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Abstract: The COVID-19 pandemic has now spread worldwide, becoming a real global health emer-
gency. The main goal of this work is to present a framework for studying the impact of COVID-19
on Italian territory during the first year of the pandemic. Our study was based on different kinds of
health features and lifestyle risk factors and exploited the capabilities of machine learning techniques.
Furthermore, we verified through our model how these factors influenced the severity of the pan-
demics. Using publicly available datasets provided by the Italian Civil Protection, Italian Ministry of
Health and Italian National Statistical Institute, we cross-validated the regression performance of
a Random Forest model over 21 Italian regions. The robustness of the predictions was assessed by
comparison with two other state-of-the-art regression tools. Our results showed that the proposed
models reached a good agreement with data. We found that the features strongly associated with
the severity of COVID-19 in Italy are the people aged over 65 flu vaccinated (24.6%) together with
individual lifestyle behaviors. These findings could shed more light on the clinical and physiological
aspects of the disease.

Keywords: COVID-19; machine learning; random forests; forecasting models; generalized linear
model; support vector machine; feature selection; lifestyle risk factor; flu; vaccination

1. Introduction

On 11 March 2020, the World Health Organization (WHO, Geneva, Switzerland) de-
clared a global COVID-19 pandemic after a succession of epidemiological events in a rapid
timeline. This unknown disease was reported as pneumonia of unidentified etiology and
limited to some cases in the city of Wuhan (China) on 31 December 2019. The Chinese
Center for Disease Control and Prevention on 9 January 2020 identified the cause of such
pneumonia as a new coronavirus (SARS-CoV-2). On 30 January 2020, the WHO declared
the international coronavirus emergency in China. Shortly thereafter, the epidemic turned
into a pandemic. After over a year, several clinical and demographic factors affecting
the COVID-19 mortality have been thoroughly investigated [1,2], but no working diffusion
model has been developed.

Italy became one of the Western countries most affected by the COVID-19 pandemic
and was the second country after China with the highest number of positives and deaths
during the first phase of the pandemic [3]. In this period, Italy was divided into three differ-
ent geographical areas based on spread and disease severity [4]. Some regions of Northern
Italy were the most affected, with Lombardy as the main outbreak of the pandemic [5].
On the other hand, for the central–southern region, the spread of the pandemic was moder-
ate with the only exception of the provinces of Rome and some provinces of the Marche.
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These geographical differences remained constant during the first wave. The Italian govern-
ment has introduced measures to prevent the spread of the virus. These measures were very
drastic and relied on the total isolation of the country. However, such restrictive measures
seem to have limited the the SARS-CoV-2 outbreak and reduced new cases. At the European
level, it was possible to note that the COVID-19 pandemic involved the most urbanized
and connected countries in the first phase, showing a marked spread among the most
industrialized ones. As for Italy, the problems immediately appeared more articulated
and complex. The causes behind the virus severity in Italy can be many and complex even
because the circulation of SARS-CoV-2 virus started several months before the first patient
was identified [6].

The strong intensity and severe discrepancy of the infection among Italian regions has
strengthened the hypothesis that factors of a territorial nature, physical and/or social, have
influenced the spread of the SARS-CoV-2 virus. These factors appear as clues from which
to start in order to understand the vulnerabilities of some territories. In fact, although they
do not provide direct answers to why the epidemic took a dramatic drift in Lombardy, they
indirectly suggest their importance in favoring contagion or the establishment of situations
of high risk of contracting a serious form of the disease. These factors can be classified as
social and health characteristics determining the intensity of diffusion such as urbanization
and commuting as well as the healthcare system. We took some of these factors to build
a model based on machine learning techniques to study the severity of the COVID-19
pandemic in Italy. Furthermore, through feature importance techniques, we quantify how
these factors influenced the severity of the pandemics.

Some factors analyzed in this paper have already been linked in some way to the
COVID-19 pandemic by previous works. Amato et al. [7] highlighted a correlation between
the number of deaths caused by the coronavirus and the level of vaccination coverage
against influenza people aged 65 years and older. The research was based on Italian regional
data and observed an inversely proportional relationship between the vaccine diffusion,
especially in the most fragile sections of the population, and the official number of deaths
and infected. A confirmation of these findings is provided by the work published of Zanet-
tini et al. [8] which focused attention on the situation in the USA. Conlon et al. [9] observed
that flu vaccination was associated with decreased positive COVID-19 testing, while
Wilcox et al. assessed that influenza vaccination was significantly linked with lower like-
lihood of hospitalization or mortality due to COVID-19 [10]. Gao et al. [11] found that
individual lifestyle behaviors and health status could affect the occurrence of COVID-19,
while Muhammad et al. [12] reported an association among neurological complications
due to COVID-19 and chronic alcohol abuse. Yang et al. [13] showed that patients with
allergic rhinitis and asthma have a greater risk of susceptibility to SARS-CoV-2 infection
and severe clinical outcomes of disease.

