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Abstract: The advent of the digital age has accelerated the transformation and upgrading of the
traditional medical diagnosis pattern. With the rise of the concept of digital health, the emerg-
ing information technologies, such as machine learning (ML) and data mining (DM), have been
extensively applied in the medical and health field, where the construction of disease prediction
models is an especially effective method to realize auxiliary medical diagnosis. However, the existing
related studies mostly focus on the prediction analysis for a certain disease, using models with
which it might be challenging to predict other diseases effectively. To address the issues existing in
the aforementioned studies, this paper constructs four novel strategies to achieve a self-adaptive
disease prediction process, i.e., the hunger-state foraging strategy of producers (PHFS), the parallel
strategy for exploration and exploitation (EEPS), the perturbation–exploration strategy (PES), and the
parameter self-adaptive strategy (PSAS), and eventually proposes a self-adaptive disease prediction
model with applied universality, strong generalization ability, and strong robustness, i.e., multi-
strategies optimization-based kernel extreme learning machine (MsO-KELM). Meanwhile, this paper
selects six different real-world disease datasets as the experimental samples, which include the Breast
Cancer dataset (cancer), the Parkinson dataset (Parkinson’s disease), the Autistic Spectrum Disorder
Screening Data for Children dataset (Autism Spectrum Disorder), the Heart Disease dataset (heart
disease), the Cleveland dataset (heart disease), and the Bupa dataset (liver disease). In terms of the
prediction accuracy, the proposed MsO-KELM can obtain ACC values in analyzing these six diseases
of 94.124%, 84.167%, 91.079%, 72.222%, 70.184%, and 70.476%, respectively. These ACC values have
all been increased by nearly 2–7% compared with those obtained by the other models mentioned in
this paper. This study deepens the connection between information technology and medical health by
exploring the self-adaptive disease prediction model, which is an intuitive representation of digital
health and could provide a scientific and reliable diagnostic basis for medical workers.

Keywords: machine learning; disease prediction model; auxiliary diagnosis; digital health; medical
informatics

1. Introduction

With the rapid development of the economy and technology, public demands for
improving healthcare are getting stronger and how to utilize information technology to
achieve auxiliary diagnosis has received increasing social attention [1–4]. Moreover, the
spread of the concept of digital health [5–7] promotes deep integration between information
technology and healthcare, where a large number of machine learning (ML) models and
data mining (DM) methods have been introduced into the traditional medical diagnosis pat-
tern. To date, there are various existing studies adopting the technologies of ML and DM to
predict diseases, such as predicting stable MCI patients [8], forecasting nuanced yet signifi-
cant MT errors of clinical symptoms [9], survival risk prediction for esophageal cancer [10],
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conducting breast cancer diagnosis [11], preconception prediction for gestational diabetes
mellitus [12], predicting Alzheimer’s disease [13], and heart disease prediction [14,15].

Disease prediction analysis based on ML and DM is a research trend in medical infor-
matics. These research findings could provide a scientific and reliable diagnostic basis for
medical workers and provide an effective technical support for the early intervention of
related diseases. For example, Derevitskii et al. construct a hybrid predictive modelling
for Thyrotoxic atrial fibrillation, which could be used as part of a decision support system
for medical staff who work with thyrotoxicosis patients [16]. Similarly, Muhammad et al.
develop a machine leaning predictive model for coronary artery disease (CAD), which
could be used to develop an expert system for diagnosis of CAD patients in Nigeria [17].
Nevertheless, these aforementioned studies still contain a critical limitation, i.e., the exist-
ing proposed models mainly focus on a certain disease and mostly neglect expanding the
application’s universality for predicting various other diseases, which means that these
models may not obtain accurate prediction results in analyzing those other diseases. Fur-
thermore, a model with better performance when predicting different diseases would be
more significant for the medical workers and the auxiliary diagnosis process. Therefore,
constructing a disease prediction model with self-adaptive ability, strong generalization
ability, and strong robustness is the motivation to explore the technology-oriented pathway
for auxiliary diagnosis in digital health age.

There may be large differences among the disease data from the real world, such
as different attribute dimensions and different inner structures. In fact, an ideal disease
prediction model which meets current medical needs should combine prediction accuracy
with broad applicability. To this end, we take the kernel extreme learning machine (KELM)
as the base model, which has advantages in generalization ability and robustness, and we
introduce an improved swarm intelligence optimization algorithm to optimize the KELM,
i.e., sparrow search algorithm (SSA) with the enhanced global searching ability (EGSSA). Fi-
nally, we design a novel disease prediction model, i.e., multi-strategies optimization-based
kernel extreme learning machine (MsO-KELM). The main contributions and innovations of
the MsO-KELM are highlighted as follows:

(1) To effectively predict various diseases, we utilize the EGSSA to optimize the
base model by designing four novel strategies, i.e., the hunger-state foraging strategy
of producers (PHFS), the parallel strategy for exploration and exploitation (EEPS), the
perturbation–exploration strategy (PES), and the parameter self-adaptive strategy (PSAS).
These strategies can enhance the prediction accuracy of the model and allow the model to
be applied to various diseases.

(2) To verify the prediction performance of the proposed MsO-KELM, we adopt
six different disease datasets as the experimental samples, consisting of the Breast Cancer
dataset (cancer), the Parkinson dataset (Parkinson’s disease), the Autistic Spectrum Disorder
Screening Data for Children dataset (Autism Spectrum Disorder), the Heart Disease dataset
(heart disease), the Cleveland dataset (heart disease), and the Bupa dataset (liver disease),
and we evaluate the prediction performance by four different evaluation metrics, i.e., the
ACC, the sensitivity, the specificity, and the MCC. Notably, the ACC is the most significant
metric to evaluate the prediction accuracy.

(3) To elaborate the details of the MsO-KELM, we conduct two-stage experiments in
this paper. The first experiment is mainly to prove the better optimization performance
of the EGSSA, which is the basis for achieving the self-adaptive characteristic of the MsO-
KELM. The second experiment is mainly to compare the MsO-KELM with other state-of-
the-art prediction models.

The self-adaptive prediction process of the MsO-KELM in analyzing the different
diseases is shown in Figure 1.
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2. Preparation
2.1. Disease Data Description

In this paper, we select six different real-world disease datasets as the experiment
samples (these data are available at https://archive.ics.uci.edu/mL/index.php, accessed
on 6 June 2022), i.e., the Breast Cancer dataset (cancer), the Parkinson dataset (Parkinson’s
disease), the Autistic Spectrum Disorder Screening Data for Children dataset (Autism
Spectrum Disorder), the Heart Disease dataset (heart disease), the Cleveland dataset (heart
disease), and the Bupa dataset (liver disease). The reasons for selecting these six disease
datasets are shown as follows:

• They are the common diseases in the real world;
• These disease data are extensively utilized by numerous investigators;
• These disease data have different internal structures and different diagnosis indicators.

The characteristics of these six disease datasets are shown in Table 1.

Table 1. The characteristics of the six disease datasets.

Datasets Data Volume Attributes Missing Values Positive Volume Negative Volume

Breast cancer 699 9 16 458 241
Heart disease 270 13 0 150 120

Parkinson 195 23 0 147 48
Autistic Spectrum Disorder Screening Data 292 21 4 141 151

Cleveland 303 13 4 139 164
Bupa 345 6 0 145 200

2.2. The Base Disease Classifier—Kernel Extreme Learning Machine

The KELM is an excellent classifier which has advantages in generalization ability and
learning speed [18–22]. Since its emergence, the KELM has been extensively studied by
numerous investigators for problems such as hyperspectral image classification [23], data
classification in enterprise cloud data [24], time-varying distributed parameter systems [25],
and intrusion detection [26]. Notably, there are two significant parameters in the original
KELM, i.e., the k value (kernel parameter) and the c value (regularization coefficient), which
easily fall into local optimum in the original searching process [27,28] and can influence the
final prediction accuracy. The main calculation processes of KELM are shown as follows:

https://archive.ics.uci.edu/mL/index.php
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Objective_function_ELM = hid(x)× H_outpT ×
(

I_matrix
Coe f f icient_r

+ H_outp× H_outpT
)−1
× L (1)

kernel_matrix = H_outp×H_outpT= hid(xi)× hid
(
xj
)
= k

(
xi, xj

)
(2)

Objective_function_KELM =

 k(x, x1)
...

k(x, xn)


T

×
(

I_matrix
Coe f f icient_r

+ kernel_matrix
)−1
× L (3)

where the Objective_function_ELM and Objective_function_KELM indicate the learning ob-
jective function of ELM and that of KELM, respectively. The hid(x) and H_outp represent
the feature mapping matrix of hidden layer [18], I_matrix indicates the identity matrix,
Cofficient_r indicates the regularization coefficient, L indicates the expectation matrix, and
k(xi, xj) indicates the kernel function. In this paper, we adopt the Gaussian kernel function,
and the kernel parameter k indicates the kernel width.

