Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population and Participant Data Collection
2.2. SNP Selection and Genotyping
2.3. Bioinformatics Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.H.; Devesa, S.S.; Warren, J.L.; Fraumeni, J.F., Jr. Rising incidence of renal cell cancer in the United States. JAMA 1999, 281, 1628–1631. [Google Scholar] [CrossRef] [PubMed]
- Loo, R.K.; Lieberman, S.F.; Slezak, J.M.; Landa, H.M.; Mariani, A.J.; Nicolaisen, G.; Aspera, A.M.; Jacobsen, S.J. Stratifying risk of urinary tract malignant tumors in patients with asymptomatic microscopic hematuria. Mayo Clin. Proc. 2013, 88, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, J.M.; Park, B.; Cheon, Y.; Lee, B.; Choo, S.H.; Koh, S.S.; Lee, S. Newly identified tumor-associated role of human Sharpin. Mol. Cell Biochem. 2010, 340, 161–167. [Google Scholar] [CrossRef]
- Lilja, J.; Zacharchenko, T.; Georgiadou, M.; Jacquemet, G.; De Franceschi, N.; Peuhu, E.; Hamidi, H.; Pouwels, J.; Martens, V.; Nia, F.H.; et al. SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat. Cell Biol. 2017, 19, 292–305. [Google Scholar] [CrossRef]
- Lim, S.; Sala, C.; Yoon, J.; Park, S.; Kuroda, S.; Sheng, M.; Kim, E. Sharpin, a novel postsynaptic density protein that directly interacts with the shank family of proteins. Mol. Cell Neurosci. 2001, 17, 385–397. [Google Scholar] [CrossRef]
- Du, Y.; Weed, S.A.; Xiong, W.C.; Marshall, T.D.; Parsons, J.T. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol. Cell Biol. 1998, 18, 5838–5851. [Google Scholar] [CrossRef]
- Naisbitt, S.; Kim, E.; Tu, J.C.; Xiao, B.; Sala, C.; Valtschanoff, J.; Weinberg, R.J.; Worley, P.F.; Sheng, M. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999, 23, 569–582. [Google Scholar] [CrossRef]
- Lilja, J.; Jcaquement, G.; Posada, I.M.D.; Laasola, P.; Vesilahti, E.-M.; Miihkinen, M.; Salomaa, S.; Kreienkamp, H.-J.; Barsukov, I.; Abankwa, D.; et al. Abstract B29: SHANK3 in oncogenic RAS signaling. Mol. Cancer Res. 2020, 18, B29. [Google Scholar] [CrossRef]
- Wang, L.; Lv, Y.; Liu, G. The roles of SHANK1 in the development of colon cancer. Cell Biochem. Funct. 2020, 38, 669–675. [Google Scholar] [CrossRef]
- Guilmatre, A.; Huguet, G.; Delorme, R.; Bourgeron, T. The emerging role of SHANK genes in neuropsychiatric disorders. Dev. Neurobiol. 2014, 74, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Leblond, C.S.; Nava, C.; Polge, A.; Gauthier, J.; Huguet, G.; Lumbroso, S.; Giuliano, F.; Stordeur, C.; Depienne, C.; Mouzat, K.; et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A gradient of severity in cognitive impairments. PLoS Genet. 2014, 10, e1004580. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Shen, W.C.; Shih, T.C.; Tsai, C.W.; Chang, W.S.; Cho, Y.; Tsai, C.H.; Bau, D.T. The current progress and future prospects of personalized radiogenomic cancer study. Biomedicine 2015, 5, 2. [Google Scholar] [CrossRef]
- Scelo, G.; Purdue, M.P.; Brown, K.M.; Johansson, M.; Wang, Z.; Eckel-Passow, J.E.; Ye, Y.; Hofmann, J.N.; Choi, J.; Foll, M.; et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat. Commun. 2017, 8, 15724. [Google Scholar] [CrossRef]
