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Abstract: Urban production energy consumption produces a large amount of carbon emissions,
which is an important source of global warming. This study measures the quantity and intensity
of carbon emissions in 30 provinces of China based on urban production energy consumption
from 2005–2019, and uses the Dagum Gini coefficient, kernel density estimation, carbon emission
classification and spatial econometric model to analyze the spatial and temporal distribution and
driving factors of quantity and intensity of carbon emissions from China and regional production
energy consumption. It was found that the growth rate of carbon emission quantity and carbon
emission intensity of production energy consumption decreased year by year in each province during
the study period. The imbalance of carbon emission was strong, with different degrees of increase
and decrease, and there were big differences between eastern and western regions. The classification
of carbon emissions differed among provinces and there was heterogeneity among regions. The
quantity and intensity of carbon emissions of production energy consumption qwre affected by
multiple factors, such as industrial structure. This study provides an in-depth comparison of the
spatial and temporal distribution and driving factors of quantity and intensity of carbon emissions
of production energy consumption across the country and regions, and provides targeted policies
for carbon emission reduction across the country and regions, so as to help achieve China’s “double
carbon” target quickly and effectively.

Keywords: carbon emissions from production energy consumption; regional imbalance; carbon
emission classification; driving factor

1. Introduction

The massive emission of greenhouse gases has led to an increase in global temperature
and an accelerated frequency of extreme hot weather, which has seriously damaged ecolog-
ical health [1], and has also affected the productive life of human beings [2]. The problem
of climate warming is no longer just a problem for individual countries, but a problem for
all mankind [3]. The impact of warming caused by carbon emissions is stronger in China,
where the average temperature has risen by 0.26 degrees per decade from 1961–2020 in
China, which is higher than the global average. China’s environmental problems, such as
glacier melting, permafrost degradation and natural disasters, have intensified in recent
years. The largest mountain glaciers in the northeast of the Qinghai-Tibet Plateau have
dropped 450 m in the last 70 years, and the perennial permafrost in northeast China has
degraded significantly, with the southern boundary of permafrost degradation exhibiting
phenomena such as northward shift and expansion of the ablation zone. The maximum
seasonal freezing depth reduction rate in Heilongjiang Province, China, was about 9.9 cm
per decade from 1961–2016. Permafrost degradation can lead to significant impacts on
regional ecology, hydrological processes, carbon cycle, and cold zone engineering con-
struction and operation. In addition, extreme and severe weather in China, such as heavy
rainfall, floods and mountain fires, seriously affect human activities and endanger human
life and health. To address the global climate change issue, the United Nations Intergov-
ernmental Panel on Climate Change (IPCC) stated that measures should be taken to limit
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the global temperature increase to 1.5 degrees [4]. In its sixth climate report, the IPCC
stated that in order to control global warming, greenhouse gas emissions need to peak
in 2025 and be reduced by 43% from 2010 levels by 2030, so deep cuts in emissions are
needed across all sectors. In response to global climate change, China has committed
to achieve carbon peaking by 2030 and carbon neutrality by 2060 [5], which means that
China needs to ensure sustainable economic and social development and energy security,
while developing technologies and implementing policies to quickly and effectively curb
carbon emissions and achieve carbon peaking in a short period of time. According to the
carbon emission data of the World Bank, China’s carbon emissions increased at an average
annual rate of 5.98% from 1996 to 2018 [6]. As the world’s largest developing country and
carbon emitter [7], the task of achieving carbon peaking and carbon neutrality in China
is still very difficult. Currently, the global energy sector produces about 25% of global
carbon emissions, and China’s energy use is still dominated by fossil energy sources such
as coal, which accounts for nearly 56.8% of the energy mix and produces a high amount of
carbon emissions and is highly polluting to the atmosphere [8]. China has begun to actively
pursue low-carbon development, optimize its energy consumption structure, and promote
high-quality economic and social development [9,10].

2. Literature Review

As a region where human activities are concentrated, China has seen a significant
increase in carbon emissions due to the production of various industries in the process of
urbanization and industrialization, and the contradiction between economic development
and resource consumption and environmental pollution problems has become more and
more prominent [11–15]. Some provinces in China have air pollution levels that are among
the highest in the world [16], due to rapid economic growth, a large increase in the number
of motor vehicles and a large population leading to increasingly serious air pollution [17,18].
Therefore, in recent years, China has made great efforts to develop a clean coal power
system in terms of energy consumption and introduced several policies to promote the
clean and efficient use of coal [19], but China’s energy sources, such as oil and natural gas,
are scarce, and the dependence on coal in various industries remains high [20]. The current
per capita energy consumption of China is relatively low compared with the international
level, and there are also imbalances in development between provinces within China.
Imbalanced per capita energy consumption levels often lead to imbalanced economic
development, and this also means inefficient use of energy, which poses a major challenge
to China’s energy security and carbon emission reduction goals [21,22]. In order to seek a
better path for reducing carbon emissions on the basis of energy security, while ensuring
smooth economic operation, scholars have conducted a lot of research on energy and
carbon emission related areas [23–25].

