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Abstract: A number of studies have found associations between the short-term exposure to ambient
air pollution and hospital admissions. However, little is known about the temporal variations in
ambient air pollution associated with health exposure, especially in China. We evaluated whether
the risks of allergic rhinitis (AR) outpatient visits from short-term exposure to air pollution varied
over time (2014–2020) in Beijing, China. A quasi-Poisson generalized additive model was used to
evaluate the relative risks (RRs) and 95% confidence intervals (CIs) associated with the pollutant
concentrations during the entire study period and three specific periods. We also analyzed the
temporal variations of the period-specific associations and tested the trend of change using the
Mann–Kendall test. The concentration-response relationships for the specific periods were further
investigated. The RRs (95%CI) for an interquartile range (IQR) increased in PM10 (70 µg/m3) and CO
(0.5 mg/m3) decreased from period 1 to period 3. However, The RRs (95%CI) of PM2.5 (55 µg/m3),
SO2 (7 µg/m3) and NO2 (27 µg/m3) increased from 1.015 (0.978, 1.054), 1.027 (1.009, 1.044) and
1.086 (1.037, 1.137) in period 1 to 1.069 (1.005, 1.135), 1.074 (1.003, 1.149) and 1.214 (1.149, 1.282) in
period 3, respectively. A statistically significant temporal change and the stable effects were observed
between the NO2 exposure and AR visits over time. Despite a substantial reduction in ambient air
pollution, the short-term effects on AR outpatient visits remained significant. Our findings provide
a rationale for continued air pollution control efforts in the future to minimize air pollution and to
protect the public.

Keywords: air pollution; temporal variation; allergic rhinitis; outpatient visit

1. Introduction

Air pollution has been considered a serious threat to public health worldwide. The
impact of air pollution on health has attracted increasing attention and has been reported
in a variety of countries, considering cardiovascular and respiratory diseases, neonatal
conditions and hospital admissions [1–4]. However, most of the studies focused on the
overall effect during the study period. The epidemiological evidence on the temporal
changes in the health effects of air pollution is still limited [5–8]. Previous studies have
suggested that there may be temporal differences in the health effects of air pollutants, but
the available research evidence remains inconsistent.

In response to economic development and urbanization, the Chinese government has
developed a series of air pollution control measures and policies nationwide to improve air
quality. Beijing and neighboring areas are among the most stringent target areas. In most
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cities in China, the concentration and composition of air pollutants have varied considerably
with time. During the past few years, concentrations of sulfur dioxide (SO2) and particulate
matter ≤ 2.5 µm in diameter (PM2.5) and ≤10 µm (PM10) have declined in most Chinese
cities [9,10]. However, the annual average concentration of PM2.5 in Beijing still exceeds the
Chinese national ambient air quality standard (NAAQS) of 35 µg/m3 for PM2.5, and traffic
pollution is still serious. In addition to this, air pollution restrictions may also change the
precise emission sources as well as the chemical composition of the air pollution mixture.
The emissions from the chemical industry, manufacturing and transportation-related air
pollutants may be reduced, which are closely related to the emission concentrations of
particulate matter, SO2 and nitrogen dioxide (NO2) emissions [11,12]. These changes may
alter the toxicity of air pollutants, which in turn may lead to changes in the health effects of
air pollution.

Previous studies have shown that air pollution may play an important role in the
causes of AR [13–15]. However, to date, no studies have elucidated the temporal changes in
the associations between ambient air pollution and daily outpatient visits for AR in China
over a long-term scale. Therefore, the purpose of this study was to examine whether there
is a change in the short-term effects of six air pollutants on AR outpatient visits in Beijing,
China, over a seven-year period from 2014 to 2020. Furthermore, the effect values and
exposure-response curves for each specific period were estimated.

2. Methods
2.1. Study Area and Data Collection

The daily data on AR outpatient visits from 1 January 2014 to 31 December 2020
were collected from the Chinese People’s Liberation Army (PLA) Strategic Support Force
Characteristic Medical Center, one general hospital (the area of 100,000 square meters) in
Beijing. It is a tertiary A-level hospital, providing 24 h accident and emergency services
for residents. The data contains information on patient ID, age, sex and visit date. The
cases of AR were coded according to the 10th edition of the International Classification of
Diseases (ICD-10, J30.401). The cases living in Beijing and visiting for an AR occurrence
or exacerbation were selected for subsequent analysis. We excluded people who visited
a doctor only for medicine prescriptions. The data were grouped according to sex (male
and female) and age (18–45 years, 46–65 years, and >65 years). All of the procedures in
this study were approved by the Science and Technology Ethics Review Committee of the
University of Science and Technology Beijing.

