive model (GAM) with a Poisson link to evaluate the association between 
mortality and air pollution types controlling for average temperature, relative humanity, 
seasonality, and long-term trends using cubic smoothing spline [35,36]. We created a var-
iable with 8 levels representing every combination of three pollutant concentration cate-
gories (high or low levels of PM2.5, NO2, and O3) in Section 2.3, and used this variable as 
the main exposure in the model: 

log[퐸(푌 )] = 훼 + 퐷푂푊 + 훽 × 푋 + 푠(푡푖푚푒, 푑푓) + 푠(푡푒푚푝푒푟푎푡푢푟푒, 푑푓) + 푠(푅퐻, 푑푓)  (1)

where 퐸(푌 ) is the expected number of deaths on day t. 훼 is the model intercept. 푋  is 
the categorical variable created in Section 2.3, representing the pollution types with dif-
ferent levels of three pollutants. Type 0 (PM2.5, NO2, and O3 are all at low levels) was used 
as a reference type to calculate parameter estimates for the seven different high-level pol-
lution types. 훽  is the regression coefficient for 푋 . Day of the week was also included as 
a dummy variable: DOW. time represents time to adjust for long-term trends and season-
ality. s(time, df), s(temperature, df), and s(RH, df) were spline smoothers for date, daily 
average temperature, and daily average relative humidity, respectively, which captures 
the nonlinear relationships of the covariates of daily mortality with time trend and the 
weather parameters. df is the degree of freedom determined by minimizing the Akaike’s 

Figure 1. Frequency distribution of different pollution types in 8 cities ((A) all-year results; (B) sea-
sonal results). The type of pollution and the pollutant classified as high level in this type are as
follows, 0: reference type, none; 1: only PM2.5; 2: only NO2; 3: only O3; 4: PM2.5 and NO2; 5: PM2.5

and O3; 6: NO2 and O3; 7: PM2.5, NO2 and O3; NA: lacking values.

2.4. Data Analysis

Because daily mortality counts typically follow a Poisson distribution, we used a
generalized additive model (GAM) with a Poisson link to evaluate the association between
mortality and air pollution types controlling for average temperature, relative humanity,
seasonality, and long-term trends using cubic smoothing spline [35,36]. We created a variable
with 8 levels representing every combination of three pollutant concentration categories
(high or low levels of PM2.5, NO2, and O3) in Section 2.3, and used this variable as the main
exposure in the model:

log[E(Yk)] = α + DOW + βk × Xk + s(time, d f ) + s(temperature, d f ) + s(RH, d f ) (1)

where E(Yk) is the expected number of deaths on day t. α is the model intercept. Xk is the
categorical variable created in Section 2.3, representing the pollution types with different
levels of three pollutants. Type 0 (PM2.5, NO2, and O3 are all at low levels) was used as a
reference type to calculate parameter estimates for the seven different high-level pollution
types. βk is the regression coefficient for Xk. Day of the week was also included as a
dummy variable: DOW. time represents time to adjust for long-term trends and season-
ality. s(time, df), s(temperature, df), and s(RH, df) were spline smoothers for date, daily
average temperature, and daily average relative humidity, respectively, which captures
the nonlinear relationships of the covariates of daily mortality with time trend and the
weather parameters. df is the degree of freedom determined by minimizing the Akaike’s
Information Criterion (AIC). Considering that similar studies have all used a degree of
freedom below 10. In this study, tests are conducted in the range of 4 or 8 (1–2 per year) for
each time term, and the degrees of freedom of the model with the lowest AIC is selected.
The degrees of freedom of average temperature and average relative humidity was 4.

Lag structures are included as air pollution may affect health outcomes happening
on the same day or on subsequent days. We analyzed the one-day lag mode from Lag0 to
Lag5, where Lag0 represented the pollution type on day 0, Lag1 was the pollution type
on the previous day, and so on. In addition to the overall analyses, all models were also
stratified by season (cooler vs. warmer months). The cold season was defined as November
through March and the warm season as April through October.
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All results were presented as relative risks (RRs) or excess risk (ER) of mortality and
their 95% Confidence Interval (95%CI), calculated from the relative risk (RR) and excess
risk (ER) as follows:

RR = eβ (2)

ER = (RR − 1) × 100 (3)

All statistical tests were 2-sided, and p-values < 0.05 were considered statistically
significant. The analysis was performed in R-software, version 4.1.0, using time-series analysis
with the mgcv package.

