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Abstract: Rhamnolipids, a type of biosurfactant, represent a potential strategy for both enhancing
organismic resistance and in situ remediation of heavy metals contaminations. In-depth study of
the mechanism of rhamnolipids synthesis in response to heavy metals stress, is indispensable for a
wide use of biosurfactant-secreting microbes in bioremediation. In this study, we employed the wild-
type and the rhlAB deficient strain (∆rhlAB) of Pseudomonas aeruginosa, a prototypal rhamnolipids-
producing soil microorganism, to investigate its responses to cadmium resistance based on its
physicochemical, and physiological properties. Compared with the wild-type strain, the ∆rhlAB
were more sensitive to Cd-stress at low Cd concentration (<50 mg/L), whereas there was little
difference in sensitivity at higher Cd concentrations, as shown by spot titers and cell viability assays.
Secreted rhamnolipids reduced intracellular Cd2+ accumulation to alleviate Cd2+ stress, whereas
endogenous rhamnolipids played a limited role in alleviating Cd2+ stress. Synthesized rhamnolipids
exhibited a higher critical micelle concentration (CMC) (674.1 mg/L) and lower emulsification index
(4.7%) under high Cd-stress, while these parameters showed no obvious changes. High Cd-stress
resulted in high hydrophilic wild-type bacterial surface and lower bioremediation ability. This study
could advance a deeper understanding of the mechanism of cadmium resistance and provide a
theoretical foundation for the application of biosurfactant and biosurfactant-secreted bacterium in
contaminant bioremediation.
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1. Introduction

Increasingly serious cadmium (Cd) pollution has been caused by industrialization
and technological development with large amounts of waste released [1–3]. Heavy metals
can cause non-biodegradable bioaccumulation and have remarkable toxicity to organisms,
leading to severe damage to biology and ecosystems in low concentrations [4–6]. For
example, cadmium (Cd) can accumulate in the food chain and be a cause of great public
concern, such as the Cd-related disease (Itai-Itai disease) in Japan [7,8].

Several remediation technologies have been developed for heavy metal contaminants,
such as precipitation, membrane filtration, electrochemistry, adsorption, and phytoremedi-
ation [9–12]. However, most of these have limited practical applications due to high costs,
energy requirements, and toxic secondary pollutions [13,14]. As a cost-effective and green
strategy, bioremediation through biological scavenging of heavy metals by microorganisms,
can be considered as an attractive alternative to those physiochemical processes [15–17]. In
general, bioremediation can be performed both in situ and ex situ strategies. Compared
to ex situ strategies, in situ bioremediation is more economical and effective but seriously
limited by the microbial inhibition of heavy metals. Therefore, it is very meaningful to
enhance the microbial resistance to heavy metals during in situ bioremediation.
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Biosurfactants can combine with metal ions and have been successfully utilized in
the elimination of heavy metals in the environment [9,18]. As a kind of anionic glycol-
ipid biosurfactant, rhamnolipids provide various coordination sites with a strong affinity
for heavy metal-rhamnolipid vesicles, and thus modify the bioavailability and mobiliza-
tion of heavy metals, leading to high removal efficiency [19–21]. It is worth noting that
rhamnolipids could enhance microbial resistance to Cd2+. For example, minimal inhibi-
tion concentration of Cd2+ from 92 µg/L to 246 µg/L for Escherichia coli [22]. Moreover,
rhamnolipids could preferentially bond with Cd2+ compared with other heavy metals
(Cd = Cr > Pb = Cu > Ni) [23]. Rhamnolipids are generally performed in situ (secreted
by microbe in contaminated sites) and ex situ (industrial production) strategies [10,18].
Compared to in situ strategies, ex situ rhamnolipids seem to have a higher economic cost
due to their higher natural biodegradability. It is worth noting that in situ rhamnolipids
have been treated as potential applications for amplifying microbial pollutants resistance.

As a ubiquitous microbe that secretes rhamnolipids, Pseudomonas aeruginosa is com-
monly used for in situ bioremediation, and it has also been reported to secrete rhamnolipids
as secondary metabolites [24–26]. Moreover, P. aeruginosa presents a high resistance to
many heavy metals, especially to Cd [27–30]. Therefore, P. aeruginosa would be an optimal
microorganism for rhamnolipids synthesis and the in situ remediation of Cd pollution.
However, both the physicochemical properties and the structures of rhamnolipids are
closely related to the cultivation environment of P. aeruginosa, which directly affect its
remediation capacity [23,31]. Previous studies has focused on rhamnolipid secretion and
associated gene expression at different growth stages under heavy metal stress and the
effect of exogenous rhamnolipid administration to alleviate heavy metal toxicity in plants
and microorganisms [10,22,32,33]. However, the endogenous rhamnolipids’ response to
Cd2+ stress has not been fully explored, especially in regard to bacterial physicochemical
and biochemical properties.