2. Materials and Methods
2.1. Study Design and Settings

To build the design of our framework, we considered the number of infected and
deaths caused by SARS-CoV-2 from 22 February to 22 November 2020 in Italy (see Figure 1).
The high severity requires a deep reflection on the causes of the COVID-19 escalation in Italy.
We developed a model to explain SARS-CoV-2 mortality and positivity in 21 Italian regions
exploiting three kinds of independent variables: (i) related to people mobility; (ii) related
to the incidence of respiratory diseases; and (iii) linked to the individual lifestyle behavior
(further details in Section 2.3). We analyzed two more popular ratios to describe the spread
of the pandemic: Crude Positivity Rate (CPR) and Crude Mortality Rate (CMR). Our aim
was to build a prediction model of CPR and CMR through three different multivariate
regressors: Generalized Linear Models, Random Forests and Support Vector Machines.
The causes of the spread level of the COVID-19 pandemic can be a lot and range from
social factors related (lifestyles or mobility) to environmental and health factors. The com-
plex and multifactorial etiology of COVID-19 cannot be suitably explored by standard
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techniques and traditional approaches. A model that is able to manage data of a different
nature could help to better understand the problem. In this context, techniques based
on machine learning paradigms could be of great help thanks to their intrinsic ability to
manage multimodal data and represent complex problems. Furthermore, through a feature
importance procedure, we established which factors analyzed most influenced our results.
We analyzed CPR and CMR up to November 2020 to avoid the confounding effect of
the COVID-19 vaccination campaign that started in January 2021.

Figure 1. Historical series of positives Panel (A) and deaths Panel (B) for COVID-19 in Italy. The graph
includes the values from 22 February to 22 November 2020.

Figure 2 shows the flowchart of our approach. We used 9 lifestyle and health factors as
the input features of 3 regression models to provide a quantitative, comprehensive (but not
exhaustive) modeling of SARS-CoV-2 pandemics in Italian regions. For each implemented
model, we evaluated the feature importance. The different time intervals of features used
in the work were decided based on the available datasets, but we believe that the values of
the dependent chosen features are quite constant over a wide time interval.

Input features 5-fold Cross validation
procedure
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Figure 2. Flowchart of the proposed methodology.
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2.2. Study Area

The area of our study regarded the whole Italian territory divided into the 21 regions
or nomenclature of territorial units for statistics (NUTS 2). For each region, we considered
the factors described in the following section.

2.3. Data Collection

Epidemiological data for SARS-CoV-2 mortality and positivity of 21 Italian regions
were collected from the Italian Civil Protection’s data repository [14]; data relating to social
and lifestyle factors were extracted from the Italian Ministry of Health and Italian National
Statistical Institute. In our work, the term (i) “positivity” refers to the total number of
subjects tested positive on SARS-CoV-2 swabs updated at 22 November 2020, in each Italian
region, and (ii) “mortality” refers to the number of people dead because of SARS-CoV-2
updated at 22 November 2020, in each Italian region. We defined the Crude Positivity
Rate (CPR) as the ratio between coronavirus positive swabs tests and the total regional
population size and Crude Mortality Rate (CMR) as the ratio between dead and the total
regional population size [15]. In Table 1, we inserted some information about independent
features used in our model.

Table 1. Summary table with some information of independent features used in our model.

Independent Feature Explanation

Allergic subjects percentage of people affected by chronic allergic diseases in 2016
in each Italian region [16].

Flu vaccinated percentage of people over 65 years old vaccinated against
the seasonal flu in each Italian region in 2019 [17].

Sedentary subjects
percentage of subjects, in each Italian region, that do not engage
in any physical activity in their free time, nor do they do heavy work
calculated from 2015 to 2018 [18].

Deaths respiratory
system

number of deaths due to diseases of the respiratory system per
100, 000 inhabitants in each Italian region in 2016 [19].

Asthmatics percentage of subjects suffering from chronic bronchitis and
bronchial asthma in each Italian region in 2019 [19].

Alcohol consumers percentage of subjects who claim they have a high daily alcohol
consumption in each Italian region calculated from 2015 to 2018 [19].

Old-age index ratio between the population aged 65 years and over and that under
15 in each Italian region in 2019 [19].

Population density population density expressed in inhabitants per square kilometer
in each Italian region in 2019.

Passenger data collected by each Italian national airport about the passengers
who departed from or landed at that airport in 2018.

2.3.1. Machine Learning Approach

We used three multivariate regression algorithms to forecast CPR and CMR and to
identify which features were shown to be the most important in the implemented models.

Since there is no guarantee that the variables used in our study are independent and,
more importantly, there is no evidence that the relationships between these variables are
linear, we rejected here any a priori hypothesis about the data and, therefore, we considered
a more general approach also using machine learning algorithms as regressors.