2.5. Sensitivity Analyses

Finally, sensitivity analysis was performed to ensure the stability of the model. Within
a range of 4 to 10 df, a change in the number of degrees of freedom at intervals of 2 for time
trend did not substantially affect the estimated effects of each pollutant type (Figure A1).
We also compared the effects of each pollutant type with alternative values for degrees of
freedom for meteorological conditions. Within a range of 4 to 10 df, a change in the number
of degrees of freedom at intervals of 2 for temperature and relative humidity resulted in
almost identical estimated effects of air pollution on all-cause mortality (Figure A1). In this
respect, our findings were relatively robust.

3. Results

Table A1 shows the summary statistics of daily all-cause mortality, air pollution, and
meteorological variables for each pollution type during the study period. Overall, among
all the types, there was average mortality from 49.5 ± 34.0 (type 6) to 65.0 ± 40.2 (type 7)
person/day in all eight cities from 2013 to 2016. During the period, the highest daily
average concentration of PM2.5 and NO2 were type 4 (113.8 ± 71.3 and 67.4 ± 20.9 µg/m3

respectively). The highest daily 1-h maximum O3 was type 5 (175.1 ± 47.5 µg/m3). In total,
the highest average daily temperature and relative humidity were type 3 (24.8 ± 4.6 ◦C) and
type 1 (71.7 ± 17.2%), and the lowest were type 4 (5.9 ± 10.3 ◦C) and type 6 (57.3 ± 17.4%),
respectively.

We made statistics on the frequency and ratio of high single-pollutant type and high
multi-pollutant type, as well as the frequency of each pollution type in each city. In general,
multi-pollutant types (type 4, type 5, type 6, and type 7) occur more frequently than single-
pollutant types (type 1, type 2, and type 3). The frequency ratio of multi-pollutant types
to single-pollutant types was the largest in Beijing, the frequency of multi-pollutant types
was 2.22 times that of single-pollutant types there. While the ratio was the smallest in
Urumqi, it is 1.48 times of frequency of single-pollutant types (Table 3). The frequency of
each pollution type was different during the study period (Figure 1). In the whole year, the
results in all eight cities showed that type 4, the high multi-pollutant type with a higher
concentration level of PM2.5 and NO2, was the most frequent pollution type. During the
study period, the frequency of type 4 in eight cities ranged from 33.3% (486 days, Urumqi)
to 24.4% (327 days, Kunming). The next type with high frequency was mainly type 7
(PM2.5, NO2 and O3 are at high levels) in southern cities, ranging from 15.1% (220 days,
Guangzhou) to 10.3% (151 days, Nanjing), while type 3 (only O3 is at high level) in northern
cities, ranged from 17.2% (251 days, Urumqi) to 8.9% (130 days, Beijing). In the warm
season, the most frequent pollution types are type 3 and type 7, both of which include
ozone as a predominant pollutant. In the cold season, the frequency of type 4 (PM2.5 and
NO2 are at high levels) almost accounted for half of the whole cold season, which was the
type with the highest frequency in all eight cities.
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Table 3. Percentage and ratio of the frequency of multi-pollutant and single-pollutant types.

City Single-Pollutant Type (%) Multi-Pollutant Type (%) The Ratio of the Frequency
(Multi-Pollutant/Single-Pollutant)