This study aimed to elucidate the interactions among microbe-endogenous rhamnolipids-
Cd, including the role of endogenous rhamnolipids on bacterial resistance and the impact of
cadmium on rhamnolipids’ properties. To further investigate the response of rhamnolipids
synthesis on Cd2+ stress, we constructed the ∆rhlAB (rhlAB deficiency) strain (no rhamno-
lipids secretion) via the single-step double-recombination approach [34]. We then examined
the Cd2+ distribution, cell metabolism, and biological activity of the wild-type and the
∆rhlAB strains and the physicochemical properties of secreted rhamnolipids response to
Cd2+ stress. This research provides important theoretical support for the wide applications
of biosurfactant-secreted microbes in bioremediation.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The strains and plasmids used in this study are listed in Supplementary Information
Table S1. All bacteria were grown from single-colony isolates in the Luria–Bertani (LB)
broth at 37 ◦C and 180 rpm. When required, antibiotics were added to the media at the
following final concentrations: 60 µg/mL gentamicin (Gm) for P. aeruginosa and 20 µg/mL
Gm for E. coli WM 3064. Then, 0.3 mM 2,6-diaminopimelic acid (DAP) was obtained for
the growth of E. coli WM 3064.

2.2. Plasmid Construction and Gene Deletion Mutant

The biosynthesis of rhamnolipids mainly relates to rhamnosyltransferase-1 (RhlAB)
encoded by rhlAB operon. RhlA is involved in the synthesis of fatty acids, and rhlB catalyzed
the synthesis of mono-rhamnolipids [35,36]. In this study, we deleted rhlAB genes to cut
off the synthetic pathways of rhamnolipids and obtained the ∆rhlAB strain that could not
secrete rhamnolipids. Fragments of 400~500 bp gene for the upstream or downstream of
the rhlAB were amplified by gene splicing overlap extension (SOE-PCR) (primers listed in
Table S2) based on P. aeruginosa genomic as template DNA. The fragments of the desired
mutant allele were inserted into the suicide plasmid pEX18GM (Figure S1). This resulting



Int. J. Environ. Res. Public Health 2022, 19, 12555 3 of 14

deletion vector was manipulated with E. coli DH5α, then transformed into the donor strain
E. coli WM3064 (auxotroph) and mobilized into P. aeruginosa by conjugation [34]. The ∆rhlAB
cells were selected through two selections (Gm resistance selection and counter-selected by
15% sucrose). The ∆rhlAB strain was confirmed by PCR, sequencing, and blue agar tests
with no rhamnolipids secretion (details are described in Supplementary Information).

2.3. Detection Analysis of Rhamnolipids

In order to analyze rhamnolipids productions, the wild-type bacteria grown with
different Cd2+ concentrations were collected in the stationary phase and centrifuged for
20 min at 10,000× g to remove bacterial cells. The supernatant liquids were filtered through
0.22 µm filter membranes twice to wipe out residual cells. The cell-free supernatant was
acidified to pH ≈ 2 and incubated at 4 ◦C overnight to precipitate rhamnolipids. The
precipitated rhamnolipids were removed via centrifugation (10,000× g, 20 min, 4 ◦C) and
re-dissolved in sterilized deionized water and then extracted with chloroform–methanol
(2:1, v/v). Semi-purified rhamnolipids were obtained via evaporating the organic phases
in a rotary evaporator (RE-52AA, Shanghai Yarong Biochemistry Instrument Factory) at
50 ◦C. The harvested rhamnolipids were lyophilized into powder and stored at desiccator
for the following experiments.

To quantifying rhamnolipids, the amounts of rhamnose moiety were first determined
using a anthrone-sulfuric acid colorimetric assay with L-rhamnose as the standard sub-
stance [37]. The rhamnolipids concentrations were obtained via the multiplication of
the values of rhamnose moiety amounts by 3.4, which was the coefficient of the relation
between purified rhamnolipids and rhamnose [22,38].