The implemented models are Generalized Linear Models and two machine learning
algorithms: Random Forests and Support Vector Machines. The use of three different kinds
of models makes the results of our analysis more robust.
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2.3.2. Generalized Linear Model

The Generalized Linear Model (GLM) completes in a sense the view of the linear
regression model [20]. The linear model hypothesizes that the expected value of the de-
pendent variable y is computed as a linear combination of the independent variables x.
This introduces a limitation of linearity which narrows the practical field of application.
Instead, a Generalized Linear Model introduces a linearizing link function which trans-
forms the expectation of the dependent variable [21]. In this way, also non-normal and
discrete distributions of y can be described by means of this model [22]. Specifically GLM
is composed by three components [23]:

1. A random component that specifies the conditional distribution of the dependent vari-
able y = yi, . . . , yn composed by n independent observations in relation to the values
of the independent variables of the model.

2. A linear function of regressors

νi = α1xi1 + α1xi2 + · · ·+ α1xik + γ (1)

3. A linearizing link function g(·) that converts the expectation of yi, χi in νi

g(χi) = νi = α1xi1 + α1xi2 + · · ·+ α1xik + γ (2)

2.3.3. Random Forest

Random Forests (RF) are constituted by an ensemble of classification trees made
through bootstrapping of the training dataset [24]. An important characteristic of RF is
that the trees are poorly correlated with each other due to a randomization process of
the features in the training phase. In fact, in the construction step of the trees, by means of
an reiterate process, at each node, a subset of features is randomly selected. In general, RF
have some characteristics that make them ideal in many machine learning analyses:

• They are ease to tune;
• There are only two different parameters to set: the number of trees n and m the number

of features sampled to grow each leaf within a tree;
• They are little affected by the overfitting problem;
• They can evaluate the importance of each feature in the model during the training phase;
• By means of out-of-bag procedure, the Random Forest algorithm computes an unbi-

ased estimate of the generalization error.

In the present work, we implemented a standard configuration in which each forest is
composed by 1000 trees and m = f /3 where f represents the number of features used to
train the model. The feature importance was evaluated through the mean decrease impurity.
In the feature importance procedure, the RF algorithm measure the impurity decrease due
to each variable by averaging over the whole forest. In our configuration node, impurity
is measured by the residual sum of squares [24]. To achieve an accurate regression, RF
should provide in the optimization phase a low correlation between residuals of differing
regressor trees and a minimization of the prediction error function for the individual trees.

2.3.4. Support Vector Machine

Support Vector Machine (SVM) is a machine learning technique that uses mathematical
functions, called kernels, to translate data in a new hyperspace to simplify the represen-
tation of complicated patterns present in the data. The detailed description of SVM is
reported in many works [25].

In the recent past, SVM has been implemented to solve regression problems showing
several advantages over the traditional neural networks. In fact, SVM requires the setting
of a few parameters, and it is robust to overfitting problems [26]. In the feature space,
the regression equation can be expressed by:

θ(x, w) = w · ψ(x) + z (3)
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where x = x1, . . . , xN are vector elements assumed to be statistically independent and iden-
tically distributed, w represents the vector of weights, ψ(x) is the feature function and z is
a constant. In the regression problem, the SVM algorithm minimizes the following function:

f = C
1
N

Lε(y, θ(x, w)) +
1
2
‖W2 ‖ (4)

with

Lε(y, θ(x, w)) =

{
0 if |y− θ(x, w)| ≤ ε

|y− θ(x, w)| − ε otherwise
(5)

In Equation (4), f represents the empirical error, C quantifies the optimization be-
tween the empirical error and the model, y is the scalar real dependent variable and
Lε(y, θ(x, w)) defines a loss function called ε-insensitive loss function [27]. Now, by in-
troducing the Lagrangian multipliers λ and λ∗, the optimization problem is transformed
into the dual problem. The input vectors xi with non-zero coefficients are called support
vectors. Therefore, Equation (3) becomes:

θ(x, ˘, ˘∗) =
N

∑
i=i

(λi − λ∗i )K(x, xi) + z (6)

where K(x, xi) represents the kernel function. The constant z is computed though the Karush–
Kuhn–Tucker conditions [28]. In this work, we implemented a default configuration with
a linear kernel.