2.3. The Base Optimization Tool—Sparrow Search Algorithm

In order to improve the prediction performance of the base-classifier, we take SSA
as a base-optimizer and conduct the improvements on SSA to design a more effective
optimizer, i.e., the EGSSA. As a recent meta-heuristic algorithm [29], SSA has been applied
in many real-world problems [30–34] because of the advantages in convergence speed and
exploitation ability. There are two significant population roles in the optimization process
of SSA, i.e., producers and scroungers, in which the producers could be regarded as the
leader with a higher fitness [30]. The location update processes of these two roles are shown
as follows:

posit+1
i, d =

{
posit

i, d · exp
(

−i
α·itermax

)
, R < ST

posit
i,d + Random ·Matrix, R ≥ ST

(4)

posit+1
i, d =

 Random · exp
(

posiworst−positi, d
i2

)
, i > n/2

posit+1
a +

∣∣∣posit
i, d − posit+1

a

∣∣∣ ·V+ ·Matrix, i ≤ n/2
(5)

posit+1
i, d =


posit

best + β ·
∣∣∣positi, d − posit

best

∣∣∣ f itnessi > f itnessg

positi, d + ψ

(
|positi, d−positworst|

( f itnessi− f itnessw)+ξ

)
f itnessi = f itnessg

(6)

Equation (4) describes the location update process of producer, the posit+1
i, d indicates

the current location of the ith sparrow individual in the dth dimensional space when the
populations are carrying out the tth iteration [30], t and i indicate the current iterations
and current sparrow individual, respectively. The α, R, and Random are the random
parameters set manually, the ST is a warning threshold, the values of which could be set
in (0.5, 1) [30]. The Matrix indicates a row vector where each element value is set to 1 and
the dimensions are d [30]. Equation (5) describes the location update process of scrounger,
the posit+1

a indicates the optimal location searched by producer, the posiworst indicates the
worst location in the current iteration [30], the n is the sparrow population size, and the
V indicates a row vector where each element value is set to 1 or −1 randomly and the
dimensions are d. Equation (6) describes the location update process of detection sparrow,
the posit

best indicates the optimal location when the populations are carrying out the tth

iteration, and the β, ψ, and ξ indicate adjustment parameters [30].
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2.4. The Introduction of Evaluation Metrics

To evaluate the disease prediction performance of the proposed MsO-KELM, we adopt
the four evaluation metrics in this paper, i.e., classification accuracy (ACC, the value range
is from 0 to 1.0) [18], sensitivity (the value range is from 0 to 1.0) [18], specificity (the value
range is from 0 to 1.0) [18], and Mathews correlation coefficient (MCC, the value range is
from −1.0 to 1.0) [18]. The ACC emphasizes the number of samples which are correctly
predicted (the most significant evaluation metric to measure the classification performance
of a model), the sensitivity shows the ability to correctly predict a positive sample among all
positive samples, the specificity indicates the ability to correctly predict a negative sample
among all negative samples, and the MCC mainly shows the reliability of a model (the
closer the MCC value is to 1, the more accurate and effective the model is). The calculation
processes of these four evaluation metrics are shown as follows:

ACC =
TP + TN

TP + TN + FP + FN
(7)

sensitivity =
TP

TP + FN
(8)

speci f icity =
TN

TN + FP
(9)

MCC =
TP× TN − FP× FN√

(TN + FP)× (TN + FN)× (TP + FN)× (TP + FP)
(10)

where the TP indicates the number of samples with the positive prediction result and the
positive label, the TN indicates that the number of samples with the negative prediction
result and the negative label, the FP indicates that the number of samples with the positive
prediction result and the negative label, and the FN indicates that the number of samples
with the negative prediction result and the positive label.

3. The Proposed Methodology

The core idea of the proposed methodology is to construct a self-adaptive disease
prediction model with high accuracy, strong generalization ability, and strong robustness.
Therefore, we select an excellent base-classifier (KELM) and design an enhanced meta-
heuristic algorithm (EGSSA) as the optimizer to finally construct the self-adaptive disease
prediction model, i.e., the MsO-KELM. Specifically, there are four novel strategies in the
MsO-KELM, i.e., the hunger-state foraging strategy of producers (PHFS), the parallel
strategy for exploration and exploitation (EEPS), the perturbation–exploration strategy
(PES), and the parameter self-adaptive strategy (PSAS), where the EGSSA consists of the
PHFS, the EEPS, and the PES. In addition, the PSAS will act on a parameter acquisition
mechanism which is formed by combining the EGSSA with the KELM. In this section, the
technological details of the MsO-KELM will be discussed as follows:

3.1. Foraging Strategy of Producers in Hunger-State (PHFS)

In the original SSA, the producers could be regarded as the leader roles in the sparrow
populations, which are responsible for searching for food-rich positions and providing forag-
ing directions for all scroungers, and the scroungers could follow the producers to achieve
the foraging process. In that case, if the producers could expand the searching range to find
a safer and more adequate position, it would provide more possibilities for scroungers to
improve the foraging rate and finally enhance the global convergence performance.

However, the existing location update mechanism mainly focuses on the exploitation
ability (local searching ability) of the original SSA, which may cause the producers trapping
into the local optimum situation. To address this issue and enhance the exploration ability
(global searching ability), we introduce the hunger games search algorithm (HGS) [35,36] into
the original SSA to construct the PHFS for expanding the searching range of optimal position.
Specifically, the PHFS is a hybrid strategy, which retains the advantage in exploitation ability
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of the original SSA while combining the exploration approach of the HGS algorithm with the
location update mechanism of the producers.

In the original SSA, the location update process of producers is shown as Equation (4), and
the key calculation function affecting the convergence efficiency is shown in Equation (11):

function(i) = exp
(

−i
α · itermax

)
(11)

where the α and itermax are the parameters set manually. It is clearly shown that Equation (11)
has a descending trend and will eventually converge to 0, which means the producers can
easily repeat the searching behavior at a certain position with the number of individuals
increasing, and eventually fall into a local optimum. By contrast, the HGS has a significant
advantage in exploration ability, and the hungry feature function affecting the convergence
efficiency is shown in Equation (12):

function(j) = 1− exp(−|par_manual − j|) (12)

where the par_maunal is a parameter set manually. It is clearly shown that Equation (12)
is not a single ascending or descending trend, but the function trend is affected by the
parameter value. When the inputting value is less than the par_maunal value, the function
could have an ascending trend with the inputting value increasing. Moreover, when the
inputting value is larger than the par_maunal value, the function could have a descending
trend with the inputting value increasing. Therefore, introducing the hungry feature of
HGS into the searching behavior of producers could expand the searching range of optimal
position, and ultimately enhance the exploration ability of SSA.

The searching processes based on Equations (11) and (12) are shown in Figure 2.
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According to Figure 2, we could find that the original location update method can
easily search in a local space (like the red region in Figure 2a), but the hungry roles of HGS
could search in a relatively global region (like Figure 2b). Therefore, the PHFS could be
described as follows:

posi_newt+1
i, d =

(
1− exp

(
−
∣∣∣posi_currentbest − posi_currentt

i, d

∣∣∣)) · rand · o (13)

where the meaning of posi_newt+1
i, d is similar to that of posit+1

i, d in Equation (4), the posi_currentt
i,d

indicates the location of last iteration, the rand is a random number, and the o is an adjustment
parameter which is set to 2 in this paper.
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3.2. Parallel Strategy for Exploration and Exploitation (EEPS)

As shown in Equation (4), we could find that the location update process of producers
consists of two different stages. The PHFS acts on stage 1 (R < ST), and the EEPS described
below is going to act on stage 2 (R ≥ ST). According to the principle of SSA, the producers
would move to a safer place when perceiving danger coming. In the new location update
process, the producers would search globally with a normally distributed random manner
and eventually converge to the optimal position. Nevertheless, there are still some limi-
tations in this moving process, i.e., (i) the existing searching range could continue to be
expanded; and (ii) the single global searching process could affect the convergence accuracy.
Therefore, we design the EEPS to balance the exploration process and exploitation process
in this paper. In fact, the balancing effect of EEPS is able to dynamically adjust the position
searching approach of the producers, i.e., by promoting the producers exploring the whole
space with a global searching approach for expanding the searching range of the potential
optimal position in the early stage, while exploiting the current area with a local searching
approach when a certain area is close to the optimal position.

Similarly, inspired by the literature [37,38] related to HGS, we introduce the pattern of
food-approaching into the location update process of producers in stage 2, and construct
the balance factor shown in Equation (14):

balance_ f actoriter = (2para− 1)×
(

δ×
(

1− iter
iter_max

))
(14)

where the meaning of para is a random number in the range of (0, 1), the δ indicates a
control parameter (it is set to 2), the iter indicates the current number of iterations, and the
iter_max indicates the maximum number of iterations.

Subsequently, the EEPS, which combines the balance factor with the original location
update mechanism, is shown in Equation (15):

posit+1
i, d =

(
(2para− 1)×

(
δ×

(
1− iter

iter_max

)))
·∗
(

posit
best − posit

i, d

)
+ Random ·Matrix R ≥ ST (15)

where the meaning of the parameters are similar to Equations (4), (6) and (14).
The comparison results of the original searching process and the searching process

based on after-EEPS are shown in Figure 3a,b, respectively.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 7 of 23 
 

 

( )( )1 1t t
i , d best i ,dposi_new exp posi _ current posi _ current rand ο+ = − − − ⋅ ⋅  (13)

where the meaning of posi_newt+1 
i, d is similar to that of posit+1 

i, d in Equation (4), the posi_current
t 
i,d indicates the location of last iteration, the rand is a random number, and the o is an 
adjustment parameter which is set to 2 in this paper. 

3.2. Parallel Strategy for Exploration and Exploitation (EEPS) 
As shown in Equation (4), we could find that the location update process of 

producers consists of two different stages. The PHFS acts on stage 1 (R < ST), and the EEPS 
described below is going to act on stage 2 (R ≥ ST). According to the principle of SSA, the 
producers would move to a safer place when perceiving danger coming. In the new 
location update process, the producers would search globally with a normally distributed 
random manner and eventually converge to the optimal position. Nevertheless, there are 
still some limitations in this moving process, i.e., (i) the existing searching range could 
continue to be expanded; and (ii) the single global searching process could affect the 
convergence accuracy. Therefore, we design the EEPS to balance the exploration process 
and exploitation process in this paper. In fact, the balancing effect of EEPS is able to 
dynamically adjust the position searching approach of the producers, i.e., by promoting 
the producers exploring the whole space with a global searching approach for expanding 
the searching range of the potential optimal position in the early stage, while exploiting 
the current area with a local searching approach when a certain area is close to the optimal 
position. 

Similarly, inspired by the literature [37,38] related to HGS, we introduce the pattern 
of food-approaching into the location update process of producers in stage 2, and 
construct the balance factor shown in Equation (14): 

( )2 1 1iter
iterbalance _ factor para

iter _ max
δ
  

= − × × −  
  

 (14)

where the meaning of para is a random number in the range of (0, 1), the δ indicates a 
control parameter (it is set to 2), the iter indicates the current number of iterations, and the 
iter_max indicates the maximum number of iterations. 