2.4. Characteristics Analysis of Rhamnolipids

The obtained rhamnolipids were analyzed with surface tension measurement, emul-
sifying activity, critical micelle concentration (CMC), and FTIR-ATR [18]. Surface tension
assays were performed at room temperature using a tension meter (JK99C, Shanghai, China).
Emulsification activities were measured by emulsification index for five days. CMCs were
determined with a breaking point of the surface tension versus a series of rhamnolipids
concentrations. The details were described in the Supplementary Information.

2.5. Distribution of Cd on Bacterial Media

To ascertain Cd2+ processing ability, wild-type and ∆rhlAB of P. aeruginosa were grown
in the LB media with a series of Cd2+ concentrations (5 and 200 mg/L). For each group, a
supernatant was taken in the stationary phase and centrifuged at 5000 rpm for 10 min. The
supernatant was collected to measure the amounts of supernatant Cd2+ ions (CSup). The
precipitate was washed three times with EDTA to remove the Cd2+ bonded to the bacterial
surface, and the washed cells were collected by centrifugation to determine intracellular
Cd2+ (CB). Meanwhile, the control group was also prepared without bacteria cells to deter-
mine the total Cd2+ (CTotal). All samples were acids digested with HClO4:HNO3 (1:9), and
then the amounts of Cd2+ were analyzed with an atomic fluorescence spectrophotometer
(AFS-933, Beijing Jitian Instrument Co., Ltd., Beijing, China). The amounts of Cd2+ absorbed
on the bacterial surfaces (CSur) were calculated as follows:

CSur = CTotal − CSup − CB (1)

The percentage of each part (CSup, CB, and CSur) was calculated by dividing the Cd2+

amount of each part by the CTotal and then multiplied by 100.

2.6. Bacterial Surface Properties Analysis

Bacterial hydrophobicity was determined with bacterial adherence to hydrocarbon tests
(BATHs) [39]. Briefly, P. aeruginosa were cultured in the LB medium with different Cd2+

concentrations, and cells were collected in the stationary phase via centrifugation at 5000 rpm
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for 15 min and washed with NaCl solution (0.85%, pH = 7.2~7.4) three times. Then, bacterial
pellets were resuspended with 0.85% NaCl solution and adjusted OD600 ≈ 0.5 as the ODinitial.
N-dodecane at equal volume was mixed with the suspension and vortexed for 90 s. The
mixture was then placed at room temperature for 30 min, and the absorbance of the
inorganic phase was measured at 600 nm as the ODfinal. The bacterial hydrophobicity was
calculated with the following equation:

Hydrophobicity (%) = 100% × (1 − ODfinal/ODinitial) (2)

Cellular morphology. Wild -type and ∆rhlAB of P. aeruginosa were cultured in the LB
medium with different Cd2+ concentrations (0, 5, 200 mg/L Cd). The cells were harvested
in the stationary phase and then fixed, dehydrated, and coated with gold film, followed
by observation with a field emission scanning electron microscope (Quanta 250 FEG, FEI,
Hillsboro, OR, USA).

2.7. Bacterial Viability Assays

Spot Titer Assays. Wild-type and ∆rhlAB strains of P. aeruginosa were harvested from
LB media without Cd2+ and then resuspended with 0.85% NaCl solution to adjust OD600
to 1.0. Serial 5-fold dilutions (10−2 to 10−7 for 0 to 50 mg/L Cd, and 100 to 10−5 for 100
and 200 mg/L Cd, respectively) of 2 µL bacterial suspensions were used on the LB-agar
plates with a series of Cd2+ concentrations and then the plates were incubated at 37 ◦C
overnight [40].

Colony-Forming Unit (CFU) assays. Bacterial cells were harvested in the stationary
phase and resuspended with 0.85% NaCl solution contained different Cd2+ concentrations
(5, 20, and 200 mg/L). Samples were taken at 0 h and 18 h for CFU assays, named CFU0
and CFU18, respectively. Bacterial viability was calculated as the percentage of living cells
using Equation (3) as follows:

Bacterial viability = CFU18/CFU0 × 100% (3)

