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Abstract: In January 2013, a dense haze covered 1.4 million kilometers of China and affected more
than 800 million people. Air pollution in China had become a serious threat to the daily lives
of people. The State Council of China enacted the “Air Pollution Prevention and Control Action
Plan” (APPCAP) in 2013 to lower the particulate matter (PM) level. Between 2013 and 2017, each
administrative division established its own environmental preservation strategy in accordance with
the APPCAP. We examined the effects of the nationwide air pollution control policy, APPCAP, on
chronic health conditions among adults using a nationally representative survey, CFPS, conducted in
2012, 2014, and 2016. We applied a difference-in-differences model, using the time gap when each
administrative division implemented the APPCAP. We found that the APPCAP significantly reduced
doctor-diagnosed chronic conditions of the respiratory and circulatory systems in the last six months.
In respiratory diseases and circulatory system diseases, the treatment effect of the APPCAP was a
34.6% and 11.5% reduction in the sample mean, respectively. The poorest socioeconomic groups and
the elderly benefited the most. The stronger the goal, the more positive the effects were on health; the
longer the policy intervention, the better the health outcomes were.

Keywords: fine particulate air pollution (PM2.5); Air Pollution Prevention and Control Action Plan;
chronic health conditions; difference-in-differences model

1. Introduction

The World Health Organization (WHO) reported that outdoor air pollution was
responsible for the premature deaths of some 3.7 million people in 2012, most of them
in low- and middle-income countries [1]. Exposure to ambient air pollution increases
mortality and morbidity and is a leading cause of the global disease burden [2].

China has experienced rapid economic growth over several decades. At the same time,
particulate air pollution caused by the coal-based energy-intensive development path and
increase in motor vehicle use has become serious [3]. Previous studies have shown that
atmospheric particulate pollution ranks fourth among the twenty major factors causing
fatal harm to the public in China [4]. In January 2013, a dense haze covered 1.4 million
kilometers of China and affected more than 800 million people [5]. In the national capital
region, the annual average concentration of PM2.5 is 93 µg/m3 [6], which is almost 10 times
higher than the WHO standard (10 µg/m3) [7]. Rohde and Muller (2015) estimated that
92% of the population of China experienced unhealthy air based on the U.S. Environmental
Protection Agency standards during their study and calculated that 1.6 million deaths/year
in China were contributed to by air pollution, roughly 17% of all deaths in China [8].

China is at its most important stage of ambient air pollution control, and the unad-
dressed health consequences at regional and global levels pose major policy challenges [9].
The State Council of China enacted the APPCAP in 2013 to lower the particulate matter
(PM) level. Between 2013 and 2017, each administrative division established its own en-
vironmental preservation strategy in accordance with the APPCAP. This policy is quite
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stringent, which may be a milestone [10]. Considering the concern about air pollution in
China and the threats to people’s health, the APPCAP provides an excellent opportunity to
evaluate the benefits of the air pollution control policy.

Although there is some literature showing that air pollutants contribute to increased
mortality and hospital admissions [11–13], limited empirical studies evaluate the benefits
to health of a reduction in air pollution. Increased air pollution and decreased air pollution
may have asymmetrical effects on health. A few papers examining the benefit of air quality
improvement in China focused on specific areas in China [14,15] or measured the extreme
outcome of mortality changes over time [3]. Mortality is the most studied health endpoint
in association with air pollution. One reason is the widespread availability of data for
large populations, and another reason is the importance of mortality in estimating health
impacts [16]. However, observing mortality over time can be confounded with other factors
including medical technology innovations [17]. By focusing on specific areas, we might
miss the negative spillover effect where air pollution lowers in the target area but worsens in
the neighboring area to which factories move [18]. Some studies have also been conducted
using the special air pollution control for specific events that have occurred in China,
for example, the effect of the Beijing Olympic air quality intervention on cardiovascular
diseases [14], pulmonary inflammation in children [19], and heart rate variability in taxi
drivers [15], the APEC Blue and Parade Blue periods in Beijing [20], the 2010 Guangzhou
Asian Games [21], and the 2010 Shanghai World Expo [22]. Although evaluating temporary
interventions might be useful to measure health benefits; this temporary intervention may
not be applicable for long period of time.

Air pollution in China may impact people through both acute (peak level) and chronic
(average level) exposures. Severe particulate pollution days (SPPDs), a chronic exposure
measure, have been observed frequently in China, since air pollution remains for an ex-
tended period of time [23]. As a result, air pollution may impact people’s chronic conditions,
first and foremost. In this paper, we aim to evaluate the effects of the APPCAP policy, which
is the first nationwide air quality improvement policy in China, on chronic conditions using
difference-in-differences estimation method for all of China. Each administrative division
implemented the APPCAP policy at a different time, and we will use this implementation
time gap to estimate the causal inference of the policy on health.