2.3.5. Feature Importance Procedure and Performance Metrics

For both GLM and SVM algorithms, the feature importance is estimated using the re-
lationship between each predictor and the outcome. Specifically, we computed through R2

the agreement of a model created by each feature to the outcome, thus obtaining a partial
ranking. We adopted a 5-fold classification framework to further strengthen the robustness
of our estimates and minimize overfitting issues. In this method, the initial dataset con-
taining data of 21 Italian regions is randomly divided into 5 subsets without re-insertion:
5 − 1 subsets represent the training set, and the remaining part is used for validation.
The described procedure is repeated N times in order to obtain N models with the relative
performances. The average of the latter represents a reliable indicator of the model’s accu-
racy. In the feature importance procedure, we estimated a feature importance ranking by
means of the 5-fold cross-validation model. In particular, for each cross-validation cycle,
we assigned a weight to each feature according to its importance in the model measured by:
(i) The impurity decrease for RF; (ii) R2 statistic for GLM and SVM. We obtained an overall
ranking by repeating the procedure N = 500 times averaging over all repetitions. The data
analysis procedure is summarized in Figure 2. To evaluate the performance of the three
implemented models, we computed the coefficient of determination between the predicted
values and actual values and the mean absolute percentage error (MAPE) [29]:

MAPE =
1
n

N

∑
i=i

∣∣∣∣At − Ft

At

∣∣∣∣ (7)

where At is the actual value and Ft is the forecast value. All the processing and statistical
analyses were performed in R version 3.6.1 [30].

3. Results
3.1. Regression Performances

In Table 2, we reported some statistics for the nine independent features used in
our models.
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Table 2. Summary table with some statistics of independent features.

Independent Feature Mean Standard Deviation Median 25th Percentile 75th Percentile

Allergic subjects 11.1% 1.3% 10.7% 9.9% 11.3%

Flu vaccinated 52.1% 6.6% 53.3% 49.1% 55.7%

Sedentary subjects 32.0% 12.3% 28.7% 23.8% 38.3%

Deaths respiratory system 83.0 15.0 77.2 72.9 96.5

Asthmatics 5.9% 1.0% 6.0% 5.5% 6.4%

Alcohol consumers 3.3% 1.3% 3.6% 2.4% 4.4%

Old-age index 175.2 30.5 177.8 155.5 195.9

Population density 177.7 113.5 162.0 79.0 206.0

Passenger 8,841,969 1,412,266 3,193,386 223,436 8,893,672

Firstly, we investigated the linear correlations [31] between each feature used in our
study; see Figure 3.

Figure 3. Correlation matrix for independent features, Crude Mortality Rate (CMR), and Crude
Positivity Rate (CPR).

We observed that the most positively or negatively correlated variables were the seden-
tary subjects and alcohol consumers (r = −0.70), deaths for respiratory diseases and the old
age index (r = −0.77). Correlations ranging from 0.6 to 0.8 are generally considered moder-
ate; therefore, we did not exclude any variable from the analysis. We evaluated MAPE and
R2 for the three implemented models. The agreement between the CPR predicted values
and the CPR actual values and between the CMR predicted values and the CMR actual
values are shown in Figure 4 for the three used algorithms.

The three models follow a positive linear trend. An overview of the regression perfor-
mances is summarized in Table 3. RF appears to be the best performing algorithm.

The used models achieved forecasts with very strong correlations. In the CPR pre-
diction, the Pearson correlation between RF and SVM is r = 0.94; that between RF and
GLM is r = 0.92; and that between RF and SVM is r = 0.94. Instead, for the CMR
prediction, the Pearson correlation between RF and SVM is r = 0.87; that between RF
and GLM is r = 0.90; and that between RF and SVM is r = 0.93. We observed that
the performances of the three different approaches differed by a few percentage points.
The best-performing method was the RF algorithm both for the CPR (MAPE = 0.17± 0.02;
Adjusted R2 = 0.96± 0.05) and the CMR (MAPE = 0.31± 0.04; Adjusted R2 = 0.94± 0.05)
forecast, as shown in Table 3. Therefore, a non-linear model performs better than a linear
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model and SVM with a linear kernel, but the three investigated algorithms show a good
prediction agreement.

Figure 4. The agreement between the predicted values the actual values for CMR (panel A) and CPR
(panel B).
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Table 3. Summary table of regression performance measures obtained through the implemented
models. MAPE: Mean Absolute Percentage Error; SD: Standard deviation.

Predicted Values Regression Models MAPE (±SD) Adjusted R2 (±SD)

Crude Positivity Rate Random Forest 0.17± 0.02 0.96± 0.05
Support Vector Machine 0.18± 0.03 0.80± 0.05

Generalized Linear Model 0.19± 0.02 0.81± 0.05

Crude Mortality Rate Random Forest 0.31± 0.04 0.94± 0.05
Support Vector Machine 0.44± 0.05 0.66± 0.05