2.8. Bacterial Biochemical Characteristic

Oxidative stress assays. Two type strains of P. aeruginosa were harvested in the station-
ary phase, which were exposed to Cd2+ at different dosages (0, 5, and 200 mg/L). The cells
were collected and resuspended with 0.85% NaCl solution to similar OD600. Reactive oxy-
gen species (ROS), MDA, GSH, and ATPase were determined in order to explore different
responses of cells to Cd stress. In brief, ROS were tested with ROS Assay Kits (Beyotime
Institute of Biotechnology, Shanghai, China) using a microplate spectrophotometer (Spark,
Tecan Austria GmbH, Salzburg, Austria) with an excitation wavelength of 488 nm and
emission wavelength of 525 nm. The oxidative damage to cells (MDA) was estimated
using the thiobarbituric acid reactive substances (TBARS) method [41]. ATPase activity,
GSH, and total sulfhydryl (total-SH) assays were measured with ATPase activity test kits,
reduced glutathione (GSH) assay kits, total sulfhydryl (-SH) measurement kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China), respectively. Bacterial total proteins
were measured with the BCA measurement kits (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China).

2.9. Statistical Analysis

The data of Cd distribution, cells viability, bacterial surface hydrophobicity, and
bacterial biochemical properties among different treatment were assessed by two-way
AVOVA analysis (factor 1 = Cd concentration, factor 2 = bacterial type). The data concerning
rhamnolipids yields and surface tension assays were evaluated by one-way ANOVA. The
statistically significant differences of the data described as follows: (none) indicated no
difference (p > 0.05), (*) denoted p < 0.05; (**) denoted p < 0.01, (***) denoted p < 0.005.
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3. Results and Discussion

3.1. Effect of Cd2+ on Cells Viability

To explore the response of rhamnolipids to Cd2+ stress, the two-step allelic exchange
approach was adopted to knockout the rhlAB gene of P. aeruginosa, and the ∆rhlAB strain was
detected by PCR analysis, rhamnolipids secretion, and blue agar tests (Figures 1A and S2).
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Figure 1. Construction of the ∆rhlAB strain using the two-step allelic exchange by pEX18GM (A),
cell viability tests (B), and spot titer assays (C) of P. aeruginosa wild-type and ∆rhlAB strains under a
series of Cd concentrations in the LB media. Differences were considered significant at p < 0.05, and
* presented p < 0.05, ** presented p < 0.01, *** presented p < 0.005.

Biological activities under Cd2+ stress were assessed by bacterial viability and spot
titer to determine bacterial sensitivity to Cd2+. The ∆rhlAB strain showed lower bacterial
viability (68.5%, 56.0%, and 49.4% for 5, 20, and 200 mg/L Cd, respectively) than wild-type
(91.6%, 62.8%, and 63.6% for 5, 20, and 200 mg/L Cd, respectively) (Figure 1B). In addition,
spot titer assays provided a visually observable indication of the sensitivity of cells to Cd2+

(Figure 1C). The ∆rhlAB strain presented as being more sensitive to low doses of Cd2+

(<50 mg/L) than the wild-type, which is consistent with bacterial viability tests. However,
at high Cd2+ concentrations (>50 mg/L), slight differences in sensitivity were observed for
two types of strains. Thus, rhamnolipids were able to enhance the bacterial resistance to
Cd2+ at low doses, with limited increases at high Cd2+ levels.
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3.2. Distribution of Cd2+ in Bacteria

To investigate the effect of rhamnolipid synthesis on bacterial susceptibility to Cd2+, the
distributions of Cd2+ on the surface, inside the cell, and in the supernatant of the two strains
were determined (Figures 2A and S3). Cadmium was mainly distributed on the bacterial
surface of the two strains. The percentage of cadmium increased significantly from 48.9%
to 62.1% (5 mg/L and 200 mg/L Cd2+, respectively) on the wild-type bacterial surfaces but
remained stable (52.1% and 51.4%) in the ∆rhlAB cells. As a result, more intracellular Cd2+

was detected in ∆rhlAB cells than in wild-type strains. We evaluated intracellular Cd2+ per
dry weight to eliminate the effect of bacterial biomass on Cd accumulation. As shown in
Figure 2B, the amounts of Cd2+ were 59.1 mg/g and 406.1 mg/g in the wild-type strain
while those were 75.3 mg/g and 1025.8 mg/g in the ∆rhlAB strain. These results suggested
that mutant cells take up more Cd2+ into the cells, so rhamnolipids might play a significant
role in blocking the entry of Cd2+ into the cells. This is mainly because rhamnolipids
form a complex with Cd2+ rapidly within 15 min and remain stable for at least 27 h [42].
The morphologies of two strains with and without Cd2+ treatment were shown in SEM
images (Figure 2C). They revealed that the ∆rhlAB strain looked fuller than wild-type cells
at high Cd2+ concentration, which might be related to the large amount of Cd2+ entering
the cells. Rhamnolipids combined with extracellular Cd2+ effectively reduced intracellular
Cd2+ accumulation.
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3.3. Effect of Cd2+ on Bacterial Characteristics