Changchun 25.5 47.2 1.851
Urumqi 30.7 45.4 1.479
Beijing 21.5 47.8 2.223

Xian 28.7 46.6 1.624
Nanjing 28.2 44.9 1.592
Wuhan 26.6 45.2 1.699

Kunming 22 45 2.045
Guangzhou 22.5 45.1 2.004

By comparing the greatest RR along lag0–lag5 of each pollution type (Figure 2), we
identified the pollution types with the highest mortality risk throughout the year and in
different seasons in each city (Tables 4–6). In all-year analyses, we found that the pollution
types with the highest RRs in 7 cities except Kunming all belong to high multi-pollutant
pollution types, that are type 7 (high O3, PM2.5, and NO2) and type 4 (high PM2.5 and
NO2). In all eight cities, half of the types with the highest risks in each city were type 7,
and the highest RR was 1.129 (1.080, 1.181) in Nanjing, and the mortality effect of type 7
was significant in all six cities except Kunming and Urumqi. In addition, type 4 was also
significantly associated with death in 7 cities, with the maximum RR of 1.089 (1.066, 1.113)
in Wuhan. Results from lag models indicated that exposure to high multi-pollutant air
pollution on more recent days, such as from the same day to 2 days ago was associated
with a larger risk of mortality than exposure on less recent days (such as three days ago
or earlier). In terms of seasons, high multi-pollutant pollution types have a higher risk in
most cities in the warm season than in the cold season. During the warm season, types 4
and 7 were most significantly associated with death, and type 6 (high O3, and NO2) was
significantly associated with death in half of the cities. During the cold season, most of
pollution types had the highest RR values of type 1 and type 4, and type 4 passed the
significance test more than type 1.

Table 4. The pollution type with the highest lag of 0–5 days and their corresponding risk values and
lag days in 8 cities. Pollutants at high levels are listed in parentheses (Annual). ** p < 0.01.

City The Pollution Type with the
Highest RR (Annual) The Highest RR (with 95% CIs) Lag

Changchun Type 7 (O3 + PM2.5 + NO2) 1.080 (1.032, 1.131) lag2 **
Urumqi Type 5 (O3 + PM2.5) 1.228 (1.129, 1.336) lag0 **
Beijing Type 7 (O3 + PM2.5 + NO2) 1.077 (1.042, 1.113) lag0 **

Xian Type 7 (O3 + PM2.5 + NO2) 1.077 (1.048, 1.107) lag0 **
Nanjing Type 7 (O3 + PM2.5 + NO2) 1.129 (1.080, 1.181) lag1 **
Wuhan Type 4 (PM2.5 + NO2) 1.089 (1.066, 1.113) lag1 **

Kunming Type 1 (PM2.5) 1.069 (1.042, 1.096) lag1 **
Guangzhou Type 4 (PM2.5 + NO2) 1.049 (1.034, 1.063) lag1 **

Table 5. The pollution type with the highest lag of 0–5 days and their corresponding risk values and
lag days in 8 cities. Pollutants at high levels are listed in parentheses (Warm Season). ** p < 0.01.

City The Pollution Type with the
Highest RR (Warm Season) The Highest RR (with 95% CIs) Lag

Changchun Type 1 (PM2.5) 1.113 (1.028, 1.206) lag4 **
Urumqi Type 5 (O3 + PM2.5) 1.214 (1.112, 1.324) lag1 **
Beijing Type 4 (PM2.5 + NO2) 1.099 (1.059, 1.141) lag0 **

Xian Type 2 (NO2) 1.073 (1.040, 1.108) lag3 **
Nanjing Type 7 (O3 + PM2.5 + NO2) 1.127 (1.071, 1.186) lag1 **
Wuhan Type 4 (PM2.5 + NO2) 1.077 (1.031, 1.124) lag0 **

Kunming Type 6 (O3 + NO2) 1.060 (1.009, 1.112) lag4 **
Guangzhou Type 4 (PM2.5 + NO2) 1.049 (1.023, 1.076) lag5 **
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Table 6. The pollution type with the highest lag of 0–5 days and their corresponding risk values
and lag days in 8 cities. Pollutants at high levels are listed in parentheses (Cold Season). * p < 0.05,
** p < 0.01.

City The Pollution Type with the
Highest RR (Cold Season)

The Highest RR (with 95%
CIs) Lag

Changchun Type 1 (PM2.5) 1.077 (1.015, 1.142) lag3 *
Urumqi Type 4 (PM2.5 + NO2) 1.091 (1.028, 1.157) lag2 **
Beijing Type 4 (PM2.5 + NO2) 1.037 (1.008, 1.068) Lag4 *

Xian Type 1 (PM2.5) 1.032 (1.005, 1.061) Lag1*
Nanjing Type 7 (O3 + PM2.5 + NO2) 1.070 (0.971, 1.178) lag0
Wuhan Type 4 (PM2.5 + NO2) 1.092 (1.059, 1.125) lag1 **