Subsequently, the EEPS, which combines the balance factor with the original location 
update mechanism, is shown in Equation (15): 

( ) ( )1 2 1 1t t t
i ,d best i ,d

iterposi para posi posi Random Matrix R ST
iter _ max

δ+ ∗   
= − × × − ⋅ − + ⋅ ≥       

 (15)

where the meaning of the parameters are similar to Equations (4), (6) and (14). 
The comparison results of the original searching process and the searching process 

based on after-EEPS are shown in Figure 3a and Figure 3b, respectively. 

  
(a) (b) 

Figure 3. The comparison result figures of searching processes. (a) the original searching process;
(b) the searching process based on after-EEPS.

In Figure 3, the points in the same color are the positions of all producers in one itera-
tion, while different colors indicate different iterations. Figure 3a shows that the original
location update mechanism of producers in stage 2 could achieve a global searching process
to some extent, but it lacks the local exploitation behavior and the global searching range
is not large enough, which can finally affect the convergence accuracy. As a comparison,
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Figure 3b shows that the EEPS not only expands the global searching range, but retains the
exploitation ability, which can be clearly seen in the color changing process of points.

3.3. Perturbation–Exploration Strategy (PES)

Notably, the PHFS and EEPS only enhance the exploration ability of producer popula-
tions, which means that there remains the possibility of trapping into local optimum for
the whole sparrow populations. Therefore, we introduce the Cauchy distribution opera-
tor [39–41] to construct the PES to further expand the searching range and avoid the local
optimum situation in late iterations.

In the PES, we adopt the Cauchy distribution operator to obtain a variant of the current
optimal individual. Moreover, we compare the fitness of the current optimal individual
with that of the variant to save the better solution. In this paper, the probability density
function of Cauchy distribution operator is shown as follows:

cauchy(k) =
1
π
· a

a + k2 (16)

where the a is a parameter (in this paper, the a is equal to 1), and the k indicates a variable,
the value range of which is from negative infinity to positive infinity. Based on the Cauchy
distribution operator, we could obtain the perturbation–exploration process as follows:{

r = tan((random− 0.5)× π)
posinew

best = posit
best + r× posit

best
(17)

where the r is a Cauchy distribution random variable generating function.

3.4. Parameter Self-Adaptive Strategy (PSAS)

As we all know, obtaining the appropriate parameter values (k and c) is most significant
for the original KELM. However, the existing method of parameter taking is to adopt grid
searching, which not only increases the computational cost but also affects the final results
of parameter obtaining. To achieve a self-adaptive process of these two parameters, we
propose the PSAS via combining the EGSSA with the KELM.

Specifically, there are four significant stages in the PSAS, and the technical details are as
follows: (i) achieving the location initialization process of sparrow populations (this paper
adopts the random generation method of the original SSA); (ii) the core parameters (k and c)
could be automatically obtained by adopting the EGSSA; (iii) to eliminate the randomness
of these two obtained parameters, this paper utilizes 10-fold cross-validation [18] to re-
obtain the optimal parameter values; and (iv) the re-obtained optimal parameter values are
introduced into the original KELM, and finally the MsO-KELM is formed to perform the
prediction performance on six different disease datasets based on 10-fold cross-validation.

In summary, the novel MsO-KELM model utilizes the four major strategies, i.e., PHFS,
EEPS, PES, and PSAS, to achieve improved prediction performance, and the specific details
of the MsO-KELM are shown in Algorithm 1.
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Algorithm 1: MsO-KELM model
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GWO a = [2, 0] [43] 

4. Results

In this section, we mainly analyze the results of two experiments, i.e., the performance
analysis of the EGSSA and the disease prediction evaluation of the MsO-KELM. To ensure
the reasonableness of these two experiments, we set the population size and the maximum
iterations of each experiment group to (30, 500) and (10, 50), respectively. Importantly, each
algorithm in experiment 1 runs 30 times independently on each function to minimize the
effects of algorithmic randomness [30]. Moreover, all experiments are conducted in the
same running environment, i.e., Intel Core i7, 2.40 GHz, 8 GB RAM, MATLAB2021a, and
the IBM SPSS Statistics 20.

4.1. Experiment 1: The Performance Analysis of EGSSA

In this paper, we select nine different swarm intelligence algorithms to conduct the
comparison analysis, which contain seven classical algorithms, i.e., SSA [29], PSO [42],
GWO [43], HHO [44], LSA [45], WOA [46], and FPA [47], and two classical swarm intelli-
gence variants, i.e., SCACSSA [48] and HHOHGSO [49]. The parameters which exist in
both EGSSA and SSA are set to the same values, and the specific parameter settings in this
experiment are shown in Table 2.
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Table 2. The parameter values of different experiments.

Algorithm Parameter Values Reference

SSA ST = 0.8, PD = 20%, SD = 10% [29]
PSO c1 = 2, c2 = 2, Vmax = 10 [42]

GWO a = [2, 0] [43]
HHO No input parameters required [44]
LSA ctime = 10 [45]

WOA a = [2 0], a2 = [−2 −1], b = 1 [46]
FPA p = 0.5 [47]

SCACSSA ST = 0.8, PD = 20%, SD = 10%, a = 2 [48]
HHOHGSO α = 2, β = 2, K = 1, M1 = 0.1, M2 = 0.2 [49]

4.1.1. Performance Analysis Based on 23 Classical Benchmark Functions

The 23 classical benchmark functions are frequently adopted to evaluate the perfor-
mance of optimization algorithms, which could be divided into three categories, i.e., the
unimodal functions, the multimodal functions, and the fixed-dimension multimodal func-
tions [30]. The specific characteristics of these 23 benchmark functions are shown in Table 3,
and the experimental results of the aforementioned algorithms based on the 23 functions
are shown in Table 4.

Table 3. Characteristics of the 23 classical benchmark functions [30].

Function Function Equationuation Dim Range Optimal

Unimodal

F1 f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

F2 f2(x) = ∑n
i=1|xi |+ ∏n

i=1|xi | 30 [−10, 10] 0

F3 f3(x) = ∑n
i=1

(
∑i

j−1 xj

)2 30 [−100, 100] 0

F4 f4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5 f5(x) = ∑n−1
i=1

[
100
(
xi+1 − xi

2
)2

+ (xi − 1)2
]

30 [−30, 30] 0

F6 f6(x) = ∑n
i=1([xi + 0.5])2 30 [−100, 100] 0

F7 f7(x) = ∑n
i=1 ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

Multimodal

F8 f8(x) = ∑n
i=1 −xisin

(√
|xi |
)

30 [−500, 500] −418.9829 × 5

F9 f9(x) = ∑n
i=1
[
x2

i − 10cos(2πxi) + 10
]

30 [−5.12, 5.12] 0

F10 f10(x) = −20exp
(
−0.2

√
1
n ∑n

i=1 xi

)
− exp

( 1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e 30 [−32, 32] 0

F11 f11(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

F12

f12(x) =
π
n

{
10sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 µ(xi , 10, 100, 4)
}

30 [−50, 50] 0yi = 1 + xi+1
4

µ(xi , a, k, m) =

k(xi − a)m xi > a
0 − a < xi < a
k(−xi − a)m xi < −a

F13

f13(x) =

0.1
{

sin2(3πx1) + ∑n
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 µ(xi , 5, 100, 4)

30 [−50, 50] 0
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Table 3. Cont.

Function Function Equationuation Dim Range Optimal

Fixed-dimension
multimodal

F14 f14(x) =

(
1

500 + ∑25
j=1

1

j+∑2
i=1

(
xi−aij

)6

)−1

2 [−65, 65] 1

F15 f15(x) = ∑11
i=1

[
ai −

x1(bi
2+bi x2)

bi
2+bi x3+x4

]2

4 [−5, 5] 0.00030

F16 f16(x) = 4x1
2 − 2.1xi

4 + 1
3 x1

6 + x1x2 − 4x2
2 + 4x2

4 2 [−5, 5] −1.0316

F17 f17(x) =
(

x2 − 5.1
4π2 x1

2 + 5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 2 [−5, 5] 0.398

F18
f18(x) =

[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x1

2 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

F19 f19(x) = −∑4
i=1 ciexp

(
−

3
∑

j=1
aij
(
xi − pij

)2

)
3 [1, 3] −3.86

F20 f20(x) = −∑4
i=1 ciexp

(
−

6
∑

j=1
aij
(
xi − pij

)2

)
6 [0, 1] −3.32

F21 f21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

F22 f22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

F23 f23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363

In this experiment, considering that all the swarm intelligence optimization algorithms
should perform multiple iterations, we utilize the mean value (avg) and the standard
deviation value (std) to measure the performance [30], where the avg value is the key
metric. The avg value being closer to the optimal value means the algorithm has a better
performance in solving the current function. In addition, the std value could show the
stability of this algorithm in solving the current function. Notably, when there are the same
avg values between two algorithms, the std value could be the second evaluation metric.

According to the results in Table 4, we find that the EGSSA could obtain the best
results in solving the benchmark functions F1, F2, F3, F4, F5, F6, F9, F10, F11, F12, F13, F16,
F17, F18, F19, F20, F21, F22, and F23 among all 10 compared algorithms. Furthermore, in
solving the unimodal functions F1-F4, the EGSSA not only obtains the optimal values, but
also has the most stable performance. In solving the multimodal functions F9, F11, and the
fixed-dimension multimodal functions F16-F19, the EGSSA can obtain the optimal values,
while solving the multimodal functions F10, F12, F13, and the fixed-dimension multimodal
functions F20–F23, the EGSSA can obtain the best results among all 10 compared algorithms
and show more stable performance than others.

Apart from the comparison results table, we could verify the validity of EGSSA based
on the convergence curve figure. In Figure 4, the F5 and F6 are unimodal functions,
the F12 and F13 are multimodal functions, and the F22 and F23 are the fixed-dimension
multimodal functions. According to Figure 4, it indicates that the EGSSA can obtain the
fastest convergence among the 10 compared algorithms in solving the benchmark functions
F6, F12, F13, F22, and F23. When solving the function F5, the convergence speed of EGSSA
is similar to that of HHO, SSA, and SCASCSSA during the first 100 iterations, which is
significantly superior to others, and the EGSSA can obtain the fastest convergence among
the 10 compared algorithms after 100 iterations. In summary, the EGSSA enhances the
overall convergence performance compared with the original SSA, other classical swarm
intelligence optimization algorithms, and other variants. Therefore, the EGSSA could
provide good support for the construction of the subsequent disease prediction model.
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Table 4. The results based on the 23 classical benchmark functions (retaining two decimal places).