Cadmium exposure altered cell-surface properties. As shown in Figure 2B, the hy-
drophobicity of the wild-type was higher than that of the ∆rhlAB strain and decreased with
increasing Cd2+ concentration, whereas that of the ∆rhlAB strain remained stable. This is
mainly due to the role of rhamnolipids. Rhamnolipids are secreted around the cells and
thus alter the hydrophobicity of the bacterial surface [43].

Since Cd2+ inhibited bacterial growth and rhamnolipids alleviated the negative effects
of Cd2+ on cells, it seemed reasonable to assume that Cd2+ stress disrupted the metabolism
in P. aeruginosa, including the biosynthesis and secretion strategy of endogenous rhamno-
lipids. To prove this, we examined the response of P. aeruginosa to Cd2+ stress.

3.4. Response of Antioxidant Systems to Cd2+ Stress

MDA is a byproduct of bacterial membrane oxidation that reflects the degree of
peroxidation of membrane lipids under oxidative stress [44,45]. As shown in Figure 3A,
there was no obvious change in the wild-type with or without Cd2+. However, MDA
levels were significantly increased in the ∆rhlAB strain in the presence of Cd2+ (p < 0.05),
suggesting that more severe membrane damage occurred in the ∆rhlAB strain. These results
indicated that the rhlAB gene might contribute to the protection of bacterial membrane
integrity. In addition, ROS levels increased obviously in both strains at 200 mg/L Cd2+,
whereas the ∆rhlAB strain exhibited a much higher ROS level than the wild-type strain
(Figure 3B). This indicated that the ∆rhlAB strain was exposed to higher levels of Cd2+

due to more intracellular Cd2+. As shown in Figure S4, there were no obvious changes in
Ca2+/Mg2+ ATPase and K+/Na+ ATPase activities in the wild-type strain with the presence
of Cd2+, but the activities in the ∆rhlAB strain with Cd2+ decreased significantly, leading to
a decrease in the ATP level in cells [46]. Generally, the suppression of energy metabolism
could function as a control mechanism to reduce the generation of ROS [47].

Glutathione (GSH) is a tripeptide molecule that still widely existed in bacteria, which is
important in the antioxidant defense system and effectively prevents oxidative stress from
ROS [48]. Compared to wild-type strains, a higher GSH level was detected in ∆rhlAB strains
in the absence or presence of 5 mg/L Cd2+ (Figure 3C). For cells exposed to 200 mg/L
Cd, GSH levels for wild-type and ∆rhlAB strains decreased to 288.4 µmol/g protein, and
113.7 µmol/g protein, respectively. It indicated an inadequate resistance ability of ∆rhlAB
strains for more serious oxidative stress at higher Cd2+ concentrations. These results
confirmed that rhamnolipids could obviously enhance bacterial resistance to Cd2+ at low
dosages and the enhancement was limited at high Cd2+ stress.

In P. aeruginosa cells, cysteine-rich metallothionein proteins (MT) with cysteine residues,
calculated by total sulfhydryl groups (total-SH), play an important role in the bioremedia-
tion of heavy metals contamination [49]. In this study, total-SH contents were measured to
confirm that the wild-type strain exhibited a higher ability to alleviate heavy metal stress.
For the wild-type strain, the amounts of total-SH without Cd2+ (4746.3 µmol/g protein)
or with 5 mg/L Cd2+ (3946.1 µmol/g protein) were similar and decreased obviously with
200 mg/L Cd2+ (2183.7 µmol/g protein) (Figure 3D). Additionally, the total-SH content at
200 mg/L Cd2+ decreased sharply to 129.6 µmol/g protein in the ∆rhlAB strain. This was
mainly attributed to more Cd2+ entering the cells of the ∆rhlAB strain and combining with
sulfhydryl groups, which was consistent with the distribution of Cd2+ in the cells.