Kunming Type 1 (PM2.5) 1.041 (1.005, 1.078) lag5 *
Guangzhou Type 2 (NO2) 1.076 (1.045, 1.107) lag2 **
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Furthermore, we compared the simple sum of the excess risks of individual pollutants
at high levels with the excess risks of the multiple pollution type with all three pollutants
simultaneously at high levels. The concentration levels of other pollutants are not taken into
account when calculating the exposure risk at high levels for each pollutant alone. While
calculating the impact of combined exposure, the concentration level of three pollutants
is all considered, and the risk is calculated when the three pollutants are at high levels
simultaneously. The results for each type of excess risk higher than 0 were listed in Figure 3.
The results showed that combined effects that were less than simple additive.
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4. Discussion

In this study, we evaluated the adverse effects of complex air pollution. A variable
containing eight levels of different combinations of concentrations at high or low levels of
PM2.5, O3, and NO2 was created to characterize the air pollution characteristics of different
types of air pollution. Using this variable as the main exposure in GAM, we investigated
the association between mortality risk and atmospheric composite pollution in eight large
cities with different climate zones in China. In our analysis, we found evidence that
exposure to high multi-pollutant types which several pollutants with high concentrations
simultaneously was linked to a higher relative risk than exposure to high single-pollutant
types. In the whole year, the high multi-pollutant type with high PM2.5, NO2, and O3
and the high multi-pollutant type with high PM2.5 and NO2 were more associated with
death, and the highest RRs were 1.129 (1.080, 1.181) and 1.089 (1.066, 1.113), respectively.
In addition, the pollution types that most threaten people are different in different cities.
In terms of seasons, the risk of complex air pollution is greater in most cities in the warm
season than in the cold season. In addition, the results also showed that the excess risk
from simultaneous exposure to multiple pollutants was less than the sum of individual air
pollutants effects.

The results of the present study indicate that type 7 (high PM2.5, O3, and NO2) and
type 4 (high PM2.5 and NO2), the two high multi-pollutant types, had the highest relative
risks. Meanwhile, the association between different types of complex air pollution and
death varied between regions. This means that the high multi-pollutant pollution type is
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more associated with death than the high single-pollutant pollution type, the problem of
complex air pollution to health remains grim. The health burden of multiple pollutants has
also been studied in other countries and in individual cities in China. The health effects of
multi-pollutant air pollution in different cities may different due to the differences in emission
sources and pollutant components in different cities. Papathomas et al. [37] assessed the
combined effect of environmental factors on carcinogenesis in Europe and found that higher
exposure to both NO2 and PM10 and residential proximity to roads were more common
in high-risk populations. In a study in the United States, Wesson et al. [38] compared the
single-pollutant control strategy with the “Multi-pollutant, Risk-based” control strategy,
and found that the latter greatly reduced the per-person emissions of PM2.5 and O3, and
had greater health benefits. In China, Huang et al. [39] selected PM2.5, NO2, O3 and SO2 as
the air pollutant mixture to examine the daily contribution of air pollutants to the risk of
outpatient visits in Guangzhou and found that NO2 and O3 made prominent contribution.
Zhu et al. [40] noted that the primary type of high multi-pollutant air pollution in Tianjin
in 2020 was PM2.5-NO2 co-pollution. This is similar to our results, suggesting that policy-
makers should shift to a multi-pollutant approach to air quality and achieve greater public
health protection through the regulation of multiple sources of air pollution and the overall
mixture air pollution.

Overall, in terms of predominant pollutants, the types with the highest RR in all cities
included high levels of PM2.5. Traini et al. [41] in Dutch observed positive associations
between air pollution mixtures and mortality, PM2.5 is the main driver of the associations.
According to the most polluted country and region ranking based on annual average PM2.5
concentration in 2021, China belongs to one of the World’s most polluted countries [42],
and Yan et al. [43] found that evidence of the association between PM2.5 and the risk of
cardiovascular death was higher during periods with high PM2.5 concentration than during
periods with low PM2.5 concentration. In addition, vehicle emissions are a major source of
NO2, which is an important precursor to PM2.5 and has complex links to it. At the same
time, due to the robust positive correlation between PM2.5 and NO2, type 4 (high PM2.5
and NO2) is the most frequent multi-pollutant type and has the most significant association
with mortality.