Generalized Linear Model 0.59± 0.05 0.72± 0.05

3.2. Feature Importance

Here, we investigated the most important features for the three implemented models
to forecast CPR and CMR, as shown in Figure 5. Through a feature importance procedure
based on a cross-validation technique, we observed that the three models in the CPR
forecast had the same variables in the four most important places: Flu vaccinated, Alcohol
consumers, Sedentary subject, and Respiratory deaths. Specifically, for GLM and SVM,
the three top ranked features were the same: the most important variable in the CPR
forecast was Alcohol consumers (22.8% and 21.8% is the percentage of importance for
GLM and SVM, respectively), which was followed by Flu vaccinated (20% for both GLM
and SVM) and Sedentary subjects (19% for GLM and 20% for SVM). For the RF model,
the most important feature in predicting CPR was Flu vaccinated (24.6%) followed by
Alcohol consumers (19.5%) and Sedentary subjects (15.5%). The three implemented models
agreed on the fourth most important feature, namely Respiratory deaths (GLM 13.2%,
SVM 14% and RF 12.6%). These four features gave the main contribution (about 74%)
in the forecast models and had the highest linear correlation with CPR (see Figure 3). The
three used algorithms are also quite in agreement on the four top rank features in the CMR
prediction: Alcohol consumers (18.4% of importance for GLM and 18.3% for SVM, 17.9%
for RF), Allergic subjects (17% of importance for both GLM and SVM, 19.2% for RF), Flu
vaccinated (17% of importance for GLM, 16% for SVM and 18.9% for RF), and Respiratory
deaths (12.9% of importance for GLM, 13.9% for SVM and 13.2% for RF). These results
confirm the findings found for the CPR forecast except for the Allergic subjects feature,
which replaced the Sedentary subjects feature.



Int. J. Environ. Res. Public Health 2022, 19, 12538 10 of 14

(A) Crude Mortality Rate

(B) Crude Positivity Rate

Figure 5. The feature importance produced by RF, SVM and GLM to predict CMR (panel A) and CPR
(panel B).
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4. Discussion

In this work, we compared three different forecasting algorithms—GLM, SVM, and
RF—to predict the mortality and positivity ratios of the SARS-CoV-2 outbreak in Italy from
22 February to 22 November 2020. The use of three different models makes our results
more robust; in particular, we started with GLM and then used SVM and RF as more
complex and alternative models to the linear hypothesis. In our analysis, we divided
the Italian territory into 21 regions and included in the model nine features (see Table 1)
grouped into three macro categories (1) incidence of respiratory diseases, (2) lifestyle, and
(3) mobility. Our results shows that in general, categories 1 and 2 influence the results more
than category 3. It is interesting to note how the population density and the feature that
in our model represents mobility (Passengers) are, as per expectations, strongly correlated
with each other (r > 0.7) but not very important in the model. In fact, these two factors,
if taken into consideration separately, do not prove to be conducive to the establishment
and spread of the virus. On the contrary, if they are considered jointly, they reveal a real
condition of fragility (gatherings with distancing difficult) as reported in the literature [32].

Figure 6 shows the geographical distribution in Italy of CPR (panel A) and CMR
(panel B) and the percentage of people over 65 vaccinated against seasonal flu 2019
(panel C). Considering that the deaths positively associated with SARS-CoV-2 in Italy
have a negative gradient from north to south and vaccinations have a higher percentage
in the south than in the north, it is clear that the correlation with vaccinations is negative
(correlation equal to −0.59 and −0.53 for CPR and CMR respectively), so there are fewer
deaths and positives where the number of over 65 vaccinated is higher. In addition, subjects
who have a sedentary lifestyle appear to be less at risk of contracting COVID-19 (Pearson
coefficient equal to −0.58). Probably for their lifestyle, they have less chance of contracting
the disease. Instead, the positive correlation between the feature Alcohol consumers and
CPR (0.56) and CMR (0.62) highlights that subjects who abuse alcohol seem particularly
vulnerable to COVID-19.

Figure 6. The geographical distribution in Italy of CPR (panel A), CMR (panel B) and the percentage
of people over 65 years old vaccinated against the seasonal flu 2019 (panel C) in Italy.
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Previous works confirm our results. Several studies found that flu vaccination is also
linked with COVID-19 severity and mortality, playing some sort of protective role against
severe symptoms.

Marín-Hernández et al. [33] reported a link between the higher uptake of influenza
vaccination and lower deaths from COVID-19 in Italy. Tayar et al. [34] in a study im-
plemented on a population of 30, 774 subjects assessed an effectiveness of 88.9% for flue
vaccination against severe or mortal effects of COVID-19. Huang et al. [35] found that
the influenza vaccine may slightly protect people from COVID-19 infection. It has long
been known how lung pathophysiologies can be aggravated by alcohol abuse, which could
therefore increase both susceptibility and severity to COVID-19 [36], so it should come as
no surprise that the feature Alcohol consumers is highly important in our models. Muham-
mad et al. reported that six genes linked with the severity of COVID-19 disease (CCR2,
DPP9, HSPA1L, TYK2, OAS1, ACE2, and TMPRSS2) were also upregulated in the brain
tissue of the population of habitual alcoholics.

There is controversial evidence of the association between asthma and allergies
and the risk of adverse clinical outcomes of COVID-19. Some works [37–39] reported
that asthma is not a risk factor for SARS-CoV-2 infection, as confirmed by our models.
It is known that the COVID-19 virus triggers an overwhelming host immune response.
Larson et al. [40] demonstrate that the genetic pathways underlying the susceptibility
to allergic diseases are protective against COVID-19. Wu et al. [41] through a study
on 1,169,441 subjects found that patients who died from COVID-19 were not at risk of
asthma, either.