In this work, we observed the protective mechanisms of P. aeruginosa from the Cd2+

through the bacterial membrane into the cytoplasm. When Cd2+ stress was not high
enough to kill cells, the Cd2+ efflux systems could protect the cells from Cd2+, resulting in
an unconspicuous change in the bacterial antioxidant systems (Figure 3) [28,50,51]. When
the Cd2+ load was high, sulfhydryl complexed with intracellular Cd2+ in MT, which could
relieve the cells from the high Cd2+ load. Meanwhile, due to the high Cd2+ load, more ROS
were generated, which could not be completely removed by GSH, promoting membrane
depolarization, leading to more severe cell damage. It was worth noting that rhamnolipids
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could bind with Cd2+ to prevent Cd2+ from entering the cells, and thus reduced the Cd2+

load on the cells.
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Figure 3. Bacterial membranes damaged (MDA, A), reactive oxygen species (ROS, B), reductive
glutathione (GSH, C), and total sulfhydryl group (Total-SH, D) amounts for wild-type and ∆rhlAB
strains. Differences were considered significant at p < 0.05, *** presented p < 0.005.

3.5. Effect of Cd2+ on Secretion of Rhamnolipids

The secretion of rhamnolipids from the wild-type strain were assessed with a range of
Cd2+ concentrations. As shown in Figure 4A, Cd stress obviously promoted the production
of rhamnolipids per dry biomass, which increased by 143% at 200 mg/L compared with
that without Cd2+. It has been reported that heavy metal cations can form a complex in a
binding pocket, consisting of a carboxylate moiety in the fatty lipid and the hydroxy moiety
in the rhamnose [52]. In this study, heavy metal stress affected the secretion of rhamnolipids
as the extracellular polymeric substances and thus promoted complex formation with Cd2+,
which had a beneficial effect of alleviating heavy metal stress [16].

In this experiment, the physicochemical properties of rhamnolipids were studied based
on emulsification activity and surface tension. The secretion of rhamnolipids decreased
the surface tension (33.2 mN/m) of media without Cd2+, compared to the fresh medium
(47.5 ± 0.5 mN/m) (Figure 4B). In addition, the increas in Cd2+ concentration enhanced
surface tensions (35.1, 37.2, and 39.2 mN/m for 5, 20, and 200 mg/L Cd2+, respectively). It
indicated that Cd2+ could impact the stability of the secreted rhamnolipids. The emulsi-
fication activities of the biosurfactants were measured with a range of water-immiscible
substrates, and the emulsion ability was found to be with hydrocarbons. Secreted rhamno-
lipids without Cd2+ were capable of stabilizing emulsions with an emulsification index (EI)
in the range of 46.7% at 24 h to 43.5% at 120 h, whereas the EI value dropped gradually
dropped to 4.7% at 100 mg/L (Figure 4C). The low emulsification activity implied that
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the toxicity of Cd2+ to cells, leading to a lower ability to remove hydrophobic organic
compound–heavy metal complex contaminations [53].
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and * presented p < 0.05, ** presented p < 0.01.

The chemical structures of the rhamnolipids with Cd were analyzed by FTIR (Figure S5).
The peaks were assigned to hydroxyl, rhamnose, and lipid backbones, the main characteris-
tics of glycolipids. Fewer spectral bands in the presence of Cd2+ (Table S3) indicated that
lipids functional groups appeared to be less or that the fatty acid chains became shorter
under Cd2+ stress. The absorption intensities of the spectral bands in the presence of Cd2+

were weaker than that of the Cd-null sample, as the decreased intensity for the strong and
broad bonds of the free-stretching hydroxyl (O-H) due to it complexation with Cd2+.

To further investigate the effect of Cd2+ loading on the rhamnolipid secretion, we
also examined the changes in CMC of rhamnolipids in the presence of Cd2+. The CMC
values of rhamnolipids were 154.9 mg/L, 269.2 mg/L, and 671.4 mg/L for the cells cultured
under Cd2+ concentration of 0, 5, and 200 mg/L, respectively (Figure 4A–C). The CMC
value of rhamnolipids relates to superficial characteristics, such as surface tension and
emulsification activity. However, the value depends on the structure of rhamnolipids, e.g.,
chain length, number of rhamnoses, etc. [33,54].

