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Abstract: SH3 and multiple ankyrin repeat domains (SHANK) is a family of scaffold proteins that
were first identified to be involved in balancing synaptic transmission via regulation of intracellular
signalling crosstalk and have been linked to various cancers. However, the role of the SHANK genes
in renal cell carcinoma (RCC) remains to be elucidated. In this study, we aimed to evaluate whether
genetic variants in SHANK family genes affect the risk of RCC and survival of patients. A genetic
association study was conducted using logistic regression and Cox regression analyses, followed
by the correction for a false discovery rate (FDR), in 630 patients with RCC and controls. A pooled
analysis was further performed to summarise the clinical relevance of SHANK gene expression in
RCC. After adjustment for known risk factors and the FDR, the SHANK2 rs10792565 T allele was
found to be associated with an increased risk of RCC (adjusted odds ratio = 1.79, 95% confidence
interval = 1.32–2.44, p = 1.96 × 10−4, q = 0.030), whereas no significant association was found with
RCC survival. A pooled analysis of 19 independent studies, comprising 1509 RCC and 414 adjacent
normal tissues, showed that the expression of SHANK2 was significantly lower in RCC than in
normal tissues (p < 0.001). Furthermore, low expression of SHANK2 was correlated with an advanced
stage and poor prognosis for patients with clear cell and papillary RCC. This study suggests that
SHANK2 rs10792565 is associated with an increased risk of RCC and that SHANK2 may play a role in
RCC progression.

Keywords: renal cell carcinoma; single-nucleotide polymorphism; SHANK; risk; survival

1. Introduction

Kidney cancer is a common malignancy, and there were approximately 431,288 new
cases and 179,368 deaths worldwide in 2020 [1]. Renal cell carcinoma (RCC), which
originates from the epithelium of renal tubules, is the most common form of adult kidney
cancer, accounting for 85% of the diagnoses [2]. Because of the lack of diagnostic biomarkers,
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many patients with RCC are diagnosed at an advanced stage and have a poor prognosis [3].
Thus, finding novel biomarkers is important for RCC detection and monitoring.

Human cancers are thought to be driven by the accumulation of genetic mutations
and aberrant gene expression. Recent studies have shown that SH3 and multiple ankyrin
repeat domains (SHANK) family genes are linked to cancer [4,5]. The SHANK family
currently includes SHANK1, SHANK2, SHANK3, and the SHANK-associated RH domain
interactor (SHARPIN), which interacts with the SHANK proteins through the ankyrin
repeat domain. SHANKs are members of a new family of scaffold proteins that contain
multiple domains, such as ankyrin repeats, PSD-95/Discs Large/ZO-1 domain, SRC homol-
ogy 3 domain, sterile alpha motif domain, and long proline-rich region, for protein–protein
interaction. The SHANK family proteins were first found to be highly expressed in the
postsynaptic density of excitatory synapses, but subsequent studies have shown that they
are also expressed in various organs and localised in the plasma membrane and nucleus
of cells [6]. SHANKs interact with actin regulatory molecules, such as cortactin in growth
cones, which suggests that these proteins may play roles in cytoskeletal remodelling and
cell migration [7]. Furthermore, SHANK proteins interact as scaffolds with surface re-
ceptors to facilitate signalling crosstalk among intracellular pathways [8]. It has been
reported that SHANK1 and SHANK3 inhibit breast cancer cell migration and invasion by
suppressing integrin activity via sequestration of active Rap1 and R-Ras [5]. Other studies
have demonstrated that increased expression of SHANK1 and SHANK3 is involved in the
development of several types of cancer, including colon, pancreatic, and lung cancers, and
in patient prognosis [9,10]. Genetic studies have suggested that genetic variants in SHANK
genes may predispose individuals to neuropsychiatric disorders, such as schizophrenia,
Alzheimer’s disease, and autism spectrum disorders [11,12]. However, direct evidence
linking SHANK gene variations to the risk and prognosis of RCC is scarce.