We collected hourly data of the air pollutants (PM10, PM2.5, SO2, NO2, carbon monox-
ide (CO) and ozone (O3)) during 2014–2020 from the National Urban Air Quality Publishing
Platform (http://106.37.208.233:20035/ (accessed on 15 March 2021)). For each pollutant
except O3, there are at least 20 h of hourly data per day to determine the daily mean concen-
tration. The maximum daily 8 h moving average concentration for O3 was calculated using
hourly data for at least 6 h. The city-level average concentrations were calculated based on
35 routine monitoring stations within the city. Further adjustment of the meteorological
variables to control for potential confounding effects. The daily mean temperature (◦C) and
relative humidity (%) were obtained from the National Meteorological Information Center
(http://data.cma.cn/site/index.html (accessed on 15 March 2021)). The spatial distribution
of the environmental monitoring stations, the weather station and the hospital in Beijing is
shown in Figure S1.

2.2. Statistical Analysis

The daily outpatient visits for AR, pollutant concentrations and meteorological factors
during the study period were presented in means and standard deviation (SD). In addition,
the parameters of 25% quartile, 50% quartile, 75% quartile, the interquartile range (IQR)
and the minimum and maximum were described.

Since the daily outpatient visits approximately follow a quasi-Poisson distribution,
a generalized additive model was carried out to analyze the associations between the

http://106.37.208.233:20035/
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daily outpatient visits for AR and each air pollutant [16,17]. The number of outpatient
visits served as the dependent variable, and the fitting equation was obtained using the
quasi-Poisson copula function. We defined the current day air pollution exposure as lag0
and examined the lagged day from lag1 to lag5. We also examined the accumulated effects
of the multi-day lags using the moving average for the current day and previous 1–5 days
(from lag01 to lag05). Several covariates, including natural splines, were adjusted based
on previous studies [9,18]: (1) the natural spline smooth function of the calendar day with
7 degrees of freedom (df) per year to control for the underlying time trends; (2) an indicator
variable for the day of the week to account for within week variations; and (3) two separate
natural splines with 3 df for the mean temperature and 3 df for the mean relative humidity
to exclude potential non-linear effects of the weather conditions. The choice of the most
appropriate df for the weather variables was based on previous studies [19,20] and also on
Akaike’s information criterion (AIC) [21] (Table S1). The main model is as follows:

log[E(Yt) = intercept + β Xt + s (time, df = 7 × year) + s (temperature, df = 3) + s (relative humidity, df = 3) + DOW

where Yt represents the number of outpatient visits for AR on day t; Xt is the city-average
concentration of a given air pollutant at day t; β is the regression coefficient; s indicates the
natural spline function; df is the degree of freedom; time indicates long-term trends and
seasonality using calendar time (days); and DOW is an indicator variable meaning “day of
the week”.

To explore the temporal variation in the impact of air pollution on the outpatient visits
for AR over the study period 2014–2020, we divided the study time into three periods,
period 1 (2014–2015), period 2 (2016–2017) and period 3 (2018–2020). This is mainly in
consideration of the implementation of the Law of the People’s Republic of China on
Prevention and Control of Air Pollution on 1 January 2016 and the release of the Blue Sky
Protection Campaign in 2018. We included an interaction term for the period variable and
the air pollutant in the main model to validate changes in risk estimates over the specific
period. We used p < 0.05 to assess the significant change of this linear interaction effect [7,8].

In line with previous studies [9,22], the analysis was also stratified by a cool season
(October to March), a warm season (April to September), a pollen season (April, May,
August, and September) and a non-pollen season (the out of pollen season months). We
also alternated the degrees of freedom of the calendar time from 4 to 10 to assess the
robustness of the effect estimates.