Nitschke et al. reported that the major components of rhamnolipids are RhaC10C10
and Rha2C10C10 in P. aeruginosa [55]. However, the composition of rhamnolipids mixtures
differs by the presence of unsaturated bonds, fatty acid chains, and the size of hydrophilic
groups, which affect the surface character of the mixture. The length of the fatty acid
chains and the number of rhamnose units played an important role in the CMC value,
affecting hydrophobicity and emulsifying activity [31,56]. Therefore, we concluded that
Cd2+ actively interacted with rhamnolipids and altered the structural and functional prop-
erties of rhamnolipids, which were affected by cultural conditions [57,58]. Our results
suggested that Cd2+ stress led to shorter fatty acid chains of rhamnolipids, a higher ratio of
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di-rhamnolipids to mono-rhamnolipids, and a lower proportion of hydrophobic groups,
resulting in higher hydrophilicity and lower emulsifying activity and higher concentration
is needed to form the micelle aggregation [25].

Rhamnolipids biosynthesis pathway begins with the de novo synthesis of rhamnose
and fatty acids, which are ubiquitous in the bacterium followed by three consecutive enzy-
matic reactions specific in rhamnolipids-secreting bacterium. Our results suggested that Cd
stress effects rhlA, rhlB, and rhlC expression (Figure S6) and rhamnolipids might also be a
endogenous factor in response to heavy metals stress. A strong correlation between rhamno-
lipids production and heavy metal stress has also been documented for other P. aeruginosa
strains. The ratio of di-rhamnolipids to mono-rhamnolipids increased obviously under
Cd2+ stress [32]. This may explain the increase of bacterial surface hydrophilicity in the
presence of Cd2+ in this study.

Briefly, the interactions among bacteria, endogenous rhamnolipids, and cadmium
were demonstrated in Figure 5D as follows: (1) the endogenous rhamnolipids with more
rhamnose tails could form a complex with additional cadmium, reduce intracellular Cd2+

accumulation, decrease oxidative stress response, and improve bacterial cell viability; (2) the
altered physicochemical properties of endogenous rhamnolipids, such as increased surface
tension and decreased emulsification activity, was attributed to the changed structures of
rhamnolipids under Cd2+ stress; and (3) the altered properties of rhamnolipids resulted in
a more hydrophilic bacterial surface. These changes negatively affected the utilization of
endogenous rhamnolipids.
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4. Conclusions

Biosurfactants secreted by microorganisms can probably improve the removal of
contaminants and reduce environmental hazards. Together with our results, this study
confirmed the potential of employing rhamnolipids and rhamnolipids-secreted bacteria in
Cd2+ remediation. Cadmium stress could affect rhamnolipid production and increase the
complexation of Cd2+ on bacterial surfaces, resulting in the protection of cells from Cd2+

stress. For the wild-type cells, Cd stress altered the structure of rhamnolipid structures,
leading to higher CMC and hydrophilicity, and this discrimination prejudiced emulsifica-



Int. J. Environ. Res. Public Health 2022, 19, 12555 11 of 14

tion ability. Once Cd entered the cytoplasm, the oxidative stress system had no obvious
effects on the membrane integrity of the wild-type due to other stress mitigation mecha-
nisms available, such as GSH, total-SH, ATPase activity, cation efflux pump, etc. For the
mutant cells, the lack of rhamnolipid secretion led to greater intracellular Cd accumulation,
which motivated fearful oxidative stress that could not be alleviated by detoxification
mechanisms and impaired cell viability as a result. As with higher Cd loading, intracellular
Cd accumulation increased; however, the cell viability of the wild-type was slightly higher
than that of the mutant. The GSH content and total-SH content for the mutants were much
lower than in the wild-type cells. These findings suggested that rhamnolipids had a limited
effect on improving Cd2+ resistance. This study enriched the theoretical knowledge on
the use of P. aeruginosa to enhance the bioremediation of heavy metals bioremediation and
alleviate stress in contaminated environments.
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the wild-type and the4rhlAB strains under different Cd2+ concentrations (5, 200 mg/L). Figure S4.
ATPase activity (Na+/K+, and Ca2+/Mg2+) assays for the wild-type and the4rhlAB strains which
expressed in U per mg proteins. Figure S5. ATR-FTIR assays for semi-purified rhamnolipids from
the wild-type under a series of Cd2+ concentrations (0, 5, 50, 100, 200 mg/L). Figure S6. Expression
of genes of the wild type under the stress of Cd. Table S1. Plasmids and bacteria used in this study.
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