This paper makes several contributions to the literature. First, we measure air-
pollution-related chronic disease as an outcome. Many earlier studies instead focused
on death [3,24,25]. Although death is a clear and catastrophic event, chronic diseases that
affect people’s daily lives and quality of life are also important to investigate. Second, we
study adults as a sample. There are few publications examining adults, since adults with
fully functional organ capacity (for example, lung) are less vulnerable compared to children
or adolescents [26]. Third, we evaluate one of the most stringent air quality improvement
policies in China, one of the countries experiencing the most severe air pollution. China also
has a population of approximately 1.4 billion, which is about 18% of the world’s population.
This policy evaluation is important because it not only impacts a large segment of the
earth’s population, but it might also give some guidance for similar future policies in other
developing countries. Our paper’s final contribution is the quantitative measurement of
policy interventions based on the policy’s stringency and duration. Identifying effective
policy characteristics could be extremely useful to policymakers, but no previous study has
attempted to do so.

We discovered that the APPCAP significantly reduced respiratory and circulatory
system diseases. The poorest socioeconomic groups and the elderly benefited the most.
Although both stringency and duration positively impacted health outcomes, stringency
was more effective than duration.

The remainder of this paper proceeds as follows. In Section 2, we explain the policy in
detail. In Sections 3 and 4, we present our data and econometric model. In Section 5, we
present the results. In Sections 6 and 7, we discuss and conclude the paper, respectively.
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2. Air Pollution Prevention and Control Action Plan (2013–2017)

The State Council of China announced the APPCAP in 2013, and each administrative
division implemented its own environmental protection policy. The timing and duration
of implementation in the administrative divisions varied greatly. Figure 1 shows the
implementation time of the APPCAP at the administrative division level. Beijing and
Shanghai, for example, implemented the APPCAP in September and November 2013,
respectively, with a four-year policy duration; Sichuan and Guangdong began in February
2014, with a three-year policy duration; and Liaoning and Guangxi began in 2017, with a
three-year policy duration. Table 1 shows the enacted time and durations of the APPCAP
at the administrative division level.
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Table 1. APPCAP implementation time by month and duration.

Administrative Division APPCAP Enacted Time Duration

Shandong July 2013 ~2020
Beijing September 2013 ~2017
Hebei September 2013 ~2017
Shanxi October 2013 ~2017

Shanghai November 2013 ~2017
Anhui December 2013 ~2017

Chongqing December 2013 ~2017
Shannxi December 2013 ~2017

Jilin December 2013 ~2017
Zhejiang December 2013 ~2017
Jiangxi December 2013 ~2017
Hunan December 2013 ~2017
Gansu December 2013 ~2017
Hubei January 2014 ~2017

Jiangsu January 2014 ~2017
Guangdong February 2014 ~2017
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Table 1. Cont.

Administrative Division APPCAP Enacted Time Duration

Sichuan February 2014 ~2017
Yunnan March 2014 ~2017
Guizhou May 2014 ~2017

Fujian June 2014 ~2017
Heilongjiang March 2016 ~2018

Henan July 2016 ~2017
Liaoning April 2017 ~2020
Guangxi June 2017 ~2020

Source: Official website of each administrative division. Notes: Thirty-one administrative divisions implemented
their own environmental protection policies. The survey data at the individual level covered 25 administrative
divisions. From these 25, we excluded Tianjin because it had implemented environmental regulations prior to the
APPCAP. Therefore, 24 administrative divisions were used in the analysis.

3. Data: China Family Panel Studies

We examined the impact of the APPCAP on health among the population in China.
The China Family Panel Studies (CFPS) is a nationally representative study that collects
detailed information on people’s health across 25 of 31 administrative divisions in China.
From these 25, we excluded Tianjin because it had implemented environmental regulations
prior to the APPCAP. Therefore, 24 administrative divisions were used in the analysis
(see Table 1). The first CFPS survey was conducted in 2010, with subsequent surveys in
2012, 2014, and 2016 (CFPS2010, CFPS2012, CFPS2014, and CFPS2016). We used information
on diagnosis by a doctor over the previous six months to measure the health outcomes. The
first wave, which was CFPS2010, unfortunately, did not collect this information. Therefore,
we used three waves of the survey, from CFPS2012 to CFPS2016. The earliest APPCAP
policy intervention was implemented in 2013 and the latest one in 2017 (see Table 1). Each
observation recorded the actual month and year of the survey. The survey took two years
to complete. Therefore, CFPS2016 contains answers from 2016 as well as in 2017. Our study
period is restricted till 2017 because the environmental protection tax law implemented on
1 January 2018 might bias results by considering a longer time period.