- Huang, C.Y.; Hsueh, Y.M.; Chen, L.C.; Cheng, W.C.; Yu, C.C.; Chen, W.J.; Lu, T.L.; Lan, K.J.; Lee, C.H.; Huang, S.P.; et al. Clinical significance of glutamate metabotropic receptors in renal cell carcinoma risk and survival. Cancer Med. 2018, 7, 6104–6111. [Google Scholar] [CrossRef]
- Huang, C.Y.; Su, C.T.; Chu, J.S.; Huang, S.P.; Pu, Y.S.; Yang, H.Y.; Chung, C.J.; Wu, C.C.; Hsueh, Y.M. The polymorphisms of P53 codon 72 and MDM2 SNP309 and renal cell carcinoma risk in a low arsenic exposure area. Toxicol. Appl. Pharmacol. 2011, 257, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Genomes Project, C.; Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar]
- Yu, C.C.; Chen, L.C.; Chiou, C.Y.; Chang, Y.J.; Lin, V.C.; Huang, C.Y.; Lin, I.L.; Chang, T.Y.; Lu, T.L.; Lee, C.H.; et al. Genetic variants in the circadian rhythm pathway as indicators of prostate cancer progression. Cancer Cell Int. 2019, 19, 87. [Google Scholar] [CrossRef]
- Ke, C.C.; Chen, L.C.; Yu, C.C.; Cheng, W.C.; Huang, C.Y.; Lin, V.C.; Lu, T.L.; Huang, S.P.; Bao, B.Y. Genetic Analysis Reveals a Significant Contribution of CES1 to Prostate Cancer Progression in Taiwanese Men. Cancers 2020, 12, 1346. [Google Scholar] [CrossRef]
- Consortium, G.T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 2004, 6, 1–6. [Google Scholar] [CrossRef]
- Park, S.J.; Yoon, B.H.; Kim, S.K.; Kim, S.Y. GENT2: An updated gene expression database for normal and tumor tissues. BMC Med. Genom. 2019, 12, 101. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef]
- Lappalainen, T.; Sammeth, M.; Friedlander, M.R.; Hoen, P.A.; Monlong, J.; Rivas, M.A.; Gonzalez-Porta, M.; Kurbatova, N.; Griebel, T.; Ferreira, P.G.; et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 2013, 501, 506–511. [Google Scholar] [CrossRef]
- Hwang, J.I.; Kim, H.S.; Lee, J.R.; Kim, E.; Ryu, S.H.; Suh, P.G. The interaction of phospholipase C-beta3 with Shank2 regulates mGluR-mediated calcium signal. J. Biol. Chem. 2005, 280, 12467–12473. [Google Scholar] [CrossRef]
- Lopez, G.; Conkrite, K.L.; Doepner, M.; Rathi, K.S.; Modi, A.; Vaksman, Z.; Farra, L.M.; Hyson, E.; Noureddine, M.; Wei, J.S.; et al. Somatic structural variation targets neurodevelopmental genes and identifies SHANK2 as a tumor suppressor in neuroblastoma. Genome Res. 2020, 30, 1228–1242. [Google Scholar] [CrossRef]
- Qin, H.D.; Liao, X.Y.; Chen, Y.B.; Huang, S.Y.; Xue, W.Q.; Li, F.F.; Ge, X.S.; Liu, D.Q.; Cai, Q.; Long, J.; et al. Genomic Characterization of Esophageal Squamous Cell Carcinoma Reveals Critical Genes Underlying Tumorigenesis and Poor Prognosis. Am. J. Hum. Genet. 2016, 98, 709–727. [Google Scholar] [CrossRef]
- Xu, L.; Li, P.; Hao, X.; Lu, Y.; Liu, M.; Song, W.; Shan, L.; Yu, J.; Ding, H.; Chen, S.; et al. SHANK2 is a frequently amplified oncogene with evolutionarily conserved roles in regulating Hippo signaling. Protein Cell 2021, 12, 174–193. [Google Scholar] [CrossRef]