EGSSA SSA PSO GWO HHO LSA WOA FPA SCACSSA HHOHGSO

F1
avg 0.00 × 1000 1.30 × 10−49 6.25 × 10−01 1.19 × 10−27 1.61 × 10−93 1.11 × 10−03 7.15 × 10−72 4.60 × 10−01 6.17 × 10−16 5.82 × 10−268

std 0.00 × 1000 7.11 × 10−49 3.36 × 10−01 1.64 × 10−27 8.22 × 10−93 5.93 × 10−03 3.90 × 10−71 1.39 × 10−01 3.35 × 10−15 0.00 × 1000

F2
avg 0.00 × 1000 5.36 × 10−27 3.26 × 1001 1.28 × 10−16 2.34 × 10−48 2.48 × 10−01 9.69 × 10−51 2.80 × 1000 1.53 × 10−07 9.93 × 10−160

std 0.00 × 1000 2.90 × 10−26 5.50 × 1001 1.32 × 10−16 1.25 × 10−47 3.80 × 10−01 4.84 × 10−50 3.64 × 10−01 6.56 × 10−07 5.44 × 10−159

F3
avg 0.00 × 1000 2.61 × 10−29 3.37 × 1002 1.43 × 10−05 7.32 × 10−64 1.37 × 1002 4.99 × 1004 3.28 × 10−01 1.76 × 10−08 2.17 × 10−309

std 0.00 × 1000 1.18 × 10−28 9.30 × 1001 3.34 × 10−05 4.01 × 10−63 8.69 × 1001 1.66 × 1004 1.02 × 10−01 5.08 × 10−08 0.00 × 1000

F4
avg 0.00 × 1000 3.66 × 10−26 2.77 × 1000 7.27 × 10−07 9.66 × 10−49 9.62 × 1000 5.04 × 1001 3.67 × 10−01 9.26 × 10−26 5.81 × 10−147

std 0.00 × 1000 1.99 × 10−25 4.30 × 10−01 1.06 × 10−06 4.89 × 10−48 4.25 × 1000 2.86 × 1001 4.42 × 10−02 4.86 × 10−25 3.18 × 10−146

F5
avg 2.56 × 10−02 4.61 × 10−01 6.55 × 1002 2.73 × 1001 1.01 × 10−02 1.21 × 1002 2.80 × 1001 7.96 × 1001 1.03 × 1000 2.73 × 1001

std 9.08 × 10−02 7.42 × 10−01 4.83 × 1002 8.13 × 10−01 9.64 × 10−03 1.84 × 1002 4.42 × 10−01 1.81 × 1001 1.56 × 1000 6.72 × 10−01

F6
avg 9.24 × 10−06 3.05 × 10−02 6.67 × 10−01 6.92 × 10−01 2.90 × 10−04 7.36 × 10−05 3.94 × 10−01 1.23 × 1000 2.35 × 10−02 1.13 × 10−03

std 1.38 × 10−05 1.64 × 10−02 3.37 × 10−01 3.65 × 10−01 6.00 × 10−04 3.71 × 10−04 2.32 × 10−01 3.99 × 10−01 1.14 × 10−02 1.27 × 10−03

F7
avg 1.11 × 10−04 7.70 × 10−04 2.52 × 1000 2.25 × 10−03 1.90 × 10−04 3.05 × 10−02 3.59 × 10−03 5.52 × 10−01 6.41 × 10−02 9.76 × 10−05

std 1.46 × 10−04 6.79 × 10−04 2.80 × 1000 1.12 × 10−03 2.11 × 10−04 8.45 × 10−03 5.59 × 10−03 2.76 × 10−01 5.67 × 10−02 9.71 × 10−05

F8
avg −8.10 × 1003 −7.79 × 1003 −6.63 × 1003 −5.89 × 1003 −1.26 × 1004 −7.57 × 1003 −1.02 × 1004 −4.26 × 1001 −6.04 × 1003 −1.13 × 1004

std 2.23 × 1003 3.03 × 1003 7.63 × 1002 1.07 × 1003 1.40 × 1000 7.48 × 1002 1.70 × 1003 2.65 × 1000 7.52 × 1002 1.19 × 1003

F9
avg 0.00 × 1000 0.00 × 1000 1.43 × 1002 1.92 × 1000 0.00 × 1000 6.92 × 1001 0.00 × 1000 4.22 × 1001 3.46 × 10−10 0.00 × 1000

std 0.00 × 1000 0.00 × 1000 3.74 × 1001 3.27 × 1000 0.00 × 1000 1.60 × 1001 0.00 × 1000 1.93 × 1001 1.53 × 10−09 0.00 × 1000

F10
avg 8.88 × 10−16 8.88 × 10−16 1.85 × 1000 1.04 × 10−13 8.88 × 10−16 2.90 × 1000 3.85 × 10−15 1.38 × 1000 2.35 × 10−07 8.88 × 10−16

std 0.00 × 1000 0.00 × 1000 7.06 × 10−01 1.83 × 10−14 0.00 × 1000 8.34 × 10−01 2.30 × 10−15 2.31 × 10−01 1.28 × 10−06 0.00 × 1000

F11
avg 0.00 × 1000 0.00 × 1000 6.22 × 10−02 4.49 × 10−03 0.00 × 1000 7.22 × 10−03 5.86 × 10−03 1.66 × 10−02 3.20 × 10−11 0.00 × 1000

std 0.00 × 1000 0.00 × 1000 4.06 × 10−02 8.49 × 10−03 0.00 × 1000 1.09 × 10−02 3.21 × 10−02 5.72 × 10−03 1.76 × 10−10 0.00 × 1000

F12
avg 1.43 × 10−07 1.00 × 10−02 1.17 × 1000 3.97 × 10−02 1.01 × 10−05 6.76 × 10−01 2.70 × 10−02 6.34 × 10−02 2.15 × 10−03 1.00 × 10−04

std 1.18 × 10−07 3.16 × 10−02 2.30 × 1000 1.49 × 10−02 1.27 × 10−05 1.41 × 1000 1.61 × 10−02 2.52 × 10−02 1.27 × 10−03 8.86 × 10−05

F13
avg 6.36 × 10−05 2.53 × 10−01 4.69 × 10−01 7.10 × 10−01 8.67 × 10−05 6.36 × 10−02 5.62 × 10−01 1.07 × 1000 1.41 × 10−01 1.88 × 10−02

std 1.74 × 10−04 1.31 × 10−01 3.07 × 10−01 2.93 × 10−01 1.02 × 10−04 1.32 × 10−01 3.28 × 10−01 3.07 × 10−01 1.06 × 10−01 1.72 × 10−02

F14
avg 9.95 × 1000 1.09 × 1001 3.33 × 1000 4.52 × 1000 1.26 × 1000 1.36 × 1000 3.00 × 1000 1.27 × 1001 1.27 × 1001 1.03 × 1000

std 4.04 × 1000 3.83 × 1000 2.81 × 1000 4.22 × 1000 9.32 × 10−01 1.02 × 1000 3.06 × 1000 1.34 × 10−14 9.61 × 10−11 1.81 × 10−01

F15
avg 3.58 × 10−04 4.79 × 10−04 8.90 × 10−04 3.05 × 10−03 3.81 × 10−04 5.94 × 10−04 1.17 × 10−03 3.08 × 10−04 4.85 × 10−04 4.08 × 10−04

std 8.86 × 10−05 1.46 × 10−04 1.33 × 10−04 6.91 × 10−03 2.13 × 10−04 3.25 × 10−04 2.43 × 10−03 1.19 × 10−06 2.36 × 10−04 2.40 × 10−04

F16
avg −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000

std 3.00 × 10−10 4.74 × 10−16 5.30 × 10−16 1.45 × 10−08 3.95 × 10−10 6.58 × 10−16 9.97 × 10−10 1.53 × 10−09 2.47 × 10−03 7.54 × 10−13

F17
avg 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 3.98 × 10−01 7.78 × 1000 3.98 × 10−01 3.98 × 10−01

std 2.09 × 10−04 8.68 × 10−09 0.00 × 1000 6.52 × 10−07 2.87 × 10−06 0.00 × 1000 1.26 × 10−05 2.71 × 10−15 1.23 × 10−06 2.63 × 10−10

F18
avg 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000 3.00 × 1000

std 2.85 × 10−05 9.65 × 10−15 4.41 × 10−15 4.39 × 10−05 3.54 × 10−07 2.56 × 10−15 9.64 × 10−05 2.14 × 10−10 6.60 × 10−04 1.03 × 10−11

F19
avg −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000 −3.86 × 1000

std 1.36 × 10−04 2.46 × 10−05 2.36 × 10−15 1.91 × 10−03 5.19 × 10−03 2.67 × 10−15 7.91 × 10−03 6.33 × 10−09 2.77 × 10−05 1.09 × 10−05

F20
avg −3.29 × 1000 −3.26 × 1000 −3.27 × 1000 −3.27 × 1000 −3.07 × 1000 −3.27 × 1000 −3.20 × 1000 −3.28 × 1000 −3.25 × 1000 −3.25 × 1000

std 5.33 × 10−02 6.84 × 10−02 6.03 × 10−02 7.31 × 10−02 1.26 × 10−01 5.92 × 10−02 1.56 × 10−01 3.26 × 10−02 6.29 × 10−02 8.31 × 10−02

F21
avg −9.85 × 1000 −8.24 × 1000 −7.14 × 1000 −9.31 × 1000 −5.21 × 1000 −7.72 × 1000 −8.65 × 1000 −5.06 × 1000 −8.79 × 1000 −6.58 × 1000

std 5.45 × 10−01 2.46 × 1000 3.38 × 1000 1.92 × 1000 8.73 × 10−01 3.13 × 1000 2.85 × 1000 2.94 × 10−07 2.29 × 1000 2.38 × 1000

F22
avg −1.02 × 1001 −9.16 × 1000 −6.19 × 1000 −1.02 × 1001 −5.23 × 1000 −8.11 × 1000 −6.97 × 1000 −5.09 × 1000 −8.81 × 1000 −6.68 × 1000

std 4.27 × 10−01 2.29 × 1000 3.39 × 1000 9.70 × 10−01 8.01 × 10−01 3.34 × 1000 3.36 × 1000 2.36 × 10−07 2.48 × 1000 2.48 × 1000

F23
avg −1.02 × 1001 −8.73 × 1000 −8.59 × 1000 −1.01 × 1001 −5.48 × 1000 −7.27 × 1000 −6.77 × 1000 −5.13 × 1000 −9.64 × 1000 −6.39 × 1000

std 7.11 × 10−01 2.59 × 1000 3.34 × 1000 1.75 × 1000 1.34 × 1000 3.85 × 1000 3.23 × 1000 3.42 × 10−07 2.05 × 1000 2.33 × 1000
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Figure 4. The convergence curves of EGSSA and other algorithms. (a) the convergence curves on F5; 
(b) the convergence curves on F6; (c) the convergence curves on F12; (d) the convergence curves on 
F13; (e) the convergence curves on F22; (f) the convergence curves on F23. 