Sample attrition could bias our results. About 17.5% of the 2012 survey respondents
did not respond to the 2014 survey, including people who died. The attrition rate was 17%
in 2016 from the 2014 survey. We hypothesized that higher mortality in polluted areas could
result in higher attrition rates compared to less polluted areas. We ran a regression analysis
to check whether the attrition rate was correlated with the pollution level in 2012 using the
administrative area as the unit of observation. We did not find any statistically significant
result, and the sign was negative, implying that higher polluted areas had a lower attrition
rate. We feel confident that sample attrition did not generate bias in our study.

3.1. Dependent Variables

We measured air-pollution-related chronic diseases using CFPS. Based on the liter-
ature, we identified two categories of air-pollution-related chronic diseases: respiratory
system diseases (asthma, pneumonia, etc.) and circulatory system diseases (hypertension,
stroke, etc.) [11,27,28].

The CFPS asked the respondents ‘whether (they) had doctor-diagnosed chronic dis-
eases over the past six months’. These questions were asked only for those 16 years old
and over. If the answer was yes, the CFPS asked for the details of the diagnosis in the
subsequent questions. The CFPS classified diseases, and we constructed a binary vari-
able of respiratory and circulatory disease. The outcome was measured on an average of
23 months after the policy intervention. If the 6 months prior to survey time t spanned pre-
and post-implementation of the APPCAP, we treated it as a missing value. For example,
Sichuan implemented the APPCAP in February 2014, so we treated the survey period
from February to September 2014 as missing values. Missing values due to this situation
accounted for 6% of the sample.
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There is also a concern of self-selection: when survey respondents systematically differ
in terms of consulting a doctor and receiving a diagnosis, this can cause bias in the estimates.
For example, people in urban areas consult a doctor more frequently than those in rural
areas and are more likely to be diagnosed. We checked these possibilities by running a
regression: respiratory patients’ rate in 2012 as a dependent variable and pollution level
in 2012 as an independent variable in the administrative division level. We did not find
any statistically significant result. The result did not change when we used circulatory
patients’ rate as a dependent variable. Although we did not find systematic differences
across administrative division in terms of doctor-diagnosed chronic conditions, we used
only overtime variation with the administrative division fixed effects as a precaution.

3.2. Weather Conditions

To isolate the impact of seasonal patterns on health, we additionally controlled for a
variety of meteorological factors, including mean temperature, humidity, sunshine, and
precipitation during the months in which the survey was conducted [29,30]. Monthly
observations of weather conditions were obtained from resources such as the environmental
section of China’s Statistical Yearbook from 2013 to 2018 [31–36]. The China Statistical
Yearbooks report the statistics of the previous year, that is, the 2013 yearbook includes the
statistical data from 2012. Weather data are only available for key cities in administrative
divisions. Following Shahzad et al. (2020), we used the average measure of cities in
administrative divisions [37]. Weather conditions could introduce a measurement error but
including weather conditions does not change our results qualitatively.

4. The Econometric Model

To estimate the effects of APPCAP on health outcomes, we relied on a difference-in-
differences (DID) estimation, which has become a popular way to estimate the causal effect
of a specific intervention. DID is a quasi-experimental design using longitudinal data from
treatment and control groups. The basic assumption needed is that unobserved differences
between the treatment and control groups are the same over time. This assumption can be
tested when preintervention data are observed multiple times. Unfortunately, we had only
one wave (CFPS2012) before the policy implementation. Therefore, we could not test the
parallel trend assumption in our study.

The dependent variable was binary and extremely rare: 1.44% and 6.57% of our 56,958
observations for respiratory and circulatory disease, respectively. As a result, we decided
to use logistic regression [38].

Our baseline econometric model was as follows:

P(Yi = 1|Xi) =
exp{θ(Xi; β)}

1 + exp{θ(Xi; β)}

where θ(Xi; β) can be represented as:

θ(Xi; β) = β0 + β1Treatedj × Postt + β2Xijt + β3Weatherjt + δj + γt + εijt

Here, the probability that a respondent i suffered from a respiratory or circulatory
system disease in the previous six months in administrative division j at time t by month
has been estimated. Yi, a binary random variable with mean E(Yi) = p and variance equal
to p(1− p), indicates if the respondent suffered from doctor-diagnosed chronic diseases
over the past six months. Xi is a (K× 1) vector of explanatory variables. θ(Xi; β) is referred
to as the predictor function, and β is a vector of parameters.

In the regression model, β0, the constant term, reflects the expected value of the
probability of suffering from a respiratory or circulatory system disease when all of the
predictor variables in the model are equal to 0. Treatmentj is 1 if the administrative division
implemented the APPCAP policy and Postt is 1 if the time is after the implementation of the
APPCAP policy. β1, the coefficient of Treatmentj × Postt, captures the effect of the APPCAP
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on health outcomes assuming all other predictor variables are held constant. Treatmentj and
Postt should be included in the model. We included the administrative division fixed effect
δj and monthly fixed effects γt in our model instead of Treatmentj and Postt, respectively [39].
Since we used a logistic model coefficient, the marginal effects should be calculated. We
report the marginal effects of the policy interventions at the mean as well as the coefficients
of the model.