In the sensitivity analysis, additional period-specific analyses were conducted at over-
lapping 2 year intervals to assess the continuous changes in health risks associated with air
pollutants over the study period [6,8]. Specifically, we assessed the effects of air pollution
on daily outpatient visits for AR during the periods 2014–2015, 2015–2016, 2016–2017 and
so on, up to 2019–2020. The Mann–Kendall statistical test was used to evaluate the probable
temporal trends in the associations between air pollution and outpatient visits [7,23]. We
further considered the offset term for the logarithmic scale of the annual population [24],
the season and the three-day moving average temperature in the model, and performed a
sensitivity analysis.

Finally, the smoothing function of the generalized additive model was employed to
graphically describe the probable variations in period-specific associations. During three
specific periods, we investigated the non-linear exposure-response relationships between
air pollution and AR daily visits.

All statistical analyses were conducted in R (version 3.6.3, R Foundation for Statistical
Computing, Vienna, Austria). The statistical test was two-sided, and the associations of
p < 0.05 were considered statistically significant. The effects are presented as the relative
risk (RR) and its 95% confidence intervals (CIs) in the daily AR outpatient visits for each
interquartile range (IQR) increase in pollutant concentrations.
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3. Results

Table 1 presents the descriptive statistics of hospital outpatient visits for AR, air
pollutant concentrations and meteorological measures. A total of 68,861 AR outpatient
visits were recorded (mean 27 per day), with 63.0% of patients being males and 59.3% of
people aged 18–45 years.

Table 1. Descriptive statistics for AR visits, air pollutants and meteorological parameters in Beijing,
China, 2014–2020.

Period Mean SD Min Median Max IQR

Air pollutant concentration
PM2.5 (µg/m3) 2014–2020 60.6 57.3 3.0 44.0 477.0 55.0

2014–2015 82.3 70.5 5.0 62.0 477.0 80.0
2016–2017 65.6 60.3 6.0 48.0 454.0 60.0
2018–2020 42.7 35.7 3.0 34.0 233.0 38.0

PM10 (µg/m3) 2014–2020 86.0 67.8 7.0 69.0 831.0 70.0
2014–2015 108.5 79.9 7.0 90.0 550.0 91.0
2016–2017 91.7 71.4 7.0 76.0 764.0 73.0
2018–2020 67.3 48.5 8.0 56.0 831.0 47.0

SO2 (µg/m3) 2014–2020 9.2 12.8 2.0 4.0 133.0 7.0
2014–2015 16.7 19.6 2.0 9.0 9.0 17.0
2016–2017 8.8 9.5 2.0 5.0 5.0 8.0
2018–2020 4.5 3.1 2.0 3.0 3.0 3.0

NO2 (µg/m3) 2014–2020 43.2 22.4 5.0 38.0 155.0 27.0
2014–2015 51.9 24.3 8.0 46.0 141.0 27.0
2016–2017 47.1 22.7 11.0 42.0 155.0 25.0
2018–2020 34.8 17.3 5.0 30.0 105.0 22.0

CO (mg/m3) 2014–2020 1.1 0.9 0.1 1.0 8.0 0.5
2014–2015 1.4 1.0 0.1 1.0 8.0 1.0
2016–2017 1.2 0.9 0.1 1.0 8.0 0.0
2018–2020 0.8 0.5 0.1 1.0 3.0 0.7

8 h-O3 (µg/m3) 2014–2020 96.9 61.9 2.0 82.0 311.0 86.0
2014–2015 99.4 65.2 2.0 87.0 294.0 94.0
2016–2017 97.2 65.7 2.0 83.0 311.0 89.0
2018–2020 95.1 56.8 2.0 80.0 283.0 76.5

Meteorological measures
Temperature (◦C) 2014–2020 15.7 9.9 −14.3 17.5 32.6 15.2

Relative humidity (%) 2014–2020 48.7 19.0 8.0 48.0 99.0 28.2
Outpatient hospital visits (n/day)

Total 2014–2020 27 21 2 22 175 19
Male 2014–2020 17 14 3 13 120 13

Female 2014–2020 10 8 2 8 75 8
Age 18–45 2014–2020 16 15 1 12 123 12
Age 46–65 2014–2020 6 5 2 5 31 5
Age > 65 2014–2020 2 2 3 2 16 3

Warm season (4–9) 2014–2020 31 22 2 26 175 24
Cool season (10-3) 2014–2020 23 20 2 19 160 15

Pollen season (4–5, 8–9) 2014–2020 39 23 3 34 175 27
Non-pollen season (others) 2014–2020 21 18 1 18 160 13

Note: Values of PM2.5, PM10, SO2, CO and NO2 were the 24 h mean concentration; values of O3 were computed
using the 8 h mean concentrations; values of meteorological factors were the daily average. Abbreviations: SD,
standard deviation; Min, minimum; Max, maximum; IQR: interquartile range.