Additionally, different cities have different outdoor activities patterns and ventilation
habits in different seasons due to each climate feature, which will affect indoor and outdoor
exposure rates and thus affect health. The results showed that type 7, which PM2.5, NO2
and O3 were all at high levels, has the highest risk in Nanjing and the cities to the north of
it, while in Wuhan and Guangzhou to the south of Nanjing, the highest risk was type 4,
that is, PM2.5 NO2 were at high levels and O3 was at low level. This may be related to the
different exposure types of urban residents with different climate features. The Severe cold
in the cold season in the north and heatwave and heavy rain in the warm season in the
south will reduce local people’s exposure to pollutants outdoors. Moreover, the seasonal
variation of ozone is obvious, and its concentration is much higher in the warm season than
in the cold season. In the Pearl River Delta region, however, the cold season is cool and dry,
with little temperature change, and people are more likely to go outside and open their
windows for ventilation, thus exposing themselves to higher levels of air pollution. While
the warm season is hot and humid, thus people often use air conditioning, which reduces the
risk of exposure to ambient air pollution [44]. This lifestyle will reduce the outdoor ozone
exposure of people in southern China.

The results also revealed that the risk of complex air pollution is greater in most cities in
the warm season than in the cold season. This result may be caused by the interaction between
meteorological conditions and pollutants in addition to the differences in population activity
patterns in different seasons. Studies in Germany, Portugal, and Italy have shown that
the increased risk of death due to elevated pollutant concentrations is more dramatic at
high temperatures than at low temperatures [45,46]. At the same time, research results in
China also show that extreme high temperature will increase the risk of death of pollutants
such as PM2.5 and PM10, while the effect of extreme low temperature is lower than that of
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extreme high temperature [47–50]. Therefore, the modifying effects of high temperature on
pollutants may be the reason why the mortality risk of high multi-pollutant types is higher
in the warm season.

Rather than following the type of previous air pollution health studies that looked at
individual pollutants and add up the effects of them together, we consider air pollution
as a mixture to identify the mortality risk of the complex pollution of different dominant
pollutants in China. This approach avoids the problem of overestimating the combined
effect due to possible collinearity and interaction when the effect of individual air pollutants
is summed. Furthermore, the research covers a wide range of 8 major cities in China, which
are located in different regions with different characteristics of climate, pollution level and
economic development level. These cities have strong regional representation which makes
the results of this study more comprehensive than those of a single city. In summary, this
study provides a reference for putting forward multi-pollutant control strategies for air
quality following local conditions, to strengthen the ability of health-driven coordinated air
pollution control in China.

There are still some limitations to the present study. Firstly, 8 cities with large climate
differences were selected nationwide for research, which has regional representativeness to
a certain extent, but its representativeness is still limited, and there may be some deviations
in direct application to other cities. Secondly, as a time series analysis, this study inevitably
has exposure errors. Since it is difficult to obtain the true exposure of individuals, observa-
tions from monitoring stations are used as proxies for population exposure, which leads
to a certain degree of exposure error. Finally, due to data limitations, we did not classify
the population by gender, age, economy, and education level, so we could not put forward
more targeted health suggestions for vulnerable populations.

5. Conclusions

This paper confirms the robust health hazards of complex air pollution and suggests
that the mortality risk from exposure to the high multi-pollutant type is generally higher
than that of the high single-pollutant type and varies regionally and seasonally. Type 7 with
high level of all three pollutants (PM2.5, O3, and NO2) and type 4 with high level of PM2.5
and NO2 have a greater relative risk than other pollution types. In addition, the pollution
types that most threaten people are different in different cities. In terms of seasons, the
risk of complex air pollution is greater in most cities in the warm season than in the cold
season. The results also showed that the excess risk from simultaneous exposure to multiple
pollutants was less than the simple sum of individual air pollutants effects. Calculating
the effect of individual air pollutants separately and adding them together may lead to an
overestimation of the combined effect. Therefore, the focus of air pollution health research
needs to shift to a multi-pollutant perspective that considers air pollution as a whole rather
than separately.
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Table A1. Annual average of daily mean concentrations (standard deviation) for air pollution,
meteorological variables, and daily all-cause mortality for each pollution type in 8 Chinese cities,
2013–2016. The bold represent the statistics of the pollution types with the highest all-cause deaths
and pollutant concentrations in each city.