Age, sex, marital status (never married, married, cohabitating, divorced, and widowed,
with never married as the reference group), and education level (primary school, middle
or high school, and university graduates or above, with primary as the reference group),
employment status, and annual household income were all controlled for as a set of
demographic variables, Xijt [29,40].

Chen et al. (2013) discovered that the health effect of particulate air pollution varied
by season, with the largest effect in winter and summer in China [41]. We controlled for the
weather conditions as mentioned in the previous section. εijt is an error term.

Table 2 presents the descriptive statistics of the variables used in the analyses. Ap-
proximately 48% of the sample included were men, and 47% of them resided in a city. The
average age of the sample was 49 years.

Table 2. Descriptive statistics: CFPS2012, 2014, 2016.

Variables Mean Standard Deviation

Dependent Variables
Respiratory diseases (%) 1.44 0.12
Circulatory system diseases (%) 6.57 0.17

Independent Variables
Weather Conditions
Mean Temperature (◦C) 21.62 9.48
Humidity (%) 71.99 8.69
Precipitation (mm) 127.57 109.72
Sunshine (hour) 181.89 53.06

Demographic characteristics of CFPS surveys
Age (year) 48.66 14.81
Mean annual household income a (log form) 7.14 4.60
Male (%) 48.09 0.50
Urban (%) 46.63 0.50
Labor force participation (%) 72.80 0.44
Primary school or less (%) 26.67 0.46
Middle/high school (%) 29.93 0.46
University or above (%) 43.40 0.49
Married (%) 85.69 0.35
Smoke (%) 29.84 0.46
Drink (%) 16.29 0.37
Coal (%) 6.67 0.25

Observations 56,958
Note: a Log transformed annual household income (CNY).

5. Results

First, we analyzed whether the APPCAP influenced the adult sample. As we men-
tioned in the previous section, chronic disease questions were surveyed only for 16 years
old and over. Therefore, we used everyone for whom we had information on chronic
disease conditions. The coefficient (β1) in the logit model did not suggest a marginal effect.
The marginal effect at the means of the independent variables was calculated. This is shown
in the following tables as marginal effects.
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5.1. All Adults

The regression results obtained by estimating the equation in Section 4 are presented in
Table 3. Columns 1 and 2 show the effect of the APPCAP, adjusted for observable individual
characteristics, weather conditions, administrative-division fixed effects, and monthly fixed
effects on respiratory and circulatory system diseases after the APPCAP implementation,
respectively. The first row Treatmentj × Postt is the coefficient measuring the effect of the
policy intervention on the dependent variable in the difference-in-differences model.

Table 3. Logit estimates: effects of the APPCAP on chronic conditions.

Air-Pollution-Related Diseases
Variables Respiratory Circulatory

Treatment × Post
−0.489 ** −0.239 **

(0.192) (0.099)

Age 0.027 *** 0.085 ***
(0.004) (0.003)

Male
0.611 *** −0.179 ***
(0.111) (0.065)

Urban
−0.002 −0.003
(0.100) (0.057)

Alcohol
−0.319 −0.316 ***
(0.132) (0.077)

Tobacco
−0.681 −0.329 ***
(0.120) (0.069)

Coal heating −0.017 −0.020
(0.187) (0.092)

Married
−0.151 0.868 ***
(0.225) (0.245)

Cohabitating 0.967 0.994 **
(0.621) (0.483)

Divorced
0.227 1.122 ***

(0.403) (0.322)

Widowed
−0.079 0.583 **
(0.297) (0.263)

Employed −0.091 −0.318 ***
(0.109) (0.058)

ln (Annual household income)
0.006 0.007

(0.010) (0.005)

Middle/high school −0.133 0.014
(0.126) (0.068)

University or above −0.053 0.009
(0.207) (0.122)

Constant
−6.623 *** −8.995 ***

(1.129) (0.683)
Observations 56,958 56,958

Marginal effects at means for
Treatment × Post

−0.499 ** −0.757 **

(0.196) (0.312)

Dependent variable mean (×100) 1.44 6.57
Notes: The sample included all respondents in CFPS 2012, 2014, and 2016 in Table 2. The dependent variable was
respiratory diseases and circulatory system diseases; if the respondent had suffered from respiratory diseases
or circulatory system diseases in the previous six months, then the variable was coded as a dummy variable,
respiratory diseases or circulatory system diseases (=1). Treatment × Post is our variable of interest representing
difference-in-difference estimates. Weather was controlled for. Administrative divisions and monthly fixed effects
are included in the regressions. Clustered standard errors across survey respondents are presented in parentheses.
**, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Age was positive and statistically significant for both columns, meaning that as the
age of people increased, the probability of being diagnosed with respiratory or circulatory
diseases increased. Males showed a higher probability of having respiratory diseases but a
lower probability of having circulatory diseases. Drinking or smoking showed negative
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effects on circulatory diseases. Married people showed a statistically significant increase
in the probability of circulatory disease compared to people who were never married. In
addition, people who were employed showed a statistically significantly lower probability
of circulatory disease compared to those who were unemployed.