Limitations and Strengths

It is worth mentioning that our work is not an exhaustive study on the SARS-CoV-2
outbreak in Italy because we neglected many possible causes such as the different ways of
dealing with the pandemic by the Italian local health system. It is very difficult to choose
a group of factors that can explain such a complex problem as the spread of COVID-19
in Italy in an exhaustive way. Our model is also an approximation of the problem. Then,
even the regional scale is too broad to understand the precise dynamics of the territory,
but the availability of the data did not allow us to choose a finer geographical scale.

The use of machine learning can weaken these limitations thanks to its ability to extract
salient information from the data without making prior assumptions. Furthermore, the use
of COVID-19 severity data available up to November 2020 avoided inserting an additional
bias in our model due to the start of the vaccination campaign. Our model and the obtained
results could be a strategic way to better understand the mechanisms of diffusion and
physiology of this disease.

5. Conclusions

The causes of COVID-19 spread in Italy in the the first wave of the pandemic are
difficult to explain even because the real onset date is not clear. A mathematical model that
explains this diffusion should be very complex and take several factors into account. In this
paper, we have tried to identify nine features related to health and lifestyle risks that could
be connected to COVID-19 spread. We used a data-driven approach based on machine
learning techniques to predict and explain the degree of severity of COVID-19 in Italy
through these factors. Furthermore, an in-depth study on the feature importance allowed
us to quantify which factors had the greatest impact on diffusion. Our study could be
replicated and validated on a European scale also including data from subjects vaccinated
against the 2020 seasonal flu to better understand the clinical and physiological meaning of
the pandemic.



Int. J. Environ. Res. Public Health 2022, 19, 12538 13 of 14

Author Contributions: Conceptualization, N.F. and A.M.; methodology, N.F. and A.M.; software,
N.F. and A.M.; validation, N.F. and A.M.; formal analysis, N.F. and A.M.; investigation, N.F. and A.M.;
resources, N.F. and A.M.; data curation, N.F. and A.M.; writing—original draft preparation, N.F.
and A.M.; writing—review and editing, N.F. and A.M.; visualization N.F. and A.M.; supervision, N.F.
and A.M.; project administration, N.F. and A.M.; funding acquisition, N.F. and A.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was financially supported by a grant-in aid for “E-Health in Albania: Evalu-
ation of care pathways for chronic patients and hospital financing models” sponsored by Catholic
University Our Lady of Good Counsel, Albania.

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and R codes used to perform the analysis are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Promislow, D.E.L. A Geroscience Perspective on COVID-19 Mortality. J. Gerontol. Ser. A 2020, 75, e30–e33. [CrossRef]
2. Leffler, C.T.; Ing, E.; Lykins, J.D.; Hogan, M.C.; McKeown, C.A.; Grzybowski, A. Association of Country-wide Coronavirus

Mortality with Demographics, Testing, Lockdowns, and Public Wearing of Masks. Am. J. Trop. Med. Hyg. 2020, 103, 2400–2411.
[CrossRef] [PubMed]

3. Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [CrossRef]
4. Casti, E.; Consolandi, E. Italy into three parts: The space–time spread of contagion. Vaccines 2021, 9, 29–39. [CrossRef]
5. Casti, E. Conclusions: Towards spatial vulnerability management for a new “happy” living. Mod. Cartogr. Ser. 2021, 9, 217–225.

[CrossRef]
6. Apolone, G.; Montomoli, E.; Manenti, A.; Boeri, M.; Sabia, F.; Hyseni, I.; Mazzini, L.; Martinuzzi, D.; Cantone, L.; Milanese, G.; et al.

Unexpected detection of SARS-CoV-2 antibodies in the prepandemic period in Italy. Tumori J. 2021, 107, 446–451. [CrossRef] [PubMed]
7. Amato, M.; Werba, J.P.; Frigerio, B.; Coggi, D.; Sansaro, D.; Ravani, A.; Ferrante, P.; Veglia, F.; Tremoli, E.; Baldassarre, D.