City Type All
(Mean ± SD)

O3_1h (Mean
± SD, µg/m3)

PM25 (Mean
± std, µg/m3)

NO2 (Mean ±
std, µg/m3)

TEM
(Mean ± std, ◦C)

RH
(Mean ± std, %)

All

0 62.5 ± 40.9 76.6 ± 28.4 27.2 ± 12.0 30.3 ± 8.3 15.5 ± 10.1 69.4 ± 21.0

1 60.5 ± 42.7 71.3 ± 31.6 73.3 ± 33.2 36.0 ± 7.8 9.0 ± 11.1 71.7 ± 17.2

2 63.3 ± 42.5 74.0 ± 29.5 37.3 ± 12.2 50.8 ± 11.2 13.5 ± 8.7 66.6 ± 19.4

3 53.8 ± 36.6 157.9 ± 41.1 32.8 ± 11.2 33.2 ± 7.9 24.8 ± 4.6 61.6 ± 16.5

4 64.2 ± 44.5 63.7 ± 32.5 113.8 ± 71.3 67.4 ± 20.9 5.9 ± 10.3 69.6 ± 15.2

5 56.7 ± 35.2 175.1 ± 47.5 70.9 ± 31.3 34.0 ± 8.2 23.8 ± 4.9 64.6 ± 15.5

6 49.5 ± 34.0 163.1 ± 40.5 39.1 ± 11.0 53.0 ± 9.8 22.7 ± 4.3 57.3 ± 17.4

7 65.0 ± 40.2 170.9 ± 46.5 80.8 ± 41.5 60.3 ± 18.2 20.3 ± 5.8 63.2 ± 16.9

BJ

0 49.0 ± 10.0 83.8 ± 25.5 25.9 ± 14.8 30.9 ± 9.7 11.8 ± 10.5 41.7 ± 22.3

1 49.9 ± 10.5 76.3 ± 28.3 92.6 ± 38.5 40.5 ± 5.0 11.7 ± 10.5 62.1 ± 21.5

2 50.9 ± 9.0 72.8 ± 29.6 44.6 ± 11.5 57.2 ± 7.5 9.6 ± 9.4 45.0 ± 15.4

3 44.8 ± 7.5 195.5 ± 40.5 38.2 ± 13.9 35.2 ± 6.8 25.7 ± 3.1 56.0 ± 13.7

4 52.8 ± 8.8 54.4 ± 36.5 146.9 ± 74.6 81.1 ± 22.5 6.6 ± 8.2 61.6 ± 17.2

5 44.1 ± 7.8 216.8 ± 43.2 101.3 ± 30.4 36.6 ± 5.9 26.3 ± 3.4 66.4 ± 11.7

6 45.9 ± 6.2 196.0 ± 38.7 45.8 ± 11.7 55.8 ± 6.6 24.8 ± 3.6 45.1 ± 12.9

7 46.8 ± 7.3 203.3 ± 47.5 121.1 ± 52.4 64.7 ± 17.0 21.8 ± 4.4 56.2 ± 12.5

CC

0 20.8 ± 6.5 79.4 ± 18.4 26.1 ± 9.4 29.2 ± 6.1 7.1 ± 12.4 63.9 ± 17.1

1 21.9 ± 6.6 76.5 ± 19.4 63.2 ± 22.7 33.2 ± 5.9 −2.9 ± 11.8 60.0 ± 15.1

2 18.9 ± 5.8 86.4 ± 18.8 31.8 ± 8.5 46.4 ± 6.3 11.6 ± 9.8 59.5 ± 16.1

3 19.7 ± 6.8 142.5 ± 26.7 27.5 ± 8.4 31.1 ± 5.5 21.6 ± 4.5 62.2 ± 15.9

4 20.6 ± 6.7 69.9 ± 19.7 107.8 ± 65.2 56.2 ± 13.0 −5.6 ± 9.9 63.3 ± 13.9