There are many factors affecting carbon emissions, mainly in economic development,
energy use, population structure, urban development, etc. Relevant studies show that
China’s carbon emissions have a strong correlation with the level of economic development,
and China’s industrial carbon emissions show an inverted U-shaped non-linear relationship
with the level of economic development [26]. Measuring the relationship between economic
growth rate and carbon emission from the perspective of economic growth rate, it is
found that the development of economic growth rate and carbon emission growth rate
is consistent, and has the characteristics of stages [27]. Carbon emissions are also usually
lower than normal at economically backward stages, and the level of urbanization shows
an inverted U-shaped correlation with carbon emissions when energy resources are not
fully exploited [28]. Xu et al. (2016) argue that the combined effects of economic output
and energy efficiency play an important role in carbon emissions at different stages, while
energy structure has a smaller effect on carbon emissions [29]. Li et al. (2018) found that
economic development has a relatively limited effect on carbon emissions, and that energy
consumption structure is an important cause of higher carbon emission levels. Meanwhile,
the effects of industrial structure and energy efficiency on carbon emissions in different
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regions are heterogeneous [30]. The analysis of carbon emission driving factors at different
stages in Beijing found that different factors have different degrees of influence on carbon
emissions at different stages of urban development. Economic output has always been
the most important contributor to carbon emissions in Beijing at different stages, and
population size and energy structure also have a promoting effect on carbon emissions [31].
Urbanization effect, resident consumption effect and population size effect have significant
promoting effects on carbon emissions, and population urbanization is the most important
population influencing factor in increasing carbon emissions [32].

The influence of different indicators on carbon emissions shows the diversity of carbon
emission pathways, and in the process of economic and social development, large consump-
tion of energy is one of the important sources of carbon emissions. Existing study shows
that energy consumption and carbon emissions show a certain spatial correlation [33], and
the different industrial structures and economic growth modes have heterogeneous depen-
dence on energy, which leads to a diversity of carbon related emissions [34]. The energy
intensity of production sectors is the main driving factor of carbon emission intensity [35],
and has a positive impact on carbon emission intensity [36]. The production activities of
each industry are closely linked to carbon emissions, and the carbon emissions of China’s
construction industry show the characteristics of network structure, and the geographical
proximity and energy intensity are all significantly correlated with the carbon emissions
of the construction industry [37]. China’s manufacturing carbon emissions are influenced
by industrial value added, energy consumption and energy structure, and it is found that
the decoupling of manufacturing carbon emissions from economic development is mainly
dominated by the decoupling of energy consumption from industrial value added [38],
which further shows the importance of energy consumption on carbon emissions. A survey
of carbon emissions in China’s internal regions and different provinces and cities found
that carbon emissions from urban energy consumption in 26 prefecture-level cities in the
Yangtze River Delta will be stable by 2020, and carbon emission intensity will decline,
with carbon emissions from energy consumption and economic development showing a
negative decoupling trend [39]. Zhang et al. (2021) used the input–output model to mea-
sure the difference of carbon emissions due to production-based and consumption-based
activities in Tianjin, China, and found that basic building construction was the main reason
for the difference, and found that population, income and urbanization had an important
impact on urban carbon emissions [40]. Ma et al. (2022) explored the influencing factors of
carbon emissions from the energy consumption of rural residents in China and found that
quality of life, energy conservation awareness and household characteristics would affect
the carbon emission level of rural residents [41].

In addition, scholars have conducted a lot of research on the regional nature of carbon
emissions. Chen et al. (2022) used the Theil index and the Moran index to conduct spatial
analysis of China’s carbon emission intensity and found that the spatial differences of
carbon emission intensity from 2000 to 2019 were obvious, mainly intra-regional, with sig-
nificant spatial correlation and local agglomeration characteristics [42]. Yang et al. (2022) an-
alyzed the spatial and temporal patterns of carbon emission quantities in China’s prefecture-
level cities through spatial autocorrelation models and found that China’s prefecture-level
carbon emission quantities expanded in time, decreased from north to south, and increased
from southeast to northwest, with significant spatial aggregation [43]. Liu et al. (2022)
found that the carbon emission reduction effect is significant in northeast, east and south-
west China, while the carbon emission reduction effect is poor in northwest China, and
investment activities, energy use and economic activities promote carbon emissions in
China [44]. Wang and Zhao (2021) established an industrial carbon emission performance
(ICEP) evaluation system to study the regional industrial carbon emission levels and found
that industrial carbon emission performance has significant inter-provincial differences,
and, by region, the ICEP was highest in the eastern region and lowest in the western
region [45]. Zhang and Li (2022) measured and analyzed the carbon emissions from energy
consumption of rural residents and agricultural production in China and found that rural
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carbon emissions in China’s provinces have spatial agglomeration, and carbon emissions
in the eight economic regions have large inter-regional differences and small intra-regional
differences [46]. Xiao et al. (2022) analyzed the level and spatio-temporal characteristics
of county carbon emissions in Hubei Province from 2000 to 2020 and found that carbon
emissions in central and eastern areas were higher than those in western. Moreover, carbon
emissions in Hubei Province were significantly decoupled from agricultural economic
growth, and the number of counties with strong decoupling has increased [47].