As the most common type of genetic variability, single-nucleotide polymorphisms
(SNPs) are considered potential biomarkers for the susceptibility of individuals to disease
and may play a role in the personalised treatment strategy [13]. Increasing evidence has
demonstrated that genetic variants contribute to the susceptibility of their carriers to RCC,
and multiple genetic risk loci have been identified in p53, DNA damage response, and apop-
tosis pathways in recent genome-wide association studies (GWAS) [14]. However, GWAS
require large sample collections and stringent adjustment for multiple testing to avoid
false positives. The hypothesis-driven candidate pathway approach is value particularly
for studying low allele frequencies, small effect sizes, and limited or unique populations.
Given the involvement of the SHANK pathway in tumorigenesis, we comprehensively
evaluated the associations of 161 SNPs among SHANK family genes with the risk of RCC
and survival in a cohort of 630 patients with RCC and controls from Taiwan. Furthermore,
the prognostic value of a candidate gene was assessed via a pooled analysis to support the
underlying mechanism of observed associations in RCC.

2. Patients and Methods
2.1. Study Population and Participant Data Collection

In this study, 312 patients with RCC and 318 healthy controls were recruited from three
Taipei city hospitals, namely the National Taiwan University Hospital, Taipei Municipal
Wan Fang Hospital, and Taipei Medical University Hospital [15,16]. All patients were
newly diagnosed with RCC by clinical and pathological tests. The controls were healthy
individuals with no history of cancer and were recruited from the physical examination
centres of these hospitals during the same period. Trained personnel used a structured
questionnaire to obtain demographic characteristics of the participants, and clinical in-
formation was obtained from their medical records. The overall survival was defined as
the time between the diagnosis and death from any cause. All of the participants were
Taiwanese, and there was no blood relationship between them. This study was approved
by the Research Ethics Committee of the National Taiwan University Hospital (9100201527)
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in accordance with the Good Clinical Practice principles, and written informed consent
was obtained from all participants before recruitment.

2.2. SNP Selection and Genotyping

Haplotype-tagging SNPs were selected from ±10 kb flanking regions of the SHANK
family genes (SHANK1–3 and SHARPIN) with the pairwise linkage disequilibrium thresh-
old of r2 > 0.8 using the data for Han Chinese from the 1000 Genomes Project [17,18].
Genomic DNA was extracted from whole-blood samples of each participant using the QI-
Aamp DNA Blood Midi Kit (Qiagen, Valencia, CA, USA), and genotyped using Affymetrix
Axiom genotyping arrays (Thermo Fisher Scientific, Waltham, MA, USA) at the National
Centre for Genome Medicine, Taiwan [19]. Quality control was performed to remove SNPs
with a minor allele frequency of <0.03, a genotyping rate of <0.95, and a Hardy–Weinberg
equilibrium of <0.01. Finally, 161 SNPs remained for further exploration.

2.3. Bioinformatics Analyses

The expression quantitative trait locus (eQTL) analysis for SHANK2 rs10792565 in
normal kidney cortex were obtained from the Genotype Tissue Expression (GTEx) eQTL
calculator [20]. HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/
haploreg.php, accessed on 26 September 2022) was used to annotate potential functions
of the SNPs [21]. The Cancer Genome Atlas (TCGA) kidney chromophobe (KICH), kid-
ney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP)
datasets [22], the Oncomine [23], and the Gene Expression database of Normal and Tumor
tissues 2 (GENT2) [24] were used to examine the differences in SHANK2 expression be-
tween the kidney cancer and the adjacent normal tissues. All datasets containing cancer
versus normal at the mRNA expression levels were retrieved from the databases, and the
relevant information was extracted. In total, 19 kidney gene expression datasets, compris-
ing 1509 RCC and 414 adjacent normal tissues, were included in the analysis. The pooled
standardised mean differences and 95% confidence intervals (CIs) were used to determine
the differential gene expression between RCC and adjacent normal tissues. The Review
Manager 5.4.1 (Cochrane Collaboration, London, UK) was used to evaluate heterogene-
ity among studies and perform the pooled analysis. Since substantial heterogeneity is
present (Q test p < 0.05 and I2 > 50%) among included studies, random-effects model was
used to calculate the summary statistics. In addition, correlations of the gene expression
levels with the tissue type, stage, and survival of patients with RCC were assessed using
data from TCGA KICH, KIRC, and KIRP datasets. The RNA-sequencing (RNA-Seq by
expectation-maximization) data and corresponding clinical information were obtained from
the Genomic Data Commons Data Portal, and the associations of SHANK2 expression levels
with tumour stage and survival of patients with RCC were assessed using Spearman’s
correlation analysis and Kaplan–Meier survival curves, respectively.