5 19.9 ± 7.0 155.2 ± 21.8 66.6 ± 20.6 30.6 ± 6.2 21.3 ± 5.6 57.4 ± 19.4

6 21.0 ± 6.5 146.9 ± 26.2 31.2 ± 7.4 47.9 ± 7.1 21.1 ± 4.0 57.0 ± 15.2

7 21.3 ± 6.6 148.1 ± 30.7 96.9 ± 60.9 58.4 ± 14.9 14.0 ± 8.9 51.9 ± 15.6

GZ

0 124.7 ± 23.6 77.7 ± 36.2 23.1 ± 7.1 32.4 ± 6.7 22.5 ± 6.5 81.7 ± 10.1

1 121.4 ± 21.5 90.3 ± 36.3 50.3 ± 11.4 35.4 ± 6.6 18.6 ± 6.7 73.9 ± 12.8

2 130.7 ± 23.1 61.4 ± 35.3 30.0 ± 4.8 51.7 ± 6.3 21.1 ± 5.1 86.2 ± 8.4

3 115.6 ± 17.3 178.6 ± 36.3 27.1 ± 5.2 32.6 ± 5.5 28.6 ± 1.4 78.3 ± 5.2

4 134.4 ± 26.3 79.6 ± 35.2 66.3 ± 23.5 68.5 ± 19.3 17.7 ± 4.8 78.7 ± 11.8

5 114.4 ± 14.0 199.1 ± 43.3 50.0 ± 11.1 39.5 ± 3.9 27.3 ± 2.4 75.5 ± 8.3

6 114.7 ± 17.7 186.8 ± 38.9 32.7 ± 5.3 50.2 ± 7.0 25.3 ± 2.8 81.8 ± 10.8

7 122.5 ± 20.1 196.9 ± 46.7 63.8 ± 20.7 64.3 ± 19.6 23.4 ± 4.7 77.7 ± 7.9

KM

0 85.8 ± 17.3 71.6 ± 19.5 18.1 ± 4.7 21.9 ± 4.5 17.6 ± 4.4 74.0 ± 13.5

1 98.1 ± 22.8 79.9 ± 18.0 35.1 ± 6.5 23.9 ± 4.4 13.6 ± 5.5 71.9 ± 13.5

2 87.6 ± 21.6 71.5 ± 20.3 22.6 ± 4.0 33.6 ± 3.7 15.2 ± 4.2 74.5 ± 13.4

3 85.2 ± 13.9 120.3 ± 16.4 22.5 ± 3.6 21.5 ± 4.6 19.8 ± 3.2 64.2 ± 13.6

4 96.7 ± 24.0 74.1 ± 21.5 43.8 ± 13.0 40.1 ± 7.6 11.8 ± 4.4 71.5 ± 12.2

5 90.8 ± 14.1 127.1 ± 16.8 35.8 ± 7.3 21.8 ± 4.3 18.7 ± 3.6 57.8 ± 13.6

6 79.4 ± 10.8 122.8 ± 14.4 23.9 ± 3.2 33.6 ± 4.8 18.5 ± 2.6 69.1 ± 11.8

7 84.9 ± 13.4 134.3 ± 23.0 49.4 ± 15.1 41.4 ± 9.6 18.0 ± 3.1 57.9 ± 15.6
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Table A1. Cont.

City Type All
(Mean ± SD)

O3_1h (Mean
± SD, µg/m3)

PM25 (Mean
± std, µg/m3)

NO2 (Mean ±
std, µg/m3)

TEM
(Mean ± std, ◦C)

RH
(Mean ± std, %)

NJ

0 21.4 ± 5.4 83.7 ± 28.6 30.1 ± 12.1 32.3 ± 7.6 18.2 ± 9.3 78.6 ± 14.6
1 22.5 ± 5.6 84.4 ± 29.4 80.5 ± 29.5 36.5 ± 6.1 13.7 ± 9.1 78.3 ± 12.2