In general, the existing studies on carbon emissions are rich, but there are still certain
shortcomings. Firstly, existing studies have deeply analyzed the relevant influencing factors
of carbon emissions, which can clearly sort out the theoretical relationship between carbon
emissions and related influencing factors. However, carbon emissions have a spatial nature,
and current studies lack discussion on the spatial relationship between carbon emissions
and their influencing factors. Secondly, carbon emissions in China come from a wide
range of sources, and carbon emissions from energy consumption are a key source in the
process of industrialization and urbanization in China, so research on carbon emissions
from energy consumption is necessary, and most existing studies have been conducted
on carbon emissions from energy consumption. Energy consumption can be divided into
rural energy consumption and urban energy consumption, and the corresponding urban
energy consumption is divided into production energy consumption and domestic energy
consumption. A more detailed division of energy consumption sources and the study
of its carbon emission nature and influencing factors can propose more targeted energy
saving and emission reduction policies. Thirdly, carbon emissions are spatially imbalanced,
but the degree of imbalance and how it evolves still need to be measured and analyzed
further in order to clarify the regional differences and spatial distribution characteristics
of carbon emissions. Based on the above three analyses, this paper decided to measure
the carbon emission quantity and carbon emission intensity of urban production energy
consumption, and analyze the spatial and temporal distribution of carbon emissions and
the driving factors. The carbon emissions of urban production energy consumption refer
to the carbon emissions generated by the energy consumption of production activities
in industries, raw materials and materials, construction, transportation, storage, postal
services, wholesale and retail trade, and accommodation and catering, in addition to
agriculture. After measuring carbon emission quantity and carbon emission intensity, the
national and regional imbalance and spatial distribution characteristics of carbon emissions
from urban production energy consumption were further measured and analyzed using
the Dagum Gini coefficient and its decomposition and kernel density estimation, and,
finally, the driving factors of carbon emissions and the regional heterogeneity of the driving
factors were investigated using spatial econometric models. The results of this paper aim to
provide quantitative support for the formulation of national and regional carbon emission
reduction policies, so as to achieve China’s “double carbon” target quickly and effectively.

3. Materials and Methods
3.1. Carbon Emission Calculation

In this paper, the carbon emission quantity and carbon emission intensity of urban
production energy consumption were used to measure the regional carbon emission level,
and the carbon emission quantity of urban production energy consumption was calculated
using energy in industry, raw materials and materials, construction, transportation, storage,
postal industry, wholesale, retail trade, accommodation, catering production and other
end consumption.

3.1.1. Carbon Emission Quantity Calculation

At present, there are many accounting methods for carbon emissions from energy con-
sumption, including the IPCC measurement method, field measurement method and model
estimation method [48]. In this paper, based on the urban production energy consump-
tion and the method of calculating the carbon emission quantity of energy consumption
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according to IPCC [49], a total of 16 energy sources, including raw coal, washed coal, other
washed coal, coal, coke, coking coal furnace gas, other coking products, crude oil, kerosene,
diesel, fuel oil, liquefied petroleum gas, other petroleum products, natural gas, electricity
and heat, were selected to calculate the carbon emissions from urban production energy
consumption of 30 provinces in China from 2005 to 2019. The energy data were derived
from the terminal consumption of the energy balance table in the China Energy Statistical
Yearbook [50]. The calculation formula of carbon emission quantity is as follows:

CEQ = ∑
i

Ei × NCVi × EFi × Oi × 44/12 (1)

In Formula (1), Ei is the energy consumption, NCVi is the average low level calorific
value of the fuel, EFi is the carbon content per unit calorific value of the fuel, Oi is the
oxygen content, and 44/12 is the conversion factor for converting C to CO2.

3.1.2. Carbon Emission Intensity Calculation

The carbon emission intensity of urban production energy consumption is the carbon
emission of urban production energy consumption per unit of GDP. The calculation formula
of carbon emission intensity is as follows:

CEI =
Carbon emissions quantity o f urban production energy consumption

Value added o f the secondary industry + Value added o f the third industry
(2)

In Formula (2), secondary industry refers to the mining industry (excluding mining
auxiliary activities), manufacturing (including metal products, machinery and equipment
repair), electric power, heat, gas and water production and supply industry, and con-
struction industry. The third industry, or tertiary industry, refers to the service industry,
including wholesale and retail, transportation, warehousing and postal services, accommo-
dation and catering industries, etc.