Relationship between Influenza Vaccination Coverage Rate and COVID-19 Outbreak: An Italian Ecological Study. Vaccines 2020,
8, 535. [CrossRef] [PubMed]

8. Zanettini, C.; Omar, M.; Dinalankara, W.; Imada, E.L.; Colantuoni, E.; Parmigiani, G.; Marchionni, L. Influenza Vaccination and
COVID-19 Mortality in the USA: An Ecological Study. Vaccines 2021, 9, 427. [CrossRef] [PubMed]

9. Conlon, A.; Ashur, C.; Washer, L.; Eagle, K.A.; Bowman, M.A.H. Impact of the influenza vaccine on COVID-19 infection rates and
severity. Am. J. Infect. Control 2021, 49, 694–700. [CrossRef]

10. Wilcox, C.R.; Islam, N.; Dambha-Miller, H. Association between influenza vaccination and hospitalisation or all-cause mortality
in people with COVID-19: A retrospective cohort study. BMJ Open Respir. Res. 2021, 8, e000857. [CrossRef]

11. Gao, C.; Zhao, Z.; Li, F.; Liu, J.-L.; Xu, H.; Zeng, Y.; Yang, L.; Chen, J.; Lu, X.; Wang, C.; et al. The impact of individual lifestyle and
status on the acquisition of COVID-19: A case—Control study. PLoS ONE 2020, 15, e0241540. [CrossRef] [PubMed]

12. Muhammad, S.J.; Siddiqui, R.; Khan, R.A. COVID-19: Is There a Link between Alcohol Abuse and SARS-CoV-2-Induced Severe
Neurological Manifestations? ACS Pharmacol. Transl. Sci. 2021, 4, 1024–1025. [CrossRef]

13. Yang, J.M.; Koh, H.Y.; Moon, S.Y.; Yoo, I.K.; Ha, E.K.; You, S.; Kim, S.Y.; Yon, D.K.; Lee, S.W. Allergic disorders and susceptibility
to and severity of COVID-19: A nationwide cohort study. J. Allergy Clin. Immunol. 2020, 146, 790–798. [CrossRef]

14. The Italian Civil Protection’s Data Repository. 2020. Available online: https://github.com/pcm-dpc/COVID-19/tree/master/
dati-regioni (accessed on 23 November 2020).

15. What Do We Know about the Risk of Dying from COVID-19? 2020. Available online: https://ourworldindata.org/covid-
mortality-risk (accessed on 23 November 2020).

16. Quanti Allergici ci Sono in Italia? Un po’ di Statistiche. 2016. Available online: https://www.allergipedia.it/2017/11/30/quanti-
allergici-ci-sono-in-italia/ (accessed on 20 September 2020).

17. Coperture della Vaccinazione Antinfluenzale in Italia. 2019. Available online: https://www.epicentro.iss.it/influenza/coperture-
vaccinali (accessed on 10 September 2020).

18. I dati per l’Italia Attività Fisica. 2018. Available online: https://www.epicentro.iss.it/passi/dati/attivita (accessed on
10 September 2020).

19. Annuario Statistico Italiano 2019. Available online: https://www.istat.it/it/files/2019/12/Asi-2019.pdf (accessed on 1 September 2020).
20. McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall: London, UK, 1998.
21. Hoffman, J.P. Generalized Linear Models: An Applied Approach; Pearson, Allyn, and Bacon: Boston, MA, USA, 2003.
22. Müller, M. Generalized Linear Models; Gentle, J., Härdle, W., Mori, Y., Eds.; Handbook of Computational Statistics; Springer:

Berlin/Heidelberg, Germany, 2012.
23. Hardin, J.W.; Hilbe, J.M. Generalized Linear Models and Extensions; StataCorp LP.: College Station, TX, USA, 2007.

http://doi.org/10.1093/gerona/glaa094
http://dx.doi.org/10.4269/ajtmh.20-1015
http://www.ncbi.nlm.nih.gov/pubmed/33124541
http://dx.doi.org/10.1016/S0140-6736(20)30627-9
http://dx.doi.org/10.1016/ B978-0-323-91061-3.00012-0
http://dx.doi.org/10.1016/B978-0-323-91061-3.00001-6
http://dx.doi.org/10.1177/0300891620974755
http://www.ncbi.nlm.nih.gov/pubmed/33176598
http://dx.doi.org/10.3390/vaccines8030535
http://www.ncbi.nlm.nih.gov/pubmed/32947988
http://dx.doi.org/10.3390/vaccines9050427
http://www.ncbi.nlm.nih.gov/pubmed/33923159
http://dx.doi.org/10.1016/j.ajic.2021.02.012
http://dx.doi.org/10.1136/bmjresp-2020-000857
http://dx.doi.org/10.1371/journal.pone.0241540
http://www.ncbi.nlm.nih.gov/pubmed/33152004
http://dx.doi.org/10.1021/acsptsci.1c00073
http://dx.doi.org/10.1016/j.jaci.2020.08.008
https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://github.com/pcm-dpc/COVID-19/tree/master/dati-regioni
https://ourworldindata.org/covid-mortality-risk
https://ourworldindata.org/covid-mortality-risk
https://www.allergipedia.it/2017/11/30/quanti-allergici-ci-sono-in-italia/
https://www.allergipedia.it/2017/11/30/quanti-allergici-ci-sono-in-italia/
https://www.epicentro.iss.it/influenza/coperture-vaccinali
https://www.epicentro.iss.it/influenza/coperture-vaccinali
https://www.epicentro.iss.it/passi/dati/attivita
https://www.istat.it/it/files/2019/12/Asi-2019.pdf


Int. J. Environ. Res. Public Health 2022, 19, 12538 14 of 14

24. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
25. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
26. Parveen, N.; Zaidi, S.; Danish, M. Support vector regression model for predicting the sorption capacity of lead (II). Perspect. Sci.