4.1.2. Statistical Test 
To show the statistical significance of the proposed EGSSA, we introduce the 

Wilcoxon rank-sum test into this section [30]. The better one of any two compared 
algorithms could be identified by comparing the obtained significance level value (p-
value) with 0.05. The p-value being less than 0.05 indicates that the former (the algorithm 
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Figure 4. The convergence curves of EGSSA and other algorithms. (a) the convergence curves on F5;
(b) the convergence curves on F6; (c) the convergence curves on F12; (d) the convergence curves on
F13; (e) the convergence curves on F22; (f) the convergence curves on F23.

4.1.2. Statistical Test

To show the statistical significance of the proposed EGSSA, we introduce the Wilcoxon
rank-sum test into this section [30]. The better one of any two compared algorithms could
be identified by comparing the obtained significance level value (p-value) with 0.05. The
p-value being less than 0.05 indicates that the former (the algorithm to be verified) has more
significant advantages than the latter (the algorithm being compared); otherwise, there is
no significant difference between the latter and the former. The results of the statistical test
are shown in Table 5.
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Table 5. The results of the statistical test.

Algorithm Better Equationual Worst W+ W− p-Value

EGSSA versus SSA 16 7 0 136 0 0.000438
EGSSA versus PSO 18 4 1 176 14 0.001116
EGSSA versus GWO 17 5 1 155 16 0.002472
EGSSA versus HHO 13 7 3 95 41 0.162673
EGSSA versus LSA 18 4 1 176 14 0.001116
EGSSA versus WOA 16 5 2 140 31 0.017621
EGSSA versus FPA 19 3 1 209 1 0.000103
EGSSA versus SCACSSA 19 4 0 190 0 0.000132
EGSSA versus
HHOHGSO 12 8 3 88 32 0.111769

According to Table 5, we find that the EGSSA could obtain 16 better statistical test
results among 23 benchmark functions compared with the original SSA; meanwhile, it
could also obtain 7 statistical test results which are equal to those of the original SSA. For
the comparison results between the EGSSA and the other six classical swarm intelligence
algorithms, it is clearly shown that the p-values of EGSSA versus PSO, EGSSA versus GWO,
EGSSA versus HHO, EGSSA versus LSA, EGSSA versus WOA, and EGSSA versus FPA are
much less than 0.05, and the EGSSA could obtain 16–19 better benchmark function results
than the aforementioned compared algorithms. When comparing the EGSSA with the
HHO, although the p-value is larger than 0.05, the number of benchmark functions which
could obtain better results is still significantly higher than with the HHO. Similarly, for the
comparison results between the EGSSA and the SCACSSA, we could find that the EGSSA
has significant advantages compared with SCACSSA, and the former could obtain 19 better
solving results among 23 benchmark functions while it could also obtain four statistical test
results which are equal to those of the SCACSSA. When comparing the EGSSA with the
HHOHGSO, although the p-value is larger than 0.05, the number of benchmark functions
for which better results could be obtained is still significantly higher than the HHOHGSO.

4.2. Experiment 2: The Prediction Analysis in Solving Different Disease Datasets

This section is mainly to verify the prediction performance of the proposed MsO-
KELM in solving the aforementioned six disease datasets. Furthermore, we select another
five different optimization algorithms-based KELM variants to be the compared group,
i.e., GWO-KELM, HHO-KELM, FPA-KELM, WOA-KELM, and SSA-KELM. The prediction
results of different algorithms on four different evaluation metrics are shown in Tables 6–11
and Figures 5–7.

Table 6. The prediction results on disease dataset Breast Cancer.

Breast Cancer

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ACC

GWO-KELM 0.93695 0.03847 0.86765 0.95588 0.95588 0.97059 0.92647 0.86765 0.92647 0.98529 0.95588 0.95775
HHO-KELM 0.92237 0.04657 0.83824 0.92647 0.94118 0.97059 0.95588 0.85294 0.88235 0.98529 0.94118 0.92958
FPA-KELM 0.92531 0.04580 0.85294 0.92647 0.94118 0.98529 0.95588 0.85294 0.88235 0.98529 0.94118 0.92958

WOA-KELM 0.92237 0.04657 0.83824 0.92647 0.94118 0.97059 0.95588 0.85294 0.88235 0.98529 0.94118 0.92958
SSA-KELM 0.92237 0.04657 0.83824 0.92647 0.94118 0.97059 0.95588 0.85294 0.88235 0.98529 0.94118 0.92958
MsO-KELM 0.94124 0.03785 0.85294 0.95588 0.95588 0.97059 0.92647 0.89706 0.94118 0.95588 0.97059 0.98592

Sensitivity

GWO-KELM 0.92628 0.06586 0.79412 0.92593 0.92308 1.00000 0.96970 1.00000 0.89474 1.00000 0.90909 0.84615
HHO-KELM 0.88751 0.11278 0.73529 0.92593 0.92308 0.97368 1.00000 1.00000 0.68421 1.00000 0.86364 0.76923
FPA-KELM 0.88539 0.12182 0.76471 0.92593 0.92308 1.00000 1.00000 1.00000 0.68421 1.00000 0.86364 0.69231

WOA-KELM 0.88751 0.11278 0.73529 0.92593 0.92308 0.97368 1.00000 1.00000 0.68421 1.00000 0.86364 0.76923
SSA-KELM 0.88751 0.11278 0.73529 0.92593 0.92308 0.97368 1.00000 1.00000 0.68421 1.00000 0.86364 0.76923
MsO-KELM 0.94434 0.06814 0.76471 0.96296 0.92308 0.97368 0.9697 1.00000 0.89474 1.00000 0.95455 1.00000
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Table 6. Cont.

Breast Cancer

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

Specificity

GWO-KELM 0.94212 0.04838 0.94118 0.97561 0.97619 0.93333 0.88571 0.82692 0.93878 0.98246 0.97826 0.98276
HHO-KELM 0.93944 0.04847 0.94118 0.92683 0.95238 0.96667 0.91429 0.80769 0.95918 0.98246 0.97826 0.96552
FPA-KELM 0.94117 0.04965 0.94118 0.92683 0.95238 0.96667 0.91429 0.80769 0.95918 0.98246 0.97826 0.98276

WOA-KELM 0.93944 0.04847 0.94118 0.92683 0.95238 0.96667 0.91429 0.80769 0.95918 0.98246 0.97826 0.96552
SSA-KELM 0.93944 0.04847 0.94118 0.92683 0.95238 0.96667 0.91429 0.80769 0.95918 0.98246 0.97826 0.96552
MsO-KELM 0.94539 0.03753 0.94118 0.95122 0.97619 0.96667 0.88571 0.86538 0.95918 0.94737 0.97826 0.98276

MCC

GWO-KELM 0.86068 0.07295 0.74338 0.90771 0.90635 0.94163 0.85652 0.72748 0.82083 0.94899 0.89852 0.85542
HHO-KELM 0.82433 0.09736 0.69128 0.84779 0.87546 0.94035 0.91548 0.70501 0.69626 0.94899 0.86440 0.75824
FPA-KELM 0.82916 0.09867 0.71714 0.84779 0.87546 0.97051 0.91548 0.70501 0.69626 0.94899 0.86440 0.75053

WOA-KELM 0.82433 0.09736 0.69128 0.84779 0.87546 0.94035 0.91548 0.70501 0.69626 0.94899 0.86440 0.75824
SSA-KELM 0.82433 0.09736 0.69128 0.84779 0.87546 0.94035 0.91548 0.70501 0.69626 0.94899 0.86440 0.75824
MsO-KELM 0.87099 0.071906 0.71714 0.90886 0.90635 0.94035 0.85652 0.77589 0.85392 0.86276 0.93281 0.95528

Table 7. The prediction results on disease dataset Parkinson.