3.2. Dagum Gini Coefficient

The Gini coefficient and its decomposition are important methods to study regional
differences, and the sample is divided into three parts: between-group differences, within-
group differences and hyper-variance density to explore regional differences and their
sources in depth [51,52]. In this paper, the Gini coefficient and its decomposition were
used to measure the regional differences in carbon emission levels of urban production
energy consumption. The overall Gini coefficient reflected the overall differences in carbon
emission levels of inter-provincial urban production energy consumption in China, and the
specific formula is as follows:

G =
∑k

i=1 ∑k
m=1 ∑ni

j=1 ∑nm
r=1

∣∣yij − ymr
∣∣

2n2µ
(3)

The value k is the number of research subjects grouped. In this paper, it was divided
into three regions: eastern, central and western China, containing a total of n research
subjects. The values yij and ymr are the carbon emission levels of the j(r)th province in the
i(m)th research region, and µ is the average value of carbon emissions of all provinces.

The intra-regional Gini coefficient measures the difference in carbon emission levels
within each region, and the inter-regional Gini coefficient measures the difference in carbon
emission levels between regions. The specific formulae are as follows:

Gii =
∑ni

j=1 ∑ni
r=1

∣∣yij − yir
∣∣

2n2
i µi

(4)
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Gim =
∑ni

j=1 ∑nm
r=1

∣∣yij − ymr
∣∣

ninm(µi + µm)
(5)

µm ≤ · · · ≤ µi ≤ · · · ≤ µk (6)

Gii is the intra-regional Gini coefficient, Gim is the inter-regional Gini coefficient, ni (m)
and µi (m) are the number of research objects in region i (m) and the mean carbon emission
level of provinces in region i (m).

The overall Gini coefficient is decomposed to further measure the contribution of intra-
regional differences, inter-regional differences and supervariable density to the overall
differences. The formulae are as follows:

G = Gw + Gnb + Gl , Gw =
k

∑
i=1

Gii pisi (7)

Gnb =
k

∑
i=2

i−1

∑
m=1

Gim(pism + pmsi)Dim (8)

Gl =
k

∑
i=2

i−1

∑
m=1

Gim(pism + pmsi)(1 − Dim) (9)

Dim =
dim − pim
dim + pim

(10)

Gw, Gnb and Gl are the intra-regional, inter-regional and hypervariable density dif-
ference contributions, respectively. Dim is the relative impact of carbon emission levels
between regions i and m, dim is the difference in carbon emission levels between regions i
and m, i.e., the mathematical expectation of the sum of all sample values of yij − ymr > 0
in regions i and m, and pim is the hypervariable first-order matrix, i.e., the mathematical
expectation of the sum of all sample values of yij − ymr > 0 in regions i and m.

3.3. Kernel Density Estimation

Kernel density estimation is an important nonparametric estimation method, which
can further explore the absolute differences and dynamic evolution of regional carbon
emissions [53,54]. In this paper, we used the Gaussian kernel function for kernel density
estimation to study the dynamic distribution and evolution of carbon emission levels of
production energy consumption in inter-provincial cities in China from 2005 to 2019, and
to analyze the agglomeration and dispersion of carbon emissions through the height and
width of the wave. The formula is as follows:

f (x) =
1
ph

p

∑
i=1

K
(

yi − y
h

)
(11)

yi is the carbon emission level of province i, y is the mean of carbon emission level of
all provinces, p is the sample size, h is the bandwidth, and K is the Gaussian kernel function.

3.4. Carbon Emission Classification

To explore the changes of carbon emission levels of urban production energy con-
sumption and their carbon emission types from 2005 to 2019, the carbon emissions of urban
production energy consumption were divided into four categories, namely high-high (high
carbon emission quantity-high carbon emission intensity), high-low (high carbon emission
quantity-low carbon emission intensity), low-high (low carbon emission quantity-high
carbon emission intensity) and low-low (low carbon emission quantity-low carbon emis-
sion intensity), using the average value of carbon emission quantity and carbon emission
intensity as the measure. Those above the average value were high carbon emissions, and
those below the average value of carbon emissions were low carbon emissions.
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3.5. Model Setting

It is considered that the carbon emission level of urban energy production consumption
in provincial in China may have the characteristics of spatial correlation. This paper
proposed to test the drivers of carbon emission levels of production energy consumption in
towns using the spatial error model (SEM), spatial lag model (SLM) and spatial Durbin
model (SDM). The spatial correlation of carbon emission levels of urban production energy
consumption in China was tested using the global Moran index (Global Moran’s I) [55].
If the test was passed, a spatial panel model was required, and then LM, Wald and LR
tests [56] were conducted to select the three spatial models SEM, SLM and SDM, and the
fixed and random effects were selected by the Huasman test.