Throughout the entire study period, the daily mean concentrations of PM2.5, PM10,
SO2, NO2, CO and O3 were 60.6 µg/m3, 86.0 µg/m3, 9.2 µg/m3, 43.2 µg/m3, 1.1 mg/m3

and 96.9 µg/m3, respectively. The daily average temperature was 15.7 °C, and the relative
humidity was 48.7%. A substantial decline in the annual concentration of ambient air
pollution was noted over the study period from 2014 to 2020 (Figure 1). The annual
concentrations of ambient PM2.5 ranged between 81 µg/m3 and 38 µg/m3 from 2014 to 2020,
which were higher than the NAAQS of 35 µg/m3 for PM2.5. The annual concentrations
of ambient PM10 varied between 118 µg/m3 and 57 µg/m3 and NO2 varied between
55 µg/m3 and 29 µg/m3. The annual concentrations of 2019 and 2020 were below the
NAAQS of 70 µg/m3 for PM10 and 40 µg/m3 for NO2. The annual concentrations of SO2
varied between 17 µg/m3 and 4 µg/m3 and O3 µg/m3 varied between 111 µg/m3 and
95 µg/m3. The annual average concentrations of SO2, O3 and CO during the entire study
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period were below the NAAQS of 60 µg/m3 for SO2, 4 mg/m3 for CO and 160 µg/m3

for O3.
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Figure 1. Annual average concentrations of six air pollutants in Beijing in 2014–2020, as percentages
of change compared with the Chinese national ambient air quality standard. Note: The dashed line
denotes the Chinese national ambient air quality standard. Values are the percentage increase or
decrease of each concentration relative to the standard value (0%). The standards and the measured
data are all the daily average.

Figure 2 shows the lag distribution of the associations between air pollutants and outpa-
tient visits for AR. The strongest effects were found at lag0 for PM2.5, and CO, at lag01 for SO2
and NO, and at lag02 for PM10. No significant effect was found for O3 neither in the single
lag days nor in the cumulative lag days. Specifically, the RR (95%CI) of each IQR increase in
PM2.5, PM10, SO2 and NO2, and the CO concentration corresponded to 1.042 (1.016–1.069),
1.031 (1.002–1.061), 1.027 (1.008–1.047), 1.167 (1.125–1.211) and 1.033 (1.016–1.050) on AR visits,
respectively. We also report the estimated effects per an increase of 10 µg/m3 to demonstrate
the comparable results for the same increase in the pollutant (Table S2). In the sensitivity
analysis, the associations of the air pollutants with AR outpatient visits remained stable when
changing the degree of freedom (df) of time (4–10 per year) (Figure S2), replacing the pollu-
tant concentrations with the nearest monitoring site (Figure S3) and adding the population
(Table S3), season and three-day moving average temperature into the model (Table S4).

Table 2 shows the season-stratified analysis of the short-term effects of air pollution.
The significant higher effects of PM2.5, SO2 and CO were found in warm seasons. A
significant effect of O3 was only found in the pollen season. The associations between
NO2 and AR visits were significant in different season groups, of which the higher effects
occurred in cool and non-pollen seasons. The associations in most of the two-pollutant
models did not change substantially, except that the associations with PM10 and SO2
became insignificant when further adjusted for NO2 or CO (Table S5).
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Figure 2. Relative risks (RRs) of outpatient visits for AR associated with an IQR increase in the air
pollutants at different lag days during 2014–2020. IQR: PM2.5, 55 µg/m3; PM10, 70 µg/m3; SO2:
7 µg/m3; NO2: 27 µg/m3; CO: 0.5 mg/m3; O3: 86 µg/m3.