Parkinson

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ACC

GWO-KELM 0.81000 0.06633 0.75000 0.75000 0.80000 0.75000 0.90000 0.85000 0.80000 0.95000 0.75000 0.80000
HHO-KELM 0.82667 0.08206 0.80000 0.65000 0.80000 0.95000 0.85000 0.80000 0.90000 0.75000 0.90000 0.86667
FPA-KELM 0.82833 0.06103 0.75000 0.80000 0.90000 0.75000 0.80000 0.80000 0.80000 0.85000 0.90000 0.93333

WOA-KELM 0.81667 0.05164 0.85000 0.85000 0.80000 0.80000 0.85000 0.75000 0.85000 0.85000 0.70000 0.86667
SSA-KELM 0.80333 0.08021 0.90000 0.85000 0.90000 0.65000 0.85000 0.70000 0.80000 0.85000 0.80000 0.73333
MsO-KELM 0.84167 0.07042 0.85000 0.95000 0.85000 0.90000 0.75000 0.85000 0.70000 0.80000 0.90000 0.86667

Sensitivity

GWO-KELM 0.85991 0.09367 0.75000 0.75000 0.84615 0.76471 1.00000 0.92308 0.78571 1.00000 0.93333 0.84615
HHO-KELM 0.88423 0.10233 0.88235 0.80000 0.76471 1.00000 0.93333 0.92857 0.93333 0.66667 0.93333 1.00000
FPA-KELM 0.88071 0.09250 0.76923 0.81250 0.92857 0.70588 0.87500 0.92857 0.84615 0.94118 1.00000 1.00000

WOA-KELM 0.86809 0.10697 0.93750 0.82353 1.00000 0.69231 0.92857 0.81250 1.00000 0.88235 0.68750 0.91667
SSA-KELM 0.86521 0.10720 0.93750 1.00000 0.93750 0.66667 0.93750 0.73333 0.93750 0.92857 0.82353 0.75000
MsO-KELM 0.89596 0.068495 0.87500 0.93333 0.84615 0.88889 0.80000 0.87500 0.80000 1.00000 0.94118 1.00000

Specificity

GWO-KELM 0.65286 0.17666 0.75000 0.75000 0.71429 0.66667 0.60000 0.71429 0.83333 0.80000 0.20000 0.50000
HHO-KELM 0.64417 0.27719 0.33333 0.20000 1.00000 0.87500 0.60000 0.50000 0.80000 1.00000 0.80000 0.33333
FPA-KELM 0.65119 0.18505 0.71429 0.75000 0.83333 1.00000 0.50000 0.50000 0.71429 0.33333 0.66667 0.50000

WOA-KELM 0.67500 0.18703 0.50000 1.00000 0.42857 1.00000 0.66667 0.50000 0.57143 0.66667 0.75000 0.66667
SSA-KELM 0.61500 0.14092 0.75000 0.70000 0.75000 0.60000 0.50000 0.60000 0.25000 0.66667 0.66667 0.66667
MsO-KELM 0.67571 0.24685 0.75000 1.00000 0.85714 1.00000 0.60000 0.75000 0.60000 0.20000 0.66667 0.33333

MCC

GWO-KELM 0.50579 0.19972 0.41931 0.41931 0.56044 0.33612 0.72761 0.66339 0.57907 0.86603 0.19245 0.29417
HHO-KELM 0.53338 0.24618 0.21569 0.00000 0.57248 0.89872 0.57735 0.49099 0.73333 0.57735 0.73333 0.53452
FPA-KELM 0.54365 0.14232 0.47076 0.49099 0.76190 0.51450 0.37500 0.49099 0.56044 0.32673 0.76376 0.68139

WOA-KELM 0.53987 0.12579 0.49010 0.64169 0.57248 0.66375 0.62994 0.28868 0.68139 0.49010 0.35722 0.58333
SSA-KELM 0.47749 0.18407 0.68750 0.73380 0.68750 0.23570 0.49010 0.30261 0.25000 0.62994 0.40423 0.35355
MsO-KELM 0.57140 0.14677 0.57735 0.88192 0.68474 0.66667 0.37796 0.57735 0.40825 0.39736 0.60784 0.53452

Table 8. The prediction results on disease dataset Autistic Spectrum Disorder Screening Data for Children.

Autistic Spectrum Disorder Screening Data for Children

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ACC

GWO-KELM 0.88665 0.04423 0.89655 0.93103 0.89655 0.82759 0.86207 0.89655 0.93103 0.79310 0.89655 0.93548
HHO-KELM 0.88643 0.04925 0.89655 0.89655 0.82759 0.93103 0.86207 0.86207 0.79310 0.89655 0.93103 0.96774
FPA-KELM 0.89377 0.06262 0.86207 0.93103 0.82759 0.79310 0.93103 1.00000 0.96552 0.89655 0.82759 0.90323

WOA-KELM 0.89422 0.05088 0.96552 0.89655 0.86207 0.89655 0.93103 0.89655 0.89655 0.96552 0.79310 0.83871
SSA-KELM 0.84917 0.05838 0.86207 0.93103 0.79310 0.96552 0.82759 0.79310 0.79310 0.86207 0.79310 0.87097
MsO-KELM 0.91079 0.05621 0.89655 0.96552 0.89655 0.93103 0.96552 0.93103 0.93103 0.75862 0.89655 0.93548

Sensitivity

GWO-KELM 0.98606 0.02807 1.00000 0.92308 1.00000 1.00000 1.00000 1.00000 1.00000 0.93750 1.00000 1.00000
HHO-KELM 0.91786 0.08472 0.93750 0.92857 0.80000 1.00000 0.78947 0.92308 0.80000 1.00000 1.00000 1.00000
FPA-KELM 0.98619 0.02764 1.00000 1.00000 1.00000 1.00000 0.92857 1.00000 1.00000 1.00000 0.93333 1.00000

WOA-KELM 0.91246 0.08829 0.93750 0.92857 0.90909 0.93333 1.00000 0.86667 0.85714 1.00000 0.69231 1.00000
SSA-KELM 0.84079 0.09657 0.83333 1.00000 0.72222 1.00000 0.87500 0.71429 0.75000 0.81250 0.81818 0.88235
MsO-KELM 0.98424 0.03198 0.90909 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.93333

Specificity

GWO-KELM 0.78695 0.09798 0.82353 0.93750 0.78571 0.64286 0.71429 0.76923 0.86667 0.61538 0.85714 0.85714
HHO-KELM 0.86932 0.05986 0.84615 0.86667 0.85714 0.87500 1.00000 0.81250 0.78571 0.83333 0.86667 0.95000
FPA-KELM 0.80771 0.10983 0.77778 0.84615 0.70588 0.64706 0.93333 1.00000 0.93333 0.75000 0.71429 0.76923

WOA-KELM 0.87851 0.07869 1.00000 0.86667 0.83333 0.85714 0.87500 0.92857 0.93333 0.92857 0.87500 0.68750
SSA-KELM 0.86322 0.05392 0.88235 0.89474 0.90909 0.92857 0.76923 0.86667 0.82353 0.92308 0.77778 0.85714
MsO-KELM 0.83379 0.11179 0.88889 0.93333 0.83333 0.88889 0.93333 0.83333 0.71429 0.56250 0.81250 0.93750
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Table 8. Cont.

Autistic Spectrum Disorder Screening Data for Children

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

MCC

GWO-KELM 0.78620 0.08291 0.81168 0.86058 0.80917 0.69437 0.75094 0.80484 0.87082 0.59433 0.78954 0.87574
HHO-KELM 0.77964 0.09857 0.79130 0.79524 0.65714 0.87082 0.75094 0.73207 0.58571 0.80917 0.87082 0.93318
FPA-KELM 0.80578 0.10725 0.75523 0.86726 0.70588 0.65679 0.86190 1.00000 0.93333 0.79844 0.66696 0.81200

WOA-KELM 0.79398 0.10018 0.93303 0.79524 0.72436 0.79427 0.87082 0.79524 0.79427 0.93303 0.58146 0.71807
SSA-KELM 0.69917 0.11668 0.71569 0.86349 0.61301 0.93303 0.65052 0.58943 0.57353 0.73207 0.58146 0.73950
MsO-KELM 0.82899 0.08910 0.78616 0.93333 0.80917 0.86726 0.93333 0.86349 0.80917 0.60467 0.81250 0.87083

Table 9. The prediction results on disease dataset Heart Disease.

Heart Disease

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ACC

GWO-KELM 0.69630 0.08733 0.66667 0.59259 0.81481 0.70370 0.70370 0.59259 0.66667 0.81481 0.81481 0.59259
HHO-KELM 0.69259 0.08772 0.66667 0.59259 0.85185 0.66667 0.70370 0.59259 0.66667 0.81481 0.81481 0.59259
FPA-KELM 0.70741 0.07115 0.70370 0.66667 0.77778 0.70370 0.74074 0.66667 0.66667 0.81481 0.77778 0.55556

WOA-KELM 0.70370 0.09799 0.66667 0.62963 0.81481 0.74074 0.70370 0.59259 0.66667 0.77778 0.88889 0.55556
SSA-KELM 0.66296 0.07305 0.59259 0.59259 0.77778 0.66667 0.66667 0.59259 0.62963 0.66667 0.81481 0.62963
MsO-KELM 0.72222 0.07813 0.70370 0.70370 0.85185 0.77778 0.74074 0.66667 0.70370 0.81481 0.70370 0.55556

Sensitivity

GWO-KELM 0.57690 0.15682 0.60000 0.42857 0.90000 0.57143 0.57143 0.25000 0.63636 0.63636 0.63636 0.53846
HHO-KELM 0.56976 0.15853 0.60000 0.42857 0.90000 0.50000 0.57143 0.25000 0.63636 0.63636 0.63636 0.53846
FPA-KELM 0.63198 0.13636 0.70000 0.57143 0.80000 0.64286 0.64286 0.33333 0.54545 0.72727 0.81818 0.53846

WOA-KELM 0.60937 0.16683 0.60000 0.50000 0.90000 0.64286 0.57143 0.25000 0.63636 0.63636 0.81818 0.53846
SSA-KELM 0.42951 0.07305 0.40000 0.35714 0.70000 0.50000 0.50000 0.16667 0.54545 0.27273 0.54545 0.30769
MsO-KELM 0.68853 0.11780 0.80000 0.64286 0.80000 0.78571 0.64286 0.41667 0.63636 0.72727 0.81818 0.61538

Specificity

GWO-KELM 0.80042 0.09743 0.70588 0.76923 0.76471 0.84615 0.84615 0.86667 0.68750 0.93750 0.93750 0.64286
HHO-KELM 0.80042 0.09743 0.70588 0.76923 0.82353 0.84615 0.84615 0.86667 0.68750 0.93750 0.93750 0.64286
FPA-KELM 0.77350 0.09368 0.70588 0.76923 0.76471 0.76923 0.84615 0.93333 0.75000 0.87500 0.75000 0.57143

WOA-KELM 0.78702 0.10368 0.70588 0.76923 0.76471 0.84615 0.84615 0.86667 0.68750 0.87500 0.93750 0.57143
SSA-KELM 0.85548 0.09534 0.70588 0.84615 0.82353 0.84615 0.84615 0.93333 0.68750 0.93750 1.00000 0.92857
MsO-KELM 0.75307 0.12057 0.64706 0.76923 0.88235 0.76923 0.84615 0.86667 0.75000 0.87500 0.62500 0.50000

MCC

GWO-KELM 0.39037 0.17811 0.30062 0.20966 0.64242 0.43207 0.43207 0.14924 0.32024 0.61751 0.61751 0.18232
HHO-KELM 0.38385 0.17766 0.30062 0.20966 0.70314 0.36690 0.43207 0.14924 0.32024 0.61751 0.61751 0.18232
FPA-KELM 0.41245 0.14183 0.39445 0.34642 0.54880 0.41437 0.49728 0.34112 0.30062 0.61281 0.55874 0.10989

WOA-KELM 0.40322 0.20024 0.30062 0.27857 0.64242 0.49728 0.43207 0.14924 0.32024 0.53300 0.76890 0.10989
SSA-KELM 0.32280 0.15446 0.10847 0.23179 0.52353 0.36690 0.36690 0.15811 0.23295 0.29077 0.64466 0.30390
MsO-KELM 0.44557 0.15081 0.43207 0.41437 0.68235 0.55495 0.49728 0.32127 0.38636 0.61281 0.43823 0.11602

Table 10. The prediction results on disease dataset Cleveland.