(1) Spatial error model (SEM)

ln CEit = β1 ln ISit + β2 ln FDIit + β3 ln PCDIit + β4 ln ECSit + β5 ln DREPit
+β6 ln PDit + β7 ln GCRit + β8 ln URit + β9 ln CLit + β10 ln STIit + µi + ηt + uit

(12)

uit = λ
n

∑
j=1

wijujt + εit (13)

(2) Spatial lag model (SLM)

ln CEit = ρ
n
∑

j=1
wij ln CEjt + β1 ln ISit + β2 ln FDIit + β3 ln PCDIit + β4 ln ECSit

+β5 ln DREPit + β6 ln PDit + β7 ln GCRit + β8 ln URit + β9 ln CLit + β10 ln STIit
+µi + ηt + εit

(14)

(3) Spatial Durbin Model (SDM)

ln CEit = ρ
n
∑

j=1
wij ln CEjt + β1 ln ISit + β2 ln FDIit + β3 ln PCDIit + β4 ln ECSit

+β5 ln DREPit + β6 ln PDit + β7 ln GCRit + β8 ln URit + β9 ln CLit + β10 ln STIit

+µi + ηt + γ
n
∑

j=1
wijxjt + εit

(15)

In the formulae, i, j represents a province, t represents the year, CEit is the carbon
emission level of the ith province in year t, β is the coefficient of the explanatory variable,
µi is the individual fixed effect, ηt is the time fixed effect, w is the spatial weight matrix,
λ is the spatial error term coefficient, ρ is the spatial autocorrelation coefficient, x is the
explanatory variable, and γ is the coefficient of the explanatory variable of the neighboring
province affecting the home province.

In this paper, the spatial weight matrix used the adjacency space weight matrix, and
the neighborhood under the spatial structure was represented by 0 and 1. If the spatial
units had a non-zero common boundary, they were considered to be spatially adjacent
and represented by 1; otherwise, they were considered to be non-spatially adjacent and
represented by 0.

wij =

{
1,
0,

region i and region j are adjacent
others

(16)

3.6. Explanatory Variables Selection and Description

The driving factors of carbon emissions from urban production energy consumption
are complex. In this paper, 11 explanatory variables were selected for analysis from five
dimensions as the driving factors of carbon emissions from urban production energy
consumption: urban economic level, living standard of urban residents, urban energy
consumption level, urban population size and urban development level.



Int. J. Environ. Res. Public Health 2022, 19, 12441 8 of 29

(1) Urban economic level. The transformation of industrial structure can be realized
through the upgrading of industrial structure and the rationalization of industrial
structure to reduce carbon emissions, so industrial structure is an important influenc-
ing factor of carbon emissions [57,58]. Foreign direct investment (FDI) has a significant
spatial correlation with carbon emissions, and FDI has a significant impact on the
carbon emission intensity of local and surrounding areas [59]. Therefore, the industrial
structure (IS) and foreign direct investment (FDI) were selected to reflect the urban
economic level. The proportion of value added in the secondary industry to GDP was
used to measure the industrial structure.

(2) Living standard of urban residents. Wen and Zhang found that per capita disposable
income has a significant impact on carbon emissions [60]. Therefore, the per capita
disposable income (PCDI) and per capita consumption expenditure (PCCE) in urban
areas were chosen to reflect the living standard of urban residents, and, among
them, per capita consumption expenditure replaced per capita disposable income for
test robustness.

(3) Urban energy consumption level. Studies have shown that the high proportion of coal
consumption in China directly determines the energy consumption structure, which,
in turn, is the driving factor of carbon emissions [61]. Therefore, the energy consump-
tion structure (ECS) was chosen to reflect the urban energy consumption level. Coal is
the main source of CO2 emissions, and the proportion of coal consumption to total
energy consumption was used to measure the energy consumption structure.

(4) Urban population size. As the main body of economic development, the population
structure has a profound impact on carbon emissions. Labor force and dependency
ratio are important demographic indicators, and have significant space differences
in the impact of carbon emissions [62]. In addition, studies have shown that the
population density of contribution to carbon emissions is high in the short-term
and long-term, and population density is a non-negligible factor affecting carbon
emission [63,64]. Therefore, the dependency ratio of elderly population (DREP) and
population density (PD) were selected to reflect urban population size.

(5) Urban development level. Studies have shown that the green coverage of built-up
areas has a significant impact on provincial carbon emissions in China [65]. The
spatial imbalance of per capita carbon dioxide level in China is obvious, and the
urbanization rate is an important driving factor of carbon emissions [66]. Through
the study of BRICS countries (Brazil, India, China, etc.), it was found that education
level has a significant effect on carbon emissions, which can play a role in environ-
mental quality [67], and scientific and technological innovation can affect carbon
emissions by improving the energy intensity of high-tech industries [68]. Therefore,
the green coverage rate of built-up area (GCR), urbanization rate (UR), cultural level
(CL) and scientific and technological innovation (STI) were selected to reflect urban
development level.