For our main variable of interest, we calculated the marginal effects at means. The
APPCAP resulted in a significant decrease in the average probability of being diagnosed
with respiratory diseases and circulatory system diseases by 0.499 percentage points and
0.757 percentage points, respectively. In respiratory diseases and circulatory system dis-
eases, the treatment effect of the APPCAP was a 34.6% (=0.499/1.44) and
11.5% (=0.757/6.57) reduction in the sample mean, respectively. According to the findings,
the APPCAP resulted in a significant improvement in adult health.

There could be an administrative division-specific time trend. Large cities, for example,
may experience faster health care sector growth, and these unobserved factors might bias
our results. We ran an additional regression that included administrative division-specific
time trends to account for this. Our results remained qualitatively the same even after
including an administrative division-specific time trend.

5.2. Results by Subsample
5.2.1. Sex and Age

There might be heterogeneity of the policy effects on chronic diseases across differ-
ent populations. From the sex perspective, there might be differences physically [42].
Specific demographics, particularly older adults, were identified as potentially more sus-
ceptible to air pollution effects than the general population because their physiological
processes deteriorate with age and their respiratory tract’s ability to resist PM decreases with
age [42,43]. We classified respondents into two sex categories and three age groups: young
(16 to 39 years), middle-aged (40 to 64 years), and elderly (65 years and over) [44]. As
previously stated, a logistic regression approach was employed.

Table 4 shows the effect of the APPCAP on the probability of developing respiratory
(upper block) and circulatory system diseases (bottom block) by sex and age. In the first
column, we represent the results reported in Table 3. In the second column, males’ risk of
respiratory disease was reduced by 0.737 percentage points following APPCAP adoption.
This is a statistically significant change and a 46.7% (=0.737/1.578) drop of the sample
mean. In the third column, females’ risk of respiratory disease was decreased, but it was
not statistically significant, and the magnitude was also 43% compared to that of males.

In the fourth to sixth column, we present the DID coefficients and marginal effects
at means by age group. The elderly (65 years old and above) benefited the most. The
rate of respiratory disease fell by 1.37 percentage points with APPCAP, and it was statisti-
cally significant. Based on the sample mean of 2.5%, there was a 55.5% reduction in the
sample mean.

At the bottom of Table 4, we report the estimation results for circulatory system disease
in the same format. The patterns of the results were different. Males’ risk of circulatory
disease did not show a statistically significant result. However, the risk for circulatory
system diseases reduced by 1.508 percentage points among females, which was 26.6% of
the sample mean. In the fourth to sixth column, the age group results also showed a slightly
different pattern compared to respiratory diseases. The risk of circulatory system diseases
was reduced by 1.11 and 2.95 percentage points or 16.42% and 17.89% of the sample mean
for middle aged (40–64) and older adults (>65 years old), respectively. The results by sex
can be viewed as consistent with the studies by Granados-Canal et al. (2005), Shin et al.
(2020), Su et al. (2016), Xia et al. (2017), Anderson et al. (2003), and Dominici et al. (2006)
that males have a higher risk for respiratory diseases, while females have a higher risk for
circulatory system diseases from PM2.5 [45–48]. The results by age were also consistent with
the literature, since exposure to PM2.5 increases the risk for cardiovascular and respiratory
diseases among the elderly [49,50].
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Table 4. Logit estimates: effects of APPCAP on chronic conditions, by sex and age group.

Respiratory System Disease
Sex Age

Total Male Female 16–39 40–64 65–

Treatment × Post −0.489 **
(0.192)

−0.725 **
(0.296)

−0.338
(0.259)

−0.436
(0.399)

−0.421
(0.269)

−0.766 *
(0.408)

Observations 56,958 27,855 29,015 15,906 32,179 8649

Marginal effects at means for
Treatment × Post

−0.499 **
(0.196)

−0.737 **
(0.30)

−0.319
(0.244)

−0.259
(0.235)

−0.410
(0.260)

−1.367 *
(0.718)

Dependent variable mean (×100) 1.443 1.578 1.315 0.965 1.400 2.464

Circulatory System Disease
Sex Age

Total Male Female 16–39 40–64 65–

Treatment × Post −0.239 **
(0.099)

0.043
(0.150)

−0.434 ***
(0.132)

0.303
(0.480)

−0.275 **
(0.119)

−0.286 *
(0.165)