Cleveland

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ACC

GWO-KELM 0.67862 0.09806 0.70000 0.50000 0.76667 0.70000 0.73333 0.60000 0.76667 0.83333 0.60000 0.58621
HHO-KELM 0.67862 0.09806 0.70000 0.50000 0.76667 0.70000 0.73333 0.60000 0.76667 0.83333 0.60000 0.58621
FPA-KELM 0.68506 0.09372 0.60000 0.63333 0.70000 0.63333 0.86667 0.66667 0.76667 0.76667 0.70000 0.51724

WOA-KELM 0.68839 0.09241 0.60000 0.63333 0.70000 0.66667 0.86667 0.66667 0.76667 0.76667 0.70000 0.51724
SSA-KELM 0.64517 0.08481 0.60000 0.63333 0.60000 0.63333 0.83333 0.63333 0.7000 0.73333 0.53333 0.55172
MsO-KELM 0.70184 0.08741 0.70000 0.60000 0.70000 0.70000 0.86667 0.66667 0.76667 0.80000 0.66667 0.55172

Sensitivity

GWO-KELM 0.67421 0.12466 0.72727 0.50000 0.92857 0.66667 0.69231 0.57143 0.78571 0.72727 0.64286 0.50000
HHO-KELM 0.67421 0.12466 0.72727 0.50000 0.92857 0.66667 0.69231 0.57143 0.78571 0.72727 0.64286 0.50000
FPA-KELM 0.59256 0.15431 0.45455 0.57143 0.71429 0.40000 0.69231 0.64286 0.85714 0.54545 0.71429 0.33333

WOA-KELM 0.59923 0.14712 0.45455 0.57143 0.71429 0.46667 0.69231 0.64286 0.85714 0.54545 0.71429 0.33333
SSA-KELM 0.45252 0.14078 0.27273 0.42857 0.50000 0.33333 0.61538 0.57143 0.71429 0.45455 0.35714 0.27778
MsO-KELM 0.63519 0.11134 0.54545 0.57143 0.71429 0.53333 0.69231 0.64286 0.85714 0.63636 0.71429 0.44444

Specificity

GWO-KELM 0.68668 0.10728 0.68421 0.50000 0.62500 0.73333 0.76471 0.62500 0.75000 0.89474 0.56250 0.72727
HHO-KELM 0.68668 0.10728 0.68421 0.50000 0.62500 0.73333 0.76471 0.62500 0.75000 0.89474 0.56250 0.72727
FPA-KELM 0.77013 0.11023 0.68421 0.68750 0.68750 0.86667 1.00000 0.68750 0.68750 0.89474 0.68750 0.81818

WOA-KELM 0.77013 0.11023 0.68421 0.68750 0.68750 0.86667 1.00000 0.68750 0.68750 0.89474 0.68750 0.81818
SSA-KELM 0.81800 0.12426 0.78947 0.81250 0.68750 0.93333 1.00000 0.68750 0.68750 0.89474 0.68750 1.00000
MsO-KELM 0.75906 0.11886 0.78947 0.62500 0.68750 0.86667 1.00000 0.68750 0.68750 0.89474 0.62500 0.72727

MCC

GWO-KELM 0.36245 0.19057 0.39747 0.00000 0.57309 0.40089 0.45701 0.19643 0.53452 0.63585 0.20536 0.22391
HHO-KELM 0.36245 0.19057 0.39747 0.00000 0.57309 0.40089 0.45701 0.19643 0.53452 0.63585 0.20536 0.22391
FPA-KELM 0.37742 0.17392 0.13876 0.26068 0.40089 0.30151 0.74863 0.33036 0.54833 0.47969 0.40089 0.16449

WOA-KELM 0.38364 0.17219 0.13876 0.26068 0.40089 0.36370 0.74863 0.33036 0.54833 0.47969 0.40089 0.16449
SSA-KELM 0.30108 0.17525 0.07087 0.26245 0.19094 0.33333 0.68958 0.26068 0.40089 0.39796 0.04725 0.35681
MsO-KELM 0.40608 0.16562 0.34238 0.19643 0.40089 0.42426 0.74863 0.33036 0.54833 0.55849 0.33929 0.17172
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Table 11. The prediction results on disease dataset Bupa.

Liver Disorders

Indicator Algorithms Mean Std 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#

ACC

GWO-KELM 0.65571 0.12527 0.34286 0.74286 0.68571 0.71429 0.54286 0.62857 0.82857 0.68571 0.68571 0.70000
HHO-KELM 0.67810 0.04583 0.65714 0.74286 0.74286 0.71429 0.71429 0.62857 0.65714 0.60000 0.65714 0.66667
FPA-KELM 0.66429 0.10405 0.42857 0.74286 0.68571 0.71429 0.54286 0.65714 0.82857 0.65714 0.68571 0.70000

WOA-KELM 0.68095 0.04349 0.65714 0.74286 0.74286 0.71429 0.71429 0.65714 0.65714 0.60000 0.65714 0.66667
SSA-KELM 0.66714 0.07286 0.54286 0.77143 0.68571 0.71429 0.62857 0.65714 0.74286 0.54286 0.68571 0.70000
MsO-KELM 0.70476 0.05216 0.68571 0.71429 0.77143 0.77143 0.65714 0.65714 0.77143 0.62857 0.65714 0.73333

Sensitivity

GWO-KELM 0.84923 0.09508 0.80000 0.72727 0.94444 0.72414 0.94118 0.90909 0.92308 0.94444 0.70370 0.87500
HHO-KELM 0.80101 0.08283 0.80000 0.72727 0.83333 0.72414 1.00000 0.81818 0.76923 0.72222 0.74074 0.87500
FPA-KELM 0.84368 0.09089 0.80000 0.72727 0.94444 0.72414 0.94118 0.90909 0.92308 0.88889 0.70370 0.87500

WOA-KELM 0.81010 0.08898 0.80000 0.72727 0.83333 0.72414 1.00000 0.90909 0.76923 0.72222 0.74074 0.87500
SSA-KELM 0.80546 0.10156 0.80000 0.75758 0.77778 0.72414 1.00000 0.90909 0.88462 0.61111 0.77778 0.81250
MsO-KELM 0.82133 0.07947 0.80000 0.69697 0.88889 0.79310 0.94118 0.90909 0.84615 0.72222 0.74074 0.87500

Specificity

GWO-KELM 0.51041 0.21830 0.26667 1.00000 0.41176 0.66667 0.16667 0.50000 0.55556 0.41176 0.62500 0.50000
HHO-KELM 0.55407 0.18497 0.63333 1.00000 0.64706 0.66667 0.44444 0.54167 0.33333 0.47059 0.37500 0.42857
FPA-KELM 0.52458 0.20896 0.36667 1.00000 0.41176 0.66667 0.16667 0.54167 0.55556 0.41176 0.62500 0.50000

WOA-KELM 0.55407 0.18497 0.63333 1.00000 0.64706 0.66667 0.44444 0.54167 0.33333 0.47059 0.37500 0.42857
SSA-KELM 0.53247 0.19378 0.50000 1.00000 0.58824 0.66667 0.27778 0.54167 0.33333 0.47059 0.37500 0.57143
MsO-KELM 0.59423 0.16648 0.66667 1.00000 0.64706 0.66667 0.38889 0.54167 0.55556 0.52941 0.37500 0.57143

MCC

GWO-KELM 0.33546 0.13057 0.05338 0.36364 0.42397 0.31030 0.16941 0.39304 0.52298 0.42397 0.28566 0.40825
HHO-KELM 0.30891 0.13465 0.30641 0.36364 0.49010 0.31030 0.52899 0.33757 0.10256 0.19944 0.10758 0.34247
FPA-KELM 0.33780 0.11549 0.12287 0.36364 0.42397 0.31030 0.16941 0.42714 0.52298 0.34381 0.28566 0.40825

WOA-KELM 0.31786 0.13916 0.30641 0.36364 0.49010 0.31030 0.52899 0.42714 0.10256 0.19944 0.10758 0.34247
SSA-KELM 0.29871 0.11377 0.21073 0.38925 0.37341 0.31030 0.39675 0.42714 0.25275 0.08251 0.14678 0.39747
MsO-KELM 0.36706 0.11544 0.33333 0.34082 0.55437 0.38357 0.39286 0.42714 0.40171 0.25672 0.10758 0.47246
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4.2.1. Data Pre-Processing and Parameter Settings

Considering that the number of samples with missing values is about 1–3% of the
sample volume of the relevant dataset, we therefore remove these samples with missing
values. Meanwhile, we normalize all attributes to the interval form −1 to 1. To obtain a fair
comparison result for these six different KELM variants, we set the same population size
and maximum iteration numbers for all compared algorithms, to 10 and 50, respectively.
In addition, to effectively estimate the generalization ability of the proposed model, we
utilize 10-fold cross-validation to divide the original data samples into 10 groups, where
each group can be used separately as a testing set, and the other 9 groups can be used
as a training set, and, in that case, the 10 models can be obtained. These 10 models are
evaluated in the 10 testing sets, respectively, and the final cross-validation result is obtained
by summing and averaging the results of the 10 models. For the other special parameters,
we can set the values based on Table 2.
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4.2.2. Experiment Results Analysis

The prediction results in solving Breast Cancer via 10-fold cross-validation method
are shown in Table 6. Based on Table 6 and Figure 5a, it is clearly shown that the proposed
MsO-KELM could obtain the best average values of ACC, sensitivity, specificity, and
MCC among all six compared algorithms, at 94.124%, 94.434%, 94.539%, and 87.099%,
respectively. As a comparison, the GWO-KELM obtains the second best average values of
these four evaluation metrics at 93.695%, 92.628%, 94.212%, and 86.068%, respectively. In
addition, the HHO-KELM, the WOA-KELM, and the SSA-KELM all obtain the worst ACC
values, specificity values, and MCC values at 92.237%, 93.944%, and 82.433%, respectively,
but the FPA-KELM obtains the worst sensitivity value at 88.539%. According to these
evaluation metric results, we could find that the proposed MsO-KELM enhances the overall
prediction performance and outperforms the other optimization algorithm-based KELM
models in predicting breast cancer; therefore, the MsO-KELM could be adopted in the early
detection of breast cancer.