The urbanization rate was measured by the proportion of urban population in the
total population, and the education level was measured by the average years of education:
number of primary school students *6+ number of junior middle school students *3+
number of senior high school students *3+ number of junior college students and above
*16/number of people aged 6 and above. Technological innovation was measured by
the turnover of the technology market. The original data of all the explanatory variables
were obtained from China Statistical Yearbook and China Energy Statistical Yearbook from
2005–2019, and individual missing data were completed using the trend prediction method
and interpolation method. The abbreviations, definitions, and data sources for variables
are shown in Table 1 and descriptive statistics are shown in Table 2.
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Table 1. Abbreviations, definitions, and data sources for variables.

Variable Name Abbreviation Definition Source

Carbon emissions
from urban

production energy
consumption

Carbon emission
quantity CEQ (million tons)

Carbon emission quantity from energy
consumption in the production process of

industry, raw materials and materials,
construction, transportation, warehousing, postal

services, wholesale, retail, accommodation
and catering.

China Energy
Statistical
Yearbook

Carbon emission
intensity

CEI (million
tons/billion yuan)

Carbon emission quantity per unit of value
added in secondary and third industries.

China Energy
Statistical

Yearbook, China
Statistical

Yearbook [69]

Urban economic level

Industrial structure IS (%) The proportion of agriculture, industry and
services in a country’s economic structure.

China Statistical
Yearbook

Foreign direct
investment FDI (billion yuan)

The act of direct investment in China by foreign
enterprises, economic organizations or

individuals using cash, material goods and
technology in accordance with relevant Chinese

policies and regulations.

China Statistical
Yearbook

Living standard of
urban residents

Per capita
disposable income PCDI (yuan)

The sum of final consumption expenditure and
savings available to residents, that is, the income

available to residents for discretionary use.

China Statistical
Yearbook

Per capita
consumption
expenditure

PCCE (yuan)

The total expenditure of residents to meet the
daily consumption of the family, including the

purchase of goods and service
consumption expenditure.

China Statistical
Yearbook

Urban energy
consumption level

Energy
consumption

structure
ECS (%)

The quantity of each type of energy consumed by
each sector of the national economy in a certain

period and its proportion in the total energy
consumption, or the energy consumption and its
proportion according to the consumption sector.

China Energy
Statistical
Yearbook

Urban Population Size

Dependency ratio of
elderly population DREP (%) The ratio of the middle and old part of the

population to the number of working-age people.
China Statistical

Yearbook

Population density PD (persons/km2) The number of people per unit of land area. China Statistical
Yearbook

Urban development
level

Green coverage rate
of built-up area GCR (%) The percentage of the green coverage area in the

urban built-up area.
China Statistical

Yearbook

Urbanization rate UR (%)

Central urban area, county (city, district) and
administrative town, where included in the

urban construction planning and urban
construction, have been extended to the

township, neighborhood committee and village
committee and have realized water, electricity,

road; “three links”.

China Statistical
Yearbook

Cultural level CL (years)

An important indicator of the population quality
of a country. It marks the popularization and

development degree of a country’s culture
and education.

China Statistical
Yearbook

Scientific and
technological

innovation
STI (million yuan)

Industrial enterprises are used for specific
activities in scientific and technological

innovation and development.

China Statistical
Yearbook

Table 2. Descriptive statistics of variables.

Variable Name Mean Std. D. Min Max

CEQ (million tons) 26,048.74 17,899.20 1235.00 93,999.00
CEI (million tons/billion yuan) 2.36 1.54 0.33 10.48

IS (%) 0.43 0.08 0.16 0.62
FDI (billion yuan) 464.32 503.71 0.31 2467.27

PCDI (yuan) 23,790.70 11,698.71 8013.00 73,849.00
PCCE (yuan) 16,788.26 7642.61 5960.00 48,272.00
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Table 2. Cont.

Variable Name Mean Std. D. Min Max

ECS (%) 0.43 0.16 0.01 0.76

DREP (%) 13.47 2.98 7.40 23.80
PD (persons/km2) 2734.90 1266.09 189.00 6307.00

GCR (%) 37.72 4.59 23.50 49.10
UR (%) 54.08 13.83 26.87 89.60

CL (years) 8.81 1.01 6.38 12.78
STI (million yuan) 2,489,551.00 5,946,871.00 5349.37 57,000,000.00

3.7. Research Area

The carbon emission level of production energy consumption varies widely among
different regions, and this paper divided China into three study regions: the eastern region,
including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong,
Guangdong, and Hainan; the central region, including Shanxi, Jilin, Heilongjiang, Anhui,
Jiangxi, Henan, Hubei, and Hunan; the western region, including Inner Mongolia, Guangxi,
Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang. The
study area is shown in Figure 1.
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4. Results and Discussion
4.1. Spatial and Temporal Distribution of Carbon Emissions from Urban Production
Energy Consumption
4.1.1. Spatial Distribution of Carbon Emissions