Observations 56,958 27,855 29,103 15,906 32,179 8649

Marginal effects at means for
Treatment × Post

−0.757 **
(0.312)

0.120
(0.419)

−1.508 ***
(0.459)

−0.121
(0.188)

−1.109 **
(0.519)

−2.948 **
(1.700)

Dependent variable mean (×100) 6.570 7.432 5.669 0.689 6.760 16.490

Notes: The sample included all respondents in CFPS 2012, 2014, and 2016 in Table 2. Sex, age, urban, marital
status (married, cohabitating, divorced, and widowed), employed, logarithm form of annual family income,
and weather information were included as independent variables. Treatment × Post is our variable of interest
representing difference-in-difference estimates. Administrative divisions and monthly fixed effects are included
in the regressions. Clustered standard errors across survey respondents are presented in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.

5.2.2. Socioeconomic Status

In this section, we will examine the heterogeneity across different socioeconomic
statuses. People with low income are more likely to work outdoors (for example, in the
construction, transportation, and road services industries), and they might suffer from
more exposure to air pollution than people with medium or high income [24,42]. In this
study, socioeconomic status was defined through educational attainment levels [51]. We
divided the respondents into three groups by education level: primary school, middle or
high school, and university graduates or higher.

About 26% of the sample had only completed primary school, 30% had completed
middle or high school, and 43% had completed a university diploma or above. In the first
column, we present the results reported in Table 3. The upper block shows respiratory
disease, and the bottom block reports circulatory disease as an outcome. In the second
column, we report the results for the low socioeconomic group. There were 0.702 and
1.003 percentage point reductions in respiratory diseases and circulatory system diseases,
respectively, for the low socioeconomic group, which made up 44.5% and 12.8% reductions
in the sample mean. The reduction in respiratory disease among people with less education
was three times higher than the reduction in circulatory disease in the same group.

The medium and high socioeconomic status groups did not show any statistically
significant results, as reported in the third and fourth column of Table 5. This might because
high socioeconomic status ensures access to more resources that can protect people from
increased exposure, such as private transportation versus public, indoor versus outdoor
work environments, and better constructed housing [52,53].
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Table 5. Logit estimates: effects of APPCAP on chronic conditions, by education level.

Respiratory System Disease
Educational Attainment Levels

Total Primary Middle College and above

Treatment × Post −0.489 **
(0.192) −0.702 *(0.379) −0.487

(0.398)
0.232

(0.473)

Observations 56,958 14,841 16,867 24,361

Marginal effects at means for
Treatment × Post

−0.499 **
(0.196)

−0.702 *
(0.377)

−0.343
(0.278)

0.269
(0.547)

Dependent variable mean (×100) 1.443 1.579 1.119 1.584

Circulatory System Disease
Educational Attainment Levels

Total Primary Middle College and above

Treatment × Post −0.239 **
(0.099)

−0.246 *
(0.173)

−0.045
(0.204)

0.229
(0.317)

Observations 56,958 15,188 16,986 24,578

Marginal effects at means for
Treatment × Post

−0.757 **
(0.312)

−1.003 *
(0.705)

−0.099
(0.444)

0.753
(1.046)

Dependent variable mean (×100) 6.570 7.787 4.559 7.210

Note: See notes in Table 4. *, and ** indicate significance at the 10%, and 5% levels, respectively.

5.3. Results by Policy Characteristics

Policymakers are interested in which characteristics of a policy determine its effective-
ness. In this section, we consider two policy characteristics: the stringency and duration
of the policy. The stringency is measured as the difference between the PM2.5 level at
pre-intervention time and the reduction goal of the PM2.5 level. For example, if the pre-
intervention level of PM2.5 was 65 µg/m3, and the goal level was 55 µg/m3, then the
stringency was recorded as 10 µg/m3 (=65 − 55). The duration is measured as the total
months of the policy from implementation to the end. If the policy characteristics were
correlated with air pollution levels before intervention, then the policy characteristics
would be endogenously decided, which would generate bias. Figure 2a shows the re-
lationship between the stringency and air pollution levels of PM2.5 before intervention.
Figure 2b shows the policy duration and air pollution levels before intervention. We do
not see any pattern in these graphs, which means that both policy characteristics were not
endogenously decided.