Table 2. Relative risks (RRs) of outpatient visits for allergic rhinitis associated with an IQR increase
in the air pollutants for different seasons a.

Warm Season Cool Season Pollen Season Non-Pollen Season

PM2.5 1.044 (1.009–1.081) * 1.027 (0.999–1.055) 1.032 (0.992–1.074) 1.010 (0.985–1.035)
PM10 1.020 (0.992–1.048) 1.009 (0.986–1.031) 1.014 (0.985–1.045) 1.012 (0.991–1.033)
SO2 1.030 (1.001–1.059) * 1.011 (0.996–1.025) 1.027 (0.995–1.060) 1.009 (0.995–1.023)
NO2 1.079 (1.031–1.129) * 1.091 (1.058–1.125) * 1.073 (1.020–1.128) * 1.086 (1.057–1.117) *
CO 1.027 (1.005–1.050) * 1.001 (0.985–1.018) 1.019 (0.991–1.047) 1.002 (0.987–1.017)
O3 1.035 (0.998–1.073) 0.950 (0.870–1.037) 1.050 (1.006–1.096) * 0.974 (0.923–1.028)

a the estimate effects were evaluated at lag 0 for the different pollutants.* p value < 0.05.

Table 3 presents the estimated effects associated with the increased IQR of the air
pollutant concentration at lag0 over three specific periods. Although the changes in the
effect estimates were not significant for most of the pollutants, it was possible to find the
patterns in different pollutants over time. For PM2.5, a significant effect of air pollution was
only observed in period 3, while no such association was found in the previous periods.
Differently, significant effects were only observed in period 1 for PM10 and CO. For SO2,
the highest effect was observed in period 3, while the lowest in period 2. Over the study
period, the associations between NO2 and AR visits were generally steady, with the highest
effect reported in period 3 and the lowest reported in period 1. The temporal variations
of the air pollution effects were also explored at lag01 for SO2 and NO2, and at lag02 for
PM10, which considered that the exposure window of the largest effect occurred (Table S6).
However, time changes remain consistent, indicating that the findings of this study were
relatively stable throughout different lag days.

Table 3. Relative risks (RRs) and 95% confidence interval of outpatient visits for AR for an IQR
increase of air pollutants at lag0 during specific periods.

Pollutant Period 1 Period 2 Period 3 p Value a

PM2.5 1.015 (0.978, 1.054) 1.030 (0.987, 1.075) 1.069 (1.005, 1.135) 0.771
PM10 1.037 (1.001, 1.075) 1.025 (0.987, 1.063) 1.008 (0.971,1.046) 0.123
SO2 1.027 (1.009, 1.044) 0.997 (0.966, 1.028) 1.074 (1.003, 1.149) 0.725
NO2 1.086 (1.037, 1.137) 1.111 (1.055, 1.170) 1.214 (1.149, 1.282) 0.051
CO 1.041 (1.017, 1.065) 1.020 (0.991, 1.050) 1.027 (0.990, 1.066) 0.112
O3 0.949 (0.883, 1.019) 1.003 (0.927, 1.087) 1.040 (0.975, 1.105) 0.353

a p value of the linear interaction term between the air pollutants and time periods.
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Figure 3 presents the period-specific assessment of the overlapping 2-year intervals
for each air pollutant. Some increase in effect was observed in PM2.5 from 2014 to 2019,
especially from 2017 to 2019. The impact of PM10 and CO showed a decreasing trend and
the specific-period effects shifted from significant to insignificant. The estimated effect of
SO2 showed the lowest value in 2016–2017 and the overall showed an increasing trend.
The effect estimates of NO2 remained significant for each specific period and showed a
significant increase in effects over time (Mann–Kendall test, Z = 2.2544, p = 0.02417). O3
showed a significant positive effect in 2015–2016 and a negative but insignificant effect in the
subsequent period. Further studies are needed on the effect of O3 on respiratory diseases.
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Figure 4 presents the concentration-response curves for the associations between air
pollutants (at lag0) and AR visits for three specific periods. The curves for PM2.5 for periods
1 and 2 overlapped well, however the curve for period 3 was barely overlapped by both
curves. At concentrations around 100–200 µg/m3, the three curves were approximately
linear, with the highest mean estimate observed in period 3 and the lowest in period 1.
The three curves for PM10 were approximately linear at low concentrations (0–100 µg/m3)
and overlapped each other. However, due to the sparse data at the high concentrations,
caution should be exercised in interpreting the relationship curves. For SO2, the three
curves were approximately linear at low concentrations (0–20 µg/m3) with good overlap,
while at higher concentrations (>20 µg/m3) there was almost no overlap. For NO2, the
three curves were approximately linear at relatively low concentrations (40–100 µg/m3),
but exhibited different patterns at higher concentrations (>100 µg/m3). The mean estimate
line was steeper and had a greater slope in period 3 than in period 1 and period 2. For CO,
the three curves showed different shapes for specific periods. However, the concentration
data were sparse and therefore need to be interpreted with caution. For O3, the three curves
overlapped each other and had almost the same shape.