2.4. Statistical Analyses

A chi-squared test was performed to examine differences in demographic distribu-
tions between the patients with RCC and healthy controls. Logistic regression analysis
was used to evaluate the associations between genetic variants and the risk of RCC. The
associations of genetic variants with the survival of patients with RCC were assessed using
Cox proportional hazards regression analysis. All statistical analyses were performed using
the Statistical Package for the Social Sciences version 19.0.0 (IBM, Armonk, NY, USA) with
p < 0.05 as a significance threshold. False discovery rates (q values) were computed for
multiple testing corrections [25].

3. Results

The baseline characteristics of the 312 patients with RCC and 318 healthy controls are
summarised in Table 1. There were no significant differences between the patients and
controls regarding the age and sex (p > 0.05). Ever alcohol consumption was related to
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reduced RCC risk, whereas hypertension and diabetes were related to increased risk of
RCC (p < 0.001). Moreover, 34 (10.9%) patients died during a median follow-up time of
90.0 months.

Table 1. The clinical characteristics of the study population.

Characteristic Cases (n = 312) Controls (n = 318) Age- and Sex-Adjusted OR (95% CI)

Age ≥ 58, n (%) 152 (48.7) 156 (49.1)
Male, n (%) 209 (67.0) 210 (66.0)

Body mass index ≥ 25, n (%) 138 (44.5) 123 (43.0) 1.07 (0.77–1.49)
Ever cigarette smoking, n (%) 114 (36.5) 105 (33.0) 1.18 (0.82–1.69)

Ever alcohol consumption, n (%) 76 (24.4) 135 (42.5) 0.39 (0.27–0.56)
Hypertension, n (%) 134 (43.1) 78 (24.9) 3.89 (2.25–6.65)

Diabetes, n (%) 62 (19.9) 20 (6.3) 2.49 (1.74–3.58)
Stage III–IV, n (%) 55 (18.6)
Grade III–IV, n (%) 68 (24.8)

Deaths a, n (%) 34 (10.9)

Abbreviations: OR, odds ratio; CI, confidence interval. a With median follow-up of 90.0 months.

The associations between the SHANK family gene polymorphisms and the risks
of RCC are presented in Table S1. Among the 161 SNPs, SHANK2 rs10792565 showed
a significant association with the risk of RCC after adjusting for multiple testing. The
odds of developing RCC were estimated to be increased by 79% with each copy of the
rs10792565 minor T allele (odds ratio (OR) = 1.79, 95% CI = 1.32–2.44, p = 1.96 × 10−4,
q = 0.030; Table 2). After adjusting for potential variables listed in Table 1 (age, gender,
body mass index, cigarette smoking status, alcohol consumption, and histories of hyper-
tension and diabetes), multivariate analysis showed that the SHANK2 rs10792565 T allele
remained significantly correlated with the risk of developing RCC (adjusted OR = 1.75,
95% CI = 1.25–2.44, p = 0.001; Table 2). Furthermore, preliminary results revealed that nine
SNPs tended to correlate with overall survival of patients with RCC, but none of them
reached the significance level after adjustment for multiple comparisons (q > 0.05; Table S1).

Table 2. The association between SHANK2 rs10792565 and RCC risk.