We ran a regression using stringency or duration as a key independent variable.
Table 6 shows the effect of the policy characteristics on the probability of developing
respiratory or circulatory system diseases by stringency (columns 1 and 2) and duration
(columns 3 and 4). The mean stringency was 14.6. When we ran the regression using
stringency, the marginal effect at the mean was −0.027, as shown in column 1 of Table 6.
This means that the respiratory disease rate would be lowered by 0.027 percentage points
when the policy goal increased by one unit. Considering the average stringency of 14.6, the
marginal effects would be −0.394 (0.027 × 14.6), which was similar to what we obtained
in Table 3. This result was statistically significant. A stronger policy would improve
people’s respiratory conditions. As shown in column 2 of Table 6, the marginal effects
for the circulatory disease were −0.07 percentage points with an increase in stringency
by one unit. Considering the average stringency of 14.6, the marginal effects would be
−1.02 (0.07 × 14.6). This result was statistically significant. A stronger policy would also
improve people’s circulatory conditions.
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Figure 2. Policy characteristics and air pollution levels before the intervention. Notes: The y-axis
represents PM2.5 concentrations in the year before policy intervention. (a) The x-axis represents the
policy stringency measured by the difference between the pre-intervention level of PM2.5 and the
goal level of PM2.5. For example, the pre-intervention level of PM2.5 for Sichuan was 65 µg/m3, and
the goal level of PM2.5 was 55 µg/m3, which is 10 µg/m3 (=65 − 55); (b) the x-axis represents the
duration of the policy in months.

Table 6. Logit estimates: stringency of APPCAP on chronic conditions.

Air-Pollution-Related Diseases
Respiratory Circulatory Respiratory Circulatory

Stringency −0.026 ***
(0.009)

−0.022 ***
(0.005)

Duration −0.011 **
(0.004)

−0.005 **
(0.002)

Observations 56,958 56,958 56,958 56,958

Marginal effects at means −0.027 ***
(0.010)

−0.070 ***
(0.016)

−0.011 **
(0.005)

−0.017 **
(0.008)

Dependent variable mean (×100) 1.443 6.570 1.443 6.570

Note: See notes in Table 4. **, and *** indicate significance at the 5%, and 1% levels, respectively.

From columns 3 and 4 of Table 6, we see that both respiratory and circulatory sys-
tem diseases significantly decreased as the duration of the policy intervention increased.
The average duration of respiratory disease would decrease by 0.38 (0.011 × 34.9) per-
centage points (26.6% of the sample mean), and circulatory disease would decrease by
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0.59 (0.017 × 34.9) percentage points (9% of the sample mean) after 34.9 months of imple-
mentation. The duration of the policy had a higher impact on respiratory diseases.

5.4. Placebo Test

We found that the APPCAP statistically significantly reduced the probability of having
respiratory or circulatory diseases. We wanted to ensure that our findings were measuring
the true effect of policy interventions. The common way of testing this is to perform a
placebo test using a fictitious event or treatment as a falsification strategy [54]. For example,
if we provide policy intervention timing as fake information or conduct a falsification
exercise using non-air-pollution-related diseases, the model should not show a statistically
significant result [55,56].

5.4.1. In-Time Placebo Test

The first placebo test was to assume the policy intervention happened 6 months before
the actual policy intervention; the results are presented in the upper block of Table 7.
The second test was to assume that the policy intervention happened one year before the
true intervention; the results are in the middle block of Table 7. For example, Shannxi
implemented the policy in December 2013; however, we coded the implementation times for
Shannxi as June 2013 and December 2012 for the first and second tests, respectively. None
of the coefficients were statistically significant, and the magnitudes of the four estimates
were very small compared to Table 3.

Table 7. Placebo Test.

Air-Pollution-Related Diseases
Respiratory Circulatory

Treatment × Post (6-month in advance) 0.152
(0.426)

−0.003
(0.202)

Observations 30,111 30,111

Marginal effects at means for
Treatment × Post

0.00130
(0.00365)

−0.00007
(0.00532)

Treatment × Post (1-year in advance) 0.138
(0.333)

−0.160
(0.140)

Observations 26,899 26,899

Marginal effects at means for
Treatment × Post

0.00121
(0.00291)

−0.00442
(0.00387)

Non-air-pollution-related diseases

Treatment × Post 0.061
(0.073)

Observations 56,958

Marginal effects at means for
Treatment × Post

0.00409
(0.00487)

Notes: See notes in Table 4.

5.4.2. Placebo Outcome Test

In addition to the placebo test using the fake policy intervention time, one can also
conduct a falsification exercise using the health outcomes that unaffected by ambient air
pollution [57]. We considered non-air-pollution-related diseases as outcome variable. Non-
air-pollution-related diseases takes the value of 1 if the respondent was diagnosed with
any type of disease besides respiratory and circulatory system diseases in the recent six
months, and 0 otherwise. The results are shown in the bottom block of Table 7. The results
are statistically insignificant, which indicates that APPCAP had no significant effect on
non-air-pollution-related diseases.
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6. Discussion

This study evaluated the impacts of environmental regulation on chronic health
conditions using the APPCAP, the first nationwide and very stringent environmental
regulation in China. Our identification strategy was a difference-in-differences model
using different implementation timing of the APPCAP by administrative divisions. We
used the China Family Panel Studies, a representative survey of China, to measure chronic
conditions using doctor-diagnosed diseases over the last six months. We discovered that
the APPCAP reduced respiratory and circulatory system diseases by 34.6% and 11.52%,
respectively, in all adults. Our study could serve as a reference for developing countries
that are experiencing serious air pollution problems when formulating environmental
preservation policies.