The results of calculating carbon emissions of urban production energy consumption
in inter-provincial in China from 2005 to 2019 showed that carbon emission levels have
obvious spatial distribution characteristics (Figure 2). Carbon emission quantity showed
the regional characteristics of eastern region > central region > western region in 2005,
while carbon emission intensity was opposite to the distribution of carbon emission quan-
tity, and the western region showed more obvious differences to other regions, and its
carbon emission intensity was much higher than that of other regions. By 2019, the spatial
distribution of carbon emission quantity and carbon emission intensity had changed to
a certain extent. The carbon emission quantity still followed the regional characteristics
of eastern region > central region > western region, while the regional characteristics of
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carbon emission intensity of western region > central region > eastern region were more
obvious than in 2005. The change in pattern of carbon emission levels from 2005 to 2019
showed the change of urban production energy consumption, the rough development
mode leading to a continuous rise in total energy consumption, which, in turn, led to the
rise of carbon emission quantity, but the annual growth rate of carbon emission quantity
from 2005 to 2019 showed a decreasing trend. The carbon emission intensity from 2005 to
2019 also had an obvious decreasing trend. The inter-provincial average carbon emission
intensity decreased from 3.7673 to 1.5340, a decrease of 59.28%, while the regional carbon
emission intensity declined, showing the regional characteristics of central region > eastern
region > western region. The latter was mainly due to the fact that the carbon emission
intensity of the central region was higher than that of the eastern region in 2005, and the
economic development of the central region accelerated from 2005 to 2019, causing the
carbon emission intensity to approach the eastern region. The economic development of
the western region was relatively slow, and although the carbon emission intensity also
declined significantly, the decline was still smaller than that of the eastern and central
regions. The western region had a high resistance to industrial structure upgrading, and its
scientific and technological level was relatively backward. The higher energy consumption
per unit GDP, and economic development lagged behind the eastern and central regions,
thus, leading to relatively higher carbon emission intensity. So, compared with 2005, the
carbon emission intensity of the eastern and central regions were closer in 2019, and the
gap between the western region and the other two regions was more obvious.
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4.1.2. Analysis of Regional Differences in Carbon Emissions

(1) Overall differences

In order to explore in-depth the overall regional differences and sources of carbon
emissions from urban production energy consumption, this paper used the Dagum Gini
coefficient and its decomposition to calculate the overall Gini coefficient of carbon emissions
and further decomposed this to measure the Gini coefficients of eastern region, central
region and western region.

The overall difference of carbon emission quantities is shown in Table 3. The overall
difference of carbon emission quantity fluctuated and decreased, and the overall trend
was one of first decreasing and then increasing. Taking 2005 as the base period, the
overall difference of carbon emission quantity decreased by 3.69%, and the difference
of regional carbon emission quantity decreased. In 2005, the contribution rate of the
regional difference was 48.07, indicating a strong difference in carbon emissions between
regions. However, in 2019, the difference between regions decreased significantly, and
the contribution rate was only 33.99%. At the same time, the contribution rate of the
overall regional difference changed into supervariable density > inter-regional difference >
intra-regional difference, and the contribution rate of intra-regional difference increased by
2.47%, which was relatively stable. The overall difference of carbon emission intensity is
shown in Table 4. The overall difference of carbon emission intensity showed an overall
increasing trend during the study period, with the overall difference increasing by 34.31%,
and the contribution of inter-regional difference to the overall difference tended to decrease
from 2005 to 2019, but still remained the most significant contribution. The contribution
rate to the overall difference of carbon emission intensity from 2005 to 2019 was inter-
regional difference > intra-regional difference > the supervariable density, evolving into
inter-regional difference > the supervariable density > intra-regional difference. From
the comparison of the overall Gini coefficient of carbon emission quantity and carbon
emission intensity, the overall difference of carbon emission quantity was greater than
carbon emission intensity in 2005 and less than carbon emission intensity in 2019, which
showed the rapid rise in the differences in the area of carbon emissions intensity, reflecting
the enhancement of the imbalance of regional economic development. The specific reason
might have been the different levels of technological development and industrial structure.

Table 3. Gini coefficient of carbon emission quantity from urban production energy consumption.