Genotype Cases, n (%) Controls, n (%) OR (95% CI) p q OR (95% CI) a p a

GG 189 (61.0) 236 (74.2) 1.00 1.00
GT 109 (35.2) 78 (24.5) 1.75 (1.23–2.47) 0.002 1.66 (1.13–2.44) 0.009
TT 12 (3.9) 4 (1.3) 3.75 (1.19–11.8) 0.024 3.92 (1.19–12.9) 0.025

Trend 1.79 (1.32–2.44) 1.96 × 10−4 0.030 1.75 (1.25–2.44) 0.001

Abbreviations: RCC, renal cell carcinoma; OR, odds ratio; CI, confidence interval. a ORs were adjusted for
age, gender, body mass index, cigarette smoking status, alcohol consumption, and histories of hypertension
and diabetes.

Next, function prediction was performed for SHANK2 rs10792565 and its proxy SNPs
that are in high linkage disequilibrium using bioinformatics tools. According to the Hap-
loReg database, rs10792565 and its linked (r2 > 0.8) SNP rs10897838 are in a protein-binding
region of SET domain bifurcated histone lysine methyltransferase 1; alter the doublesex-
and mab-3-related transcription factor 5 and oestrogen receptor-α regulatory motifs; and
have been identified as an expression quantitative trait locus for SHANK2 in three studies
(Table 3). However, the rs10792565 risk allele T showed only a correlation trend with lower
SHANK2 mRNA expression levels in normal human kidney cortex tissues in the GTEx
database, likely due to a small sample size (n = 73; Figure 1).
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Table 3. Regulatory annotation of SHANK2 rs10792565 and its linked proxy SNPs.

Chromosome Position SNP ID LD (r2) Reference
Allele

Alternate
Allele

AFR Fre-
quency

ASN Fre-
quency

EUR Fre-
quency

Selected
eQTL
Hits

Proteins
Bound

Motifs
Changed

11 71227678 rs10792565 1 T G 0.46 0.79 0.37 3 hits SETDB1

11 71236303 rs10897838 0.99 T C 0.36 0.79 0.37 3 hits DMRT5,
ERalpha-a

Abbreviations: SNP, single-nucleotide polymorphism; LD, linkage disequilibrium; AFR, African; ASN, Asian;
EUR, European; eQTL, expression quantitative trait loci.
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Figure 1. Association of SHANK2 expression levels with the rs10792565 genotypes in normal kidney
cortex tissue based on the Genotype Tissue Expression data. Values in brackets represent the number
of patients. NES, normalized effect size.

To further evaluate the potential functions of SHANK2 in RCC, we used publicly
available kidney cancer datasets. A pooled analysis of 1509 kidney cancer tissues and
414 adjacent normal tissues from 19 independent studies demonstrated that SHANK2 was
downregulated in kidney cancers (p < 0.001; Figure 2). The relationship between SHANK2
expression and the survival of patients with RCC was also analysed using three TCGA RCC
datasets, KICH, KIRC, and KIRP. The expression of SHANK2 was reduced in advanced-
stage tumours in the KIRC and KIRP datasets (p < 0.001 and p = 0.025, respectively;
Figure 3A), and low SHANK2 expression levels were significantly associated with a poor
survival of patients (p < 0.001 and p = 0.041, respectively; Figure 3B). Although there was a
consistent trend in the KICH dataset, it did not reach statistical significance.
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Figure 3. Correlation of SHANK2 expression levels with renal cell carcinoma (RCC) progression.
(A) Downregulation of SHANK2 expression in advanced-stage RCCs, and (B) association of low
SHANK2 expression levels with a poor cancer-specific survival based on The Cancer Genome Atlas
kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary
cell carcinoma (KIRP) data. Values in brackets represent the number of patients; rho, Spearman’s
rank correlation coefficient.