Int. J. Environ. Res. Public Health 2022, 19, 12529 8 of 13

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 8 of 14 
 

 

concentrations, caution should be exercised in interpreting the relationship curves. For 
SO2, the three curves were approximately linear at low concentrations (0–20 μg/m3) with 
good overlap, while at higher concentrations (>20 μg/m3) there was almost no overlap. For 
NO2, the three curves were approximately linear at relatively low concentrations (40–100 
μg/m3), but exhibited different patterns at higher concentrations (>100 μg/m3). The mean 
estimate line was steeper and had a greater slope in period 3 than in period 1 and period 
2. For CO, the three curves showed different shapes for specific periods. However, the 
concentration data were sparse and therefore need to be interpreted with caution. For O3, 
the three curves overlapped each other and had almost the same shape. 

 
Figure 4. The concentration-response relationship curves of air pollutants versus AR visits for spe-
cific periods. Note: The X-axis represents the moving average concentration at lag0. The Y-axis rep-
resents the log relative risk (RR). The lines show the mean estimates, and the ribbons show the 95% 
confidence intervals. 

4. Discussion 
In this study, we examined the changes in the short-term effects of air pollutants on 

AR visits from 2014 to 2020 in Beijing, China. We observed significant and positive rela-
tionships between the air pollutants concentration and AR visits. To our knowledge, this 
is the first study to investigate the temporal trends in the effect of air pollution on the 
outpatient visits for AR in such a time-series analysis. Between 2014 and 2020, the annual 
average concentrations decreased for ambient air pollutants. However, air pollution asso-
ciated with AR risks continued to be significant during the study period. Furthermore, 
despite the remarkable reductions in ambient air pollutant concentrations, AR outpatient 
risks associated with PM2.5, SO2 and NO2 remained significant in recent years, even with 
a significant increase in NO2 over time. This result was further elucidated by the exposure-
response relationship curves in specific periods. 

Figure 4. The concentration-response relationship curves of air pollutants versus AR visits for
specific periods. Note: The X-axis represents the moving average concentration at lag0. The Y-axis
represents the log relative risk (RR). The lines show the mean estimates, and the ribbons show the
95% confidence intervals.

4. Discussion

In this study, we examined the changes in the short-term effects of air pollutants
on AR visits from 2014 to 2020 in Beijing, China. We observed significant and positive
relationships between the air pollutants concentration and AR visits. To our knowledge,
this is the first study to investigate the temporal trends in the effect of air pollution on
the outpatient visits for AR in such a time-series analysis. Between 2014 and 2020, the
annual average concentrations decreased for ambient air pollutants. However, air pollution
associated with AR risks continued to be significant during the study period. Furthermore,
despite the remarkable reductions in ambient air pollutant concentrations, AR outpatient
risks associated with PM2.5, SO2 and NO2 remained significant in recent years, even with a
significant increase in NO2 over time. This result was further elucidated by the exposure-
response relationship curves in specific periods.