We cannot compare our estimates with the literature directly due to the very limited
literature measuring chronic conditions. However, we can compare the magnitude with
mortality, which is the most studied outcome. Yue et al. (2020) found that the APPCAP
reduced mortality in 2017 by 6.8% compared to 2013 [58]. Compared to our estimates of
a 34.6% reduction in respiratory and an 11.5% reduction in circulatory system diseases,
the mortality reduction was small in magnitude. However, considering that few peo-
ple die among those who suffer from chronic conditions, this magnitude of difference
appears reasonable. Liang et al. (2019) estimated that acute exacerbations of chronic ob-
structive pulmonary disease (COPD) changed from 12,679 in 2013 to 7377 cases in 2017 in
China [10]. This number was calculated from the increase in PM2·5 pollution above the
expected number of cases if daily PM2·5 concentrations had not exceeded the WHO target
(25 µg/m3). Their results were a 41.8% ((7377–12,679)/12,679) reduction, and our estimates
are in the same ballpark.

Our study had several limitations. First, the outcome was measured based on self-
reporting rather than objective records, such as medical records or reimbursement records
from a health insurance company. However, the outcome, doctor-diagnosed disease during
the last six months, had some objective features unlike other types of self-reported answers,
although it can still be affected by possible recall bias. Another issue related to data was
that we used a sample not the population. The sample had a sampling error, and the
standard errors related to the coefficients considered this.

Second, we measured the total effects without isolating the spatial spillover effects.
Fang et al. (2019) discovered negative spillover effects in their study when Beijing, Tianjin,
and Hebei implemented a clean air act [18]. The pollution level in the target area decreased
at the cost of increased pollution levels in nearby areas, suggesting that pollution emission
sources moved from the target area to nearby areas. We evaluated only the total average
effects of the policy intervention. However, the policy intervention we evaluated has been
implemented throughout most of China. Negative spillover might have occurred in the
short run, but nearby areas were also impacted by the policy eventually.

Third, we could not measure outcomes for children. Many previous studies found an
increased prevalence of asthma among children who were more susceptible physically [59].
The CFPS unfortunately did not ask about chronic conditions for children.

Fourth, there might have been other changes related to air pollution control during
the period that we considered. For example, the State Council of China implemented the
environmental protection tax law on 1 January 2018. The timing of the implementation
differed from the APPCAP, and the environmental protection tax law replaced the pol-
lutant discharge fee that had been in effect for the past 40 years [60]. China planned to
increase the proportion of non-fossil fuels in primary energy consumption by about 20%
by 2030 compared with 2005 to comply with the United Nations Framework Convention
on Climate Change released in 2015 [61]. However, no relevant law was enacted during
our study period 2013–2017 with the same time schedule as APPCAP. To the best of our
knowledge, there was no other environmental policy confounding with APPCAP that
biased our estimates.
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Fifth, we measured the health benefits of air quality improvement. Although low
educated people or aged population received biggest health benefits, we cannot exclude
other people enjoying it in the same region due to public good nature of air quality.
Therefore, we face limited policy recommendation based on benefit assessment that we do
here. More targeted policies can be designed in terms of cost assessment such as how to
reduce air pollutants less costly. However, our research still makes valuable contributions
for policy makers. For example, the aging population that China is facing makes the
benefits of air quality improvement greater in the future.

7. Conclusions

Assessing the impact of past air quality regulatory policies on public health provides
a solid basis for the decision-making process used to review the effectiveness of past
regulations and aids in causality inference and the development of future policies [62].

We examined the effects of the nationwide air pollution control policy in China on
chronic health conditions among adults using the representative survey, CFPS. We also
used a concrete econometric technique to find the causal effect with a quasi-experimental
situation. We found that the air pollution control policy statistically significantly reduced
respiratory and circulatory chronic diseases among adults, which has not been studied
previously. Lowering air pollution cannot be achieved for free. Crane and Mao (2015)
estimated that replacing coal with natural gas for residential and commercial heating could
cost USD 32 billion to 52 billion and replacing half of China’s coal-fired electric power
generation with renewables or nuclear power could cost USD 184 billion [63]. When
we considered the benefits of the air pollution control policy, our results found highly
positive benefits, which were not considered previously. Moreover, our study suggests
that stringency was more effective than duration. Although the APPCAP (2013–2017)
was considered the most stringent air pollution control policy in China, PM2.5 concentra-
tion in 2018 was still almost five times higher than the WHO target value of 10 µg/m3.
China needs to continue air pollution reduction policies to achieve the WHO standard of
10 µg/m3 for PM2.5 and these policies will improve the chronic condition of people.
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