The prediction results in solving Parkinson via 10-fold cross-validation method are
shown in Table 7. Based on Table 7 and Figure 5b, it is clearly shown that the proposed
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MsO-KELM could obtain the best average values of ACC, sensitivity, specificity, and MCC
among all six compared algorithms at 84.167%, 89.596%, 67.571%, and 57.140%, respectively.
As a comparison, the FPA-KELM could obtain the second best ACC value at 82.833% and
the second best MCC value at 54.365%; the HHO-KELM and the WOA-KELM could obtain
the second best sensitivity value at 88.423% and the second best specificity value at 67.500%,
respectively. In addition, the SSA-KELM obtained the worst ACC value, specificity value,
and MCC value at 80.333%, 61.500%, and 47.749%, respectively, but the GWO-KELM
obtained the worst sensitivity value at 85.991%. According to these evaluation metric
results, we could find that the proposed MsO-KELM has better prediction performance
than other compared models for Parkinson’s disease.

The prediction results in solving Autistic Spectrum Disorder Screening Data for Chil-
dren via 10-fold cross-validation method are shown in Table 8. Based on Table 8 and
Figure 6a, it is clearly shown that the proposed MsO-KELM could obtain the best average
values of ACC and MCC among all six compared algorithms at 91.079% and 82.899%,
respectively. As a comparison, the WOA-KELM obtained the second best ACC values at
89.433% and the FPA-KELM obtained the second best MCC values at 80.578%. In addition,
for the sensitivity value and specificity value, the MsO-KELM could obtain the results at
98.424% and 83.379%, respectively, which are close to the best values for these two metrics.
According to these evaluation metric results, we could find that the proposed MsO-KELM
has the best prediction accuracy among these compared models in the diagnosis of autism
spectrum disorders.

The prediction results in solving Heart Disease via 10-fold cross-validation method
are shown in Table 9. Based on Table 9 and Figure 6b, it is clearly shown that the proposed
MsO-KELM could obtain the best average values of ACC, sensitivity, and MCC among all
six compared algorithms at 72.222%, 68.853%, and 44.557%, respectively. As a comparison,
the FPA-KELM obtained the second best ACC value, sensitivity value, and MCC values
at 70.741%, 63.198%, and 41.245%, respectively. In addition, the SSA-KELM obtained the
worst ACC value, sensitivity value, and MCC value at 66.296%, 42.951%, and 32.280%,
respectively. For the sensitivity value, the MsO-KELM could obtain a result which is close
to that of the other models. According to these evaluation metric results, we could find
that the proposed MsO-KELM has more advantages and could obtain a better classification
performance than the other compared models.

The prediction results in solving Cleveland via 10-fold cross-validation method are
shown in Table 10. Based on Table 10 and Figure 7a, it is clearly shown that the proposed
MsO-KELM could obtain the best average values of ACC and MCC among all six com-
pared algorithms at 70.184% and 40.608%, respectively. As a comparison, the WOA-KELM
obtained the second best average values of ACC and MCC at 68.839% and 38.364%, respec-
tively. In addition, the SSA-KELM could obtain the worst ACC value, specificity value, and
MCC value at 64.517%, 45.252%, and 30.108%, respectively, but the GWO-KELM and the
HHO-KELM obtained the worst sensitivity value at 68.668%. According to these evaluation
metric results, we could find that the proposed MsO-KELM is superior to the others and
could be adopted to diagnose the Cleveland heart disease.

The prediction results in solving Bupa via 10-fold cross-validation method are shown
in Table 11. Based on Table 11 and Figure 7b, it is clearly shown that the proposed MsO-
KELM could obtain the best average values of ACC, specificity, and MCC among all six
compared algorithms at 70.476%, 59.423%, and 36.706%, respectively. As a comparison,
the WOA-KELM could obtain the second best ACC value at 68.095%, the WOA-KELM
and the HHO-KELM could obtain the second best specificity value at 55.407%, and the
FPA-KELM could obtain the second best MCC value at 33.780%. For the sensitivity value,
the MsO-KELM could obtain a result which is close to that of the other models. According
to these evaluation metric results, we could find that the proposed MsO-KELM has more
advantages in predicting liver disease than the other compared models.
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5. Discussion

Combining information technology with medical information to realize the auxiliary
diagnosis is a research trend in the digital health age; therefore, researchers have conducted
a large number of prediction studies on common diseases by utilizing some machine
learning models. However, the existing studies have weak generalization performance,
which limits their further application for other diseases. In other words, these findings may
obtain better prediction results in solving a certain disease but may obtain worse prediction
results in solving other, different diseases. The reason why these findings have weak
generalization performance is that the researchers mainly emphasize result-orientation for
a certain disease, i.e., they focus on training with single disease data to obtain an effective
prediction model which is suitable for the current disease. In fact, a prediction model with
better generalization performance could help medical workers to diagnose various diseases.
Therefore, exploring a prediction model with strong generalization ability has important
theoretical and practical significance in the current digital health age.

5.1. Theoretical Significance

This paper is an attempt to explore a technology-oriented pathway for auxiliary diag-
nosis. On the one hand, our investigation adopts different disease data as the experimental
objects, and aims to expand the application scope of the final findings by mining the internal
characteristics of these different disease data, which could provide a novel research idea
for researchers to eliminate the application limitations of the existing studies, and could
provide effective theoretical guidance for researchers to realize comprehensive auxiliary
diagnosis in facing various diseases.

On the other hand, utilizing an enhanced meta-heuristic algorithm to optimize the
operating mechanism and inner structure of the original classifier is an efficient method to
improve the performance of a model. The proposed MsO-KELM not only enhances the
generalization ability and rapid learning ability of the original KELM classifier, but also
realizes the self-adaptive process in predicting different diseases by introducing the EGSSA
optimizer. The results of the evaluation metrics show that the MsO-KELM has significant
advantages among all compared models in predicting the six diseases. Specifically, the
MsO-KELM can obtain the best ACC value when predicting each disease, such that the
ACC value is 94.124% in predicting breast cancer, the ACC value is 91.079% in predicting
Autistic Spectrum Disorder, and the ACC value is 84.167% in predicting Parkinson’s disease.
These ACC values could reflect the effectiveness of the MsO-KELM in disease prediction.
Compared with some specific disease models [11,50], there may be a slight decrease in
prediction accuracy of the MsO-KELM. However, according to the No Free Lunch (NFL)
theory [51], although the MsO-KELM has slightly decreased accuracy in predicting a certain
disease, it could predict more different diseases, which enhances the medical application
value of the model.

5.2. Practical Significance

On the one hand, for the six different real-world diseases selected in this study, our
investigation could assist doctors to diagnose or screen patients with related diseases, guide
patients to prevent the diseases in a targeted manner, reduce the risk level of these diseases,
and finally improve the survival quality of the patients.

On the other hand, there may be a consistent one-to-one match between the existing
prediction models and their prediction targets, which means they will increase the economic
cost and time cost for medical departments when analyzing different diseases. Therefore, a
universal prediction model with strong generalization ability and robustness could predict
more different diseases so as to improve the overall work efficiency of the medical workers.

5.3. Limitations

This study completes the construction of a self-adaptive prediction model in solving
different diseases, but some limitations related to the MsO-KELM should be noted.
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(i) In terms of model, although this paper presents four entirely novel optimization
strategies to further optimize the prediction performance of the model, the performance im-
provement is accompanied by an increase in computational complexity, which is inevitable
and could be comprehended according to the NFL theory. Therefore, we will further
enhance the prediction performance of the MsO-KELM by redesigning a novel parameter
optimization mechanism and optimizing the fundamental structure of the prediction model
to reduce the computational complexity in the future studies.

(ii) In terms of data, on the one hand, the disease data analyzed in this paper are
publicly available datasets, where each disease dataset has a limited sample size and some
datasets even have specific geographical characteristics; on the other hand, the number
of disease categories covered by the selected datasets are not enough. Therefore, we will
increase the category of disease data and expand the sample size of disease data. In
addition, we will also strive for collecting global disease data to eliminate the influence of
the geographical factors.

6. Conclusions

To effectively predict more diseases and provide more comprehensive auxiliary diag-
nosis for medical workers, this paper proposes a novel disease prediction model, i.e., the
MsO-KELM. There are two experiments conducted in this paper to elaborate the details of
the MsO-KELM. The first experiment shows an optimization process for the EGSSA, which
aims to construct a self-adaptive characteristic for the subsequent MsO-KELM model. The
second experiment proves that the MsO-KELM has high accuracy, strong generalization
ability, and strong robustness, which highlights the better disease prediction performance
of the MsO-KELM. In the future, we will conduct in-depth research into optimizing the
prediction model and expanding the disease data sample to achieve a further breakthrough
in medical informatics.
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