During our study period, substantial declines in the annual mean concentrations of
air pollutants were found from 2014 to 2020, especially for PM2.5, PM10 and NO2. The
concentrations presented a relatively high level during period 1 and period 2. Following
2018, the emissions of pollutants decreased continuously due to the implementation of the
control measures in the area. Except for PM2.5, the concentrations of pollutants were below
the NAAQS in the late stage of period 3. Consistently, Maji et al. [25] reported that Beijing’s
air quality has seen a dramatic improvement over 2014–2018, which can be attributable
to the enforcement of the Air Pollution Prevention and Control Action Plan (APPCAP)
regulation. One study showed that air pollution control measures implemented in China
reduced the PM2.5 pollution in Beijing by an average of 11% during 2008–2019 [26]. The air
quality improvement achievable under the Clean Air Action Plan (CAAP) in Beijing were
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evaluated, with the largest reduction of 87% in SO2 emissions, which was associated with
strong coal combustion controls [27].

Our time-series study supported the comprehensive epidemiological evidence re-
garding the short-term effects of ambient air pollution on AR outpatient visits. In the
present study, the significant effects on AR visits were found for all pollutants except O3.
These associations were generally similar to those reported in previous studies [28–31].
Consistently, we found a comparatively strong association between NO2 and AR visits,
with an RR of 1.167 (1.125–1.211). According to several studies, the NO2 levels are a strong
indicator of negative health effects [32]. The strong associations between NO2 and AR
have been observed in several systematic reviews and meta-analyses [13,33]. The exact
mechanisms that underlie the associations between air pollutants and AR are not well
established. NO2 may damage the nasal mucosa, impair the clearance of mucocele and
cause the production of eosinophils, which cause airway hypersensitivity reactions [34,35].
Moreover, the observed differences between the air pollutants and AR might be due to
the homogeneity of the materials adsorbed on pollutants, and this homogeneity will vary
across the regions [36].

Previous studies have typically reported constant risk estimates per unit increase in air
pollutants over the study period. However, few studies have looked into whether the risks
of air pollution vary over time, particularly in developing countries [5,6,8]. Therefore, the
temporal variability of air pollutants effects needs further study, as air pollution mixtures
may vary over time as a result of policy implementation, changes in weather patterns
and emission sources [37]. Additionally, biomass fuels and vehicle emissions play a role
in the formation of secondary pollutants. Although pollutant concentrations have fallen,
secondary products of air pollution may change, causing health effects [38]. Scientific
knowledge on the temporal changes in air pollution impacts may be needed to assess
whether current policy actions are sufficient to effectively control ambient air pollution to
reduce public health concerns.

Several previous studies have explored the temporal variation in the short-term
effects of air pollution, but the findings remained inconsistent. A study conducted in
Shanghai over 12 years found that the short-term effects on emergency department visits
for NO2 remained stable and even increased for PM10 [8]. Despite non-homogenous
decreasing trends in annual concentrations during the study period, the effects of PM10
on cardiovascular and respiratory admissions remained significant and even showed an
increasing trend for cardiovascular admissions [5]. Despite drastic reductions in annual
levels, the risk of cardiovascular and respiratory mortality associated with PM2.5 remained
significant and even increasing [7]. However, a study conducted in Italy reported that the
effect estimates for a fixed increment in each exposure were generally consistent, even
the mean concentrations of air pollutants have decreased over the last two decades [6]. A
study conducted in Guangzhou over more than a decade reported that the attributable
fraction of NO2 on total mortality decreased from 1.38% to 0.43%, while the average annual
concentrations decreased during 2006–2016 [39]. In contrast, one study reported a trend
toward the increased risk of daily nonaccidental deaths from NO2, despite the decreasing
concentration of NO2 [40].

In the present study, the increased risk of AR associated with PM2.5 observed in the
region during the recent period might be explained by the changes in the composition of
the PM mixture over time. The exposure-response relationship curves for period 1 and
period 2 almost coincided, but there was little overlap with the curves for period 3. This
suggests that the exposure-response association in period 3 is distinct from that of period
1 and period 2. Therefore, we speculate that the period-specific variations might be due
to the changes in the PM2.5 composition and toxicity [41]. Nitrated aromatic compounds
(NACs), a group of pollutants bound to particles, attracted widespread attention owing
to their remarkable toxicity and allergenicity [42]. Shi et al. reported that the annual
levels of primary nitrated polycyclic aromatic hydrocarbons (NPAHs) in Beijing decreased
by 46.3–54.8% from 2012–2013 to 2016–2018, but the secondary species did not change
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significantly [43]. One study separated and identified six sources of PM2.5 in Beijing and
found that the BaPeq toxicity, due to coal combustion, may pose both long-term and short-
term health risks [44]. The implementation of air pollution control measures could be
effective in reducing industrial sources, but might be less effective for some sources of
PM2.5. Thus, despite the reduction of the PM2.5 concentrations during the study period, the
estimated effect on AR visits has increased in recent years.