- Purdue, M.P.; Song, L.; Scelo, G.; Houlston, R.S.; Wu, X.; Sakoda, L.C.; Thai, K.; Graff, R.E.; Rothman, N.; Brennan, P.; et al. Pathway Analysis of Renal Cell Carcinoma Genome-Wide Association Studies Identifies Novel Associations. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2065–2069. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Huang, S.P.; Hsueh, Y.M.; Chen, L.C.; Lu, T.L.; Bao, B.Y. Genetic Analysis Identifies the Role of HLF in Renal Cell Carcinoma. Cancer Genom. Proteom. 2020, 17, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Huang, C.Y.; Hsueh, Y.M.; Fan, Y.C.; Fong, Y.C.; Huang, S.P.; Geng, J.H.; Chen, L.C.; Lu, T.L.; Bao, B.Y. Genetic variants in MAPK10 modify renal cell carcinoma susceptibility and clinical outcomes. Life Sci. 2021, 275, 119396. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Cases (n = 312) | Controls (n = 318) | Age- and Sex-Adjusted OR (95% CI) |
---|---|---|---|
Age ≥ 58, n (%) | 152 (48.7) | 156 (49.1) | |
Male, n (%) | 209 (67.0) | 210 (66.0) | |
Body mass index ≥ 25, n (%) | 138 (44.5) | 123 (43.0) | 1.07 (0.77–1.49) |
Ever cigarette smoking, n (%) | 114 (36.5) | 105 (33.0) | 1.18 (0.82–1.69) |
Ever alcohol consumption, n (%) | 76 (24.4) | 135 (42.5) | 0.39 (0.27–0.56) |
Hypertension, n (%) | 134 (43.1) | 78 (24.9) | 3.89 (2.25–6.65) |
Diabetes, n (%) | 62 (19.9) | 20 (6.3) | 2.49 (1.74–3.58) |
Stage III–IV, n (%) | 55 (18.6) | ||
Grade III–IV, n (%) | 68 (24.8) | ||
Deaths a, n (%) | 34 (10.9) |
Genotype | Cases, n (%) | Controls, n (%) | OR (95% CI) | p | q | OR (95% CI) a | p a |
---|---|---|---|---|---|---|---|
GG | 189 (61.0) | 236 (74.2) | 1.00 | 1.00 | |||
GT | 109 (35.2) | 78 (24.5) | 1.75 (1.23–2.47) | 0.002 | 1.66 (1.13–2.44) | 0.009 | |
TT | 12 (3.9) | 4 (1.3) | 3.75 (1.19–11.8) | 0.024 | 3.92 (1.19–12.9) | 0.025 | |
Trend | 1.79 (1.32–2.44) | 1.96 × 10−4 | 0.030 | 1.75 (1.25–2.44) | 0.001 |
Chromosome | Position | SNP ID | LD (r2) | Reference Allele | Alternate Allele | AFR Frequency | ASN Frequency | EUR Frequency | Selected eQTL Hits | Proteins Bound | Motifs Changed |
---|---|---|---|---|---|---|---|---|---|---|---|
11 | 71227678 | rs10792565 | 1 | T | G | 0.46 | 0.79 | 0.37 | 3 hits | SETDB1 | |
11 | 71236303 | rs10897838 | 0.99 | T | C | 0.36 | 0.79 | 0.37 | 3 hits | DMRT5, ERalpha-a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-F.; Huang, S.-P.; Hsueh, Y.-M.; Geng, J.-H.; Huang, C.-Y.; Bao, B.-Y. Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression. Int. J. Environ. Res. Public Health 2022, 19, 12471. https://doi.org/10.3390/ijerph191912471
Chang C-F, Huang S-P, Hsueh Y-M, Geng J-H, Huang C-Y, Bao B-Y. Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression. International Journal of Environmental Research and Public Health. 2022; 19(19):12471. https://doi.org/10.3390/ijerph191912471
Chicago/Turabian StyleChang, Chi-Fen, Shu-Pin Huang, Yu-Mei Hsueh, Jiun-Hung Geng, Chao-Yuan Huang, and Bo-Ying Bao. 2022. "Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression" International Journal of Environmental Research and Public Health 19, no. 19: 12471. https://doi.org/10.3390/ijerph191912471
APA StyleChang, C.-F., Huang, S.-P., Hsueh, Y.-M., Geng, J.-H., Huang, C.-Y., & Bao, B.-Y. (2022). Genetic Analysis Implicates Dysregulation of SHANK2 in Renal Cell Carcinoma Progression. International Journal of Environmental Research and Public Health, 19(19), 12471. https://doi.org/10.3390/ijerph191912471