2016, 8, 629–631. [CrossRef]
27. Vapnik, V.N.; Golowich, S.; Smola, A.J. Support vector method for function approximation, regression estimation and signal

processing. Adv. Neural Inform. Process. Syst. 1996, 9, 281–287.
28. Kuhn, H.W.; Tucker, A.W. Nonlinear programming. In Proceedings of the 2nd Berkeley Symposium, Berkeley, CA, USA,

31 July–12 August 1950; University of California Press: Berkeley, CA, USA, 1951; pp. 481–492.
29. de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean Absolute Percentage Error for regression models. Neurocomputing

2016, 92, 38–48. [CrossRef]
30. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
31. Nicewander, R. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66. [CrossRef]
32. Casti, E.; Riggio, A. Atlante COVID-19 Geografie del Contago in Italia; A.Ge.I.: Roma, Italy, 2022.
33. Marín-Hernández, D.; Schwartz, R.E.; Nixon, D.F. Epidemiological evidence for association between higher influenza vaccine

uptake in the elderly and lower COVID-19 deaths in Italy. J. Med. Virol. 2021, 93, 64–65. [CrossRef]
34. Tayar, E.; Abdeen, S.; Alah, M.A.; Chemaitelly, H.; Bougmiza, I.; Ayoub, H.H.; Kaleeckal, A.H.; Latif, A.N.; Shaik, R.M.;

Al-Romaihi, H.E.; et al. Effectiveness of influenza vaccination against SARS-CoV-2 infection among healthcare workers in Qatar.
medRxiv 2022. [CrossRef]

35. Huang, K.; Lin, S.W.; Sheng, W.H.; Wang, C. Influenza vaccination and the risk of COVID-19 infection and severe illness in older
adults in the United States. Sci. Rep. 2021, 11, 11025. [CrossRef] [PubMed]

36. Bailey, K.L.; Samuelson, D.R.; Wyatt, T.A. Alcohol use disorder: A pre-existing condition for COVID-19? Alcohol 2020, 90, 11–17.
[CrossRef] [PubMed]

37. Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.-D.; Yang, Y.-B.; Yan, Y.-Q.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients
infected with SARS-CoV-2 in Wuhan, Chine. Allergy 2020, 75, 1730–1741. [CrossRef] [PubMed]

38. Skevaki, C.; Karsonova, A.; Karaulov, A.; Xie, M.; Renz, H. Asthma-associated risk for COVID-19 development. J. Allergy Clin.
Immunol. 2020, 146, 1295–1301. [CrossRef]

39. Lee, S.C.; Son, K.J.; Han, C.H.; Jung, J.Y.; Park, S.C. Impact of comorbid asthma on severity of coronavirus disease (COVID-19).
Sci. Rep. 2020, 10, 21805. [CrossRef]

40. Susanna, C.; Gill, D.L. Genetic predisposition to allergic diseases is inversely associated with risk of COVID-19. Allergy 2021,
76, 1911–1913. [CrossRef]

41. Wu, X.; Xu, Y.; Jin, L.; Wang, X.; Zhu, H.; Xie, Y. Association of Preexisting Asthma and Other Allergic Diseases with Mortality
in COVID-19 Patients: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 670744. [CrossRef]

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.pisc.2016.06.040
http://dx.doi.org/10.1016/j.neucom.2015.12.114
http://dx.doi.org/10.2307/2685263
http://dx.doi.org/10.1002/jmv.26120
http://dx.doi.org/10.1101/2022.05.09.22274802
http://dx.doi.org/10.1038/s41598-021-90068-y
http://www.ncbi.nlm.nih.gov/pubmed/34040014
http://dx.doi.org/10.1016/j.alcohol.2020.10.003
http://www.ncbi.nlm.nih.gov/pubmed/33080339
http://dx.doi.org/10.1111/all.14238
http://www.ncbi.nlm.nih.gov/pubmed/32077115
http://dx.doi.org/10.1016/j.jaci.2020.09.017
http://dx.doi.org/10.1038/s41598-020-77791-8
http://dx.doi.org/10.1111/all.14728
http://dx.doi.org/10.3389/fmed.2021.670744

	Introduction
	Materials and Methods
	Study Design and Settings
	Study Area
	Data Collection
	Machine Learning Approach
	Generalized Linear Model
	Random Forest
	Support Vector Machine
	Feature Importance Procedure and Performance Metrics


	Results
	Regression Performances
	Feature Importance

	Discussion
	Conclusions
	References