This study found a significant association between SO2 and AR in period 1 and period
3, but not in period 2. In developing countries, SO2 remains a major component of air
pollution. Despite decreasing concentrations, studies have found an increased risk of
mortality from SO2 [6,45]. Unlike PM10, SO2 exposure is not easily intervened by adaptive
behaviors such as wearing a mask or staying indoors. In addition, we found that SO2
impact estimates decreased or even shifted to a positive effect after adjusting for NO2
throughout the period of this study. However, adjusting for SO2 did not change the impact
of NO2. NO2 reduced the effect of SO2 with AR, possibly because both pollutants are
emitted from the same industrial or transportation source [46]. SO2 may act as a substitute
for other toxic components of NO2. Han et al. reported that the influences of SO2 on deaths
from respiratory diseases displayed downward trends with the decreasing pollution levels
in Beijing [47]. However, one study found a significant relationship between the increased
acute air pollution episodes and the increased hospitalizations for acute exacerbations of
chronic respiratory diseases with ambient concentrations of SO2 decreased by 68% over
2013–2017 [9]. Various factors, such as demographic characteristics and spatial variations,
may be modified to further investigate the health effect of SO2 in the future.

In the present study, the short-term effect of NO2 on AR outpatient visits remained
stable and significant over time, and even a significant increasing trend was found, despite
the non-homogenous decrease in the NO2 concentration. NO2 is known to be a good
indicator of traffic pollutants, such as polycyclic aromatic hydrocarbons and volatile organic
compounds, which have negative health effects [48,49]. One possible explanation for the
study findings is that the composition of the traffic emissions may have changed or even the
overall toxicity of the traffic-sources of air pollutants has become stronger [48]. Although
we found trends of an increased risk for PM2.5, SO2 and NO2, the changes in the energy
structure, fuel composition and the regional demographics may have contributed to the
variability around the central tendency for the mean risk estimates over time. We considered
the population factor in the sensitivity analysis, while questions about energy structure
and fuel composition need to be further explored in future studies.

The present study has some limitations. Firstly, the daily average concentrations
of pollutants were obtained from air monitoring stations, and we assume that the same
level of exposure to air pollutants was shared by residents. The data might not be a good
representation of exposure for the total population, resulting in exposure assessment errors.
Furthermore, considering the limited availability of monitoring stations, the exposure
assessment may be biased. To assess the air pollutant concentrations in unmonitored areas,
a spatial interpolation to quantify individual outdoor exposures is an effective method.
Secondly, this study was conducted in only one city, and the results might not apply to
any other city because the components that influence the overall toxicity of pollutants may
differ. Thirdly, the lack of this information limits us to evaluate the composition variation
of air pollutants and their potential toxicity on AR visits. In addition, information about
indoor allergens such as house dust mite, cockroach and furry pet allergens in subjects was
not available, which may also vary over time. Additional studies are required to further
investigate this issue. However, the strength of this study is noteworthy because temporal
variations of the short-term effects of air pollution on AR outpatient visits in Beijing, China
were observed. The effects of PM2.5 and SO2 were significant in the last period and the
effect of NO2 showed significant and stable effects over the entire period, even though
the concentrations continued to decline. This finding could lead to a better understanding
of the sources of pollutants that are the most economical factors to control in terms of
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reducing health effects. The results of this study can be taken as scientific evidence to guide
provincial policy decisions.

5. Conclusions

Our study suggested that short-term exposure to air pollution could significantly
increase AR risk in Beijing. Despite the substantial reductions in the ambient concentrations,
the short-term effects of PM2.5 and SO2 remained strong and that of NO2 even increased
over time in Beijing. These findings suggest further investigation of the temporal changes
in short-term effects of air pollution in China, and continued air pollution control efforts to
reduce air pollution and protect the public in the future.
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