2 22.6 ± 5.5 78.8 ± 31.8 42.0 ± 9.3 55.9 ± 8.4 13.6 ± 8.1 69.5 ± 15.3

3 20.9 ± 5.5 185.2 ± 37.4 36.1 ± 10.9 33.8 ± 7.7 25.7 ± 4.9 68.4 ± 9.6

4 24.0 ± 5.8 77.9 ± 31.9 106.4 ± 46.6 71.4 ± 18.3 9.8 ± 6.2 69.8 ± 12.7

5 20.4 ± 4.3 187.8 ± 36.0 74.0 ± 18.6 36.5 ± 5.7 24.4 ± 4.6 73.6 ± 8.3

6 20.9 ± 5.6 178.5 ± 31.4 41.1 ± 9.7 54.7 ± 10.4 22.2 ± 5.1 62.7 ± 11.7

7 21.3 ± 5.4 185.8 ± 42.2 87.9 ± 30.2 65.8 ± 16.1 20.6 ± 5.2 64.8 ± 10.9

WH

0 55.8 ± 10.7 85.4 ± 35.9 34.2 ± 13.3 30.6 ± 7.7 19.6 ± 8.3 82.9 ± 12.0

1 60.6 ± 13.0 74.8 ± 36.5 95.7 ± 39.8 38.3 ± 6.2 12.2 ± 7.8 83.3 ± 9.3

2 59.8 ± 11.2 85.0 ± 36.5 50.4 ± 9.0 54.1 ± 9.3 14.6 ± 7.4 79.7 ± 10.3

3 53.9 ± 10.3 178.7 ± 24.4 40.2 ± 10.8 33.1 ± 7.0 27.4 ± 3.9 74.7 ± 8.5

4 64.4 ± 13.5 73.5 ± 35.0 125.1 ± 58.8 72.6 ± 19.0 9.0 ± 6.0 78.7 ± 9.5

5 52.3 ± 8.3 186.3 ± 31.2 79.7 ± 21.0 38.3 ± 6.0 25.1 ± 3.3 76.2 ± 7.1

6 54.3 ± 9.5 185.8 ± 31.2 49.5 ± 9.0 58.3 ± 9.3 22.4 ± 4.5 73.5 ± 9.1

7 53.6 ± 9.4 193.5 ± 33.4 93.9 ± 29.0 68.1 ± 16.9 21.5 ± 4.5 77.2 ± 6.8

WLMQ

0 22.0 ± 5.8 61.1 ± 18.9 29.2 ± 9.8 35.2 ± 8.6 10.1 ± 9.0 58.3 ± 20.4

1 21.5 ± 5.6 43.6 ± 23.2 74.4 ± 25.1 41.6 ± 7.9 2.4 ± 9.4 70.3 ± 22.0

2 21.7 ± 5.3 60.9 ± 18.3 37.5 ± 8.1 60.1 ± 9.9 7.9 ± 11.0 54.5 ± 18.4

3 21.1 ± 6.3 118.1 ± 22.1 29.6 ± 8.7 37.9 ± 8.4 22.6 ± 4.0 41.9 ± 13.1

4 21.7 ± 6.0 37.2 ± 21.1 145.3 ± 76.2 77.2 ± 18.2 −3.6 ± 9.4 70.5 ± 16.7

5 24.0 ± 16.3 113.6 ± 20.2 65.8 ± 36.4 42.0 ± 6.8 22.6 ± 4.3 38.5 ± 11.3

6 18.7 ± 5.3 125.6 ± 25.8 37.8 ± 7.1 58.2 ± 5.8 23.1 ± 4.0 34.5 ± 9.0

7 19.0 ± 5.8 120.6 ± 24.8 66.8 ± 14.2 65.5 ± 12.6 21.5 ± 5.2 34.3 ± 8.6

XA

0 103.1 ± 25.6 66.9 ± 27.0 34.9 ± 12.2 32.0 ± 7.3 14.5 ± 8.4 70.2 ± 19.6

1 111.2 ± 25.2 57.6 ± 27.5 84.9 ± 30.6 36.7 ± 6.4 9.1 ± 8.0 69.8 ± 16.9

2 110.8 ± 25.6 74.0 ± 27.6 44.4 ± 9.5 53.2 ± 9.6 12.1 ± 8.1 59.8 ± 16.7

3 94.8 ± 19.3 162.0 ± 32.4 36.7 ± 11.1 33.6 ± 6.6 26.1 ± 3.6 61.4 ± 10.6

4 112.5 ± 25.8 54.4 ± 27.3 139.4 ± 86.2 65.7 ± 15.6 6.5 ± 6.9 64.9 ± 15.0

5 87.9 ± 20.4 166.8 ± 31.1 79.6 ± 23.3 35.8 ± 5.8 25.6 ± 3.8 62.6 ± 11.5

6 92.7 ± 17.9 174.0 ± 40.8 42.4 ± 9.8 54.3 ± 8.5 24.1 ± 3.9 58.2 ± 10.2

7 94.4 ± 23.8 156.8 ± 28.4 100.9 ± 47.4 65.7 ± 14.6 20.7 ± 4.5 60.5 ± 12.6
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