Int. J. Environ. Res. Public Health 2022, 19, 12471 7 of 9

4. Discussion

By analysing SHANK family gene variants, we identified SHANK2 rs10792565 as a
novel variant associated with RCC risk in the present study. Furthermore, our pooled
analysis of 19 independent studies revealed that the mRNA expression of SHANK2 was
downregulated in RCC compared with that in adjacent normal tissues, and lower expression
levels of SHANK2 were significantly associated with poorer survival of patients with RCC.

A functional analysis indicated that rs10792565, which is an intronic variant, might
be potentially functional via its ability to alter regulatory binding motifs, and it has been
described as an expression quantitative trait locus for SHANK2 in human lymphoblastoid
cells [26]. Although we only observed a tendency towards a correlation of the rs10792565
risk allele T with lower SHANK2 expression in the human kidney cortex, it is possible that
rs10792565 could also affect SHANK2 mRNA splicing, folding, and protein translation.
Additional experimental studies using site-directed mutagenesis and cycloheximide chase
assay may be required to determine whether rs10792565 plays a role in the regulation of
SHANK2 protein expression and stability.

A pooled analysis of public gene expression datasets showed downregulation of
SHANK2 in kidney cancer specimens, suggesting that this gene might play an important
role during kidney carcinogenesis. SHANK2 is a member of the SHANK family consisting
of three related multimodular scaffold proteins, which has mostly been studied in neuro-
science to promote synapse formation. A recent study found that SHANK proteins also act
as repressors of integrin activity by sequestering Ras family members, Rap1 and R-Ras, and
consequently interfere with cell migration, spreading, and invasion [5]. It has been demon-
strated that SHANK2 can serve as a master scaffold protein to recruit a type I metabotropic
glutamate receptor (mGluR) and phospholipase C β3 into the same signalling complex,
thereby influencing mGluR-induced intracellular calcium mobilisation [27]. Furthermore,
SHANK2 is frequently downregulated in neuroblastoma, and its decreased expression is
associated with a poor survival of patients. On the other hand, overexpression of SHANK2
in neuroblastoma cells results in increased cell differentiation and reduced cell growth
following treatment with all-trans retinoic acid [28]. These findings suggest that SHANK2
may play a tumour-suppressive role during cancer progression, which is in line with our
observation in RCC. By contrast, SHANK2 was found to be upregulated in oesophageal
squamous cell carcinoma, and its high expression levels were associated with poor sur-
vival [29]. Some studies have reported that overexpression of SHANK2 can suppress Hippo
signalling by inhibiting large tumour suppressor kinase 1/2 mediated phosphorylation
of Yes-associated protein 1, which results in uncontrolled cell proliferation [30]. Together,
SHANK2 plays important roles in cancers; however, its underlying mechanisms of action
vary greatly depending on the cellular contexts. Therefore, further functional studies are
warranted to validate our findings and elucidate how SHANK2 rs10792565 is involved in
RCC aetiology.

Although genetic studies from us and others have identified multiple RCC susceptibil-
ity genes, including caspase 9, AKT serine/threonine kinase 1, cyclin-dependent kinase
inhibitor 2C [31], glutamate metabotropic receptors [15], hepatic leukaemia factor [32], and
mitogen-activated protein kinase 10 [33], to our knowledge, this is the first study to link
SHANK2 to RCC. However, several limitations should be noted in the present study. The
study cohort was recruited only from the Taiwanese population, and the sample size was
relatively small. Therefore, further replication of the data should be confirmed in different
ethnicities. Furthermore, although we integrated multiple bioinformatics data to decipher
the possible mechanism underlying the observed association between SHANK2 rs10792565
and an increased risk of RCC, additional functional experiments are needed to confirm the
role of this SNP during RCC progression.

5. Conclusions

In conclusion, we found that SHANK2 rs10792565 might contribute to the risk of RCC,
and the expression level of SHANK2 was correlated with the patient’s prognosis. Given the
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potential prognostic role of SHANK2 in RCC, its genetic variants and expression levels may
serve as novel prognostic biomarkers or for clinical decision-making for patients with RCC.
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