Year Overall

Intra-Regional Inter-Regional Supervariable Density

Source Contribution
Rate (%) Source Contribution

Rate (%) Source Contribution
Rate (%)

2005 0.3628 0.1041 28.70 0.1744 48.07 0.0843 23.23
2006 0.3625 0.1050 28.97 0.1707 47.07 0.0868 23.95
2007 0.3668 0.1041 28.38 0.1818 49.57 0.0809 22.05
2008 0.3636 0.1049 28.85 0.1742 47.90 0.0845 23.25
2009 0.3588 0.1050 29.27 0.1666 46.42 0.0872 24.31
2010 0.3556 0.1047 29.43 0.1605 45.12 0.0905 25.44
2011 0.3513 0.1047 29.80 0.1506 42.88 0.0960 27.32
2012 0.3403 0.1024 30.10 0.1406 41.32 0.0973 28.58
2013 0.3365 0.1022 30.37 0.1348 40.07 0.0995 29.56
2014 0.3336 0.1017 30.49 0.1297 38.86 0.1023 30.65
2015 0.3345 0.1026 30.68 0.1267 37.87 0.1052 31.45
2016 0.3304 0.1048 31.71 0.1082 32.74 0.1175 35.55
2017 0.3364 0.1030 30.62 0.1230 36.57 0.1104 32.81
2018 0.3495 0.1084 31.03 0.1227 35.09 0.1184 33.88
2019 0.3494 0.1089 31.17 0.1187 33.99 0.1217 34.85



Int. J. Environ. Res. Public Health 2022, 19, 12441 13 of 29

Table 4. Gini coefficient of carbon emission intensity from urban production energy consumption.

Year Overall
Intra-Region Inter-Regional Supervariable Density

Source Contribution
Rate (%) Source Contribution

Rate (%) Source Contribution
Rate (%)

2005 0.2777 0.0779 28.07 0.1539 55.43 0.0458 16.51
2006 0.2838 0.0797 28.07 0.1565 55.13 0.0477 16.79
2007 0.2681 0.0768 28.66 0.1396 52.06 0.0517 19.28
2008 0.2587 0.0731 28.27 0.1388 53.67 0.0467 18.06
2009 0.2608 0.0730 27.97 0.1411 54.10 0.0468 17.93
2010 0.2683 0.0757 28.20 0.1433 53.41 0.0493 18.39
2011 0.2853 0.0817 28.63 0.1515 53.11 0.0521 18.27
2012 0.2920 0.0829 28.39 0.1562 53.49 0.0529 18.12
2013 0.3170 0.0919 28.98 0.1665 52.51 0.0587 18.51
2014 0.3232 0.0940 29.08 0.1703 52.69 0.0589 18.23
2015 0.3325 0.0969 29.16 0.1765 53.07 0.0591 17.78
2016 0.3456 0.1030 29.81 0.1805 52.23 0.0621 17.96
2017 0.3420 0.1029 30.10 0.1695 49.56 0.0695 20.34
2018 0.3380 0.1010 29.89 0.1555 46.00 0.0815 24.11
2019 0.3729 0.1131 30.34 0.1812 48.58 0.0786 21.08

(2) Intra-regional differences

The intra-regional differences in carbon emission quantity and their evolution trends
are shown in Figure 3a. The intra-regional differences in carbon emission quantity in
the eastern region were the first among the three major regions, and the intra-regional
differences showed an increasing trend during the study period, showing the imbalance
of urban production energy consumption in the eastern provinces. The intra-regional
difference in carbon emission quantity of the central region and western region showed a
differentiated trend.
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Figure 3. Intra-regional Gini coefficient of carbon emissions of urban production energy consumption
from 2005 to 2019. (a) Carbon emission quantity. (b) Carbon emission intensity.

Since 2012, the intra-regional difference in carbon emission quantity in the central
region decreased, while the intra-regional difference in carbon emission quantity in the
western region increased, so that the intra-regional difference in the western region was
much higher than in the central region by 2019. As shown in Figure 3b, the carbon
emission intensity in the eastern region, central region and western region showed a
fluctuating upward trend, and the intra-regional difference in carbon emission intensity
in the eastern region, central region and western region increased by 34.63%, 35.28% and
45.40%, respectively. During the study period, the differences in the area of carbon emission
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in the eastern region and western region were similar. In 2019, the western region was
slightly higher than the eastern region, while the differences in the central region were
always smaller than the eastern region and western region. In general, the difference
of carbon emission quantity in the eastern region was much higher than that of carbon
emission intensity, the difference of carbon emission quantity in the central region was
smaller than that of carbon emission intensity, and the difference of carbon emission
quantity in the western region was small.

(3) Inter-regional differences

The inter-regional differences in carbon emissions and their evolution trends are shown
in Figure 4a. During the research period, the inter-regional differences of carbon emission
quantity in the eastern–western and central–western were very similar. The inter-regional
difference of the eastern–western gradually decreased after reaching its maximum value
in 2007. The inter-regional difference of the eastern–central continued to increase, and
the inter-regional differences of the eastern–central and eastern–western were similar in
2019. The inter-regional difference of the central–western was close to the eastern–central
in 2005 and continued to decrease later, and was much smaller than the eastern–central.
As shown in Figure 4b, the inter-regional difference in carbon emission intensity had an
obvious upward trend, in which the inter-regional difference of the eastern–western was
the largest. In 2019 the inter-regional difference of the eastern–western carbon emission
intensity reached 0.4514, up 22.08% from 2005, followed by the difference of the central–
western, and the difference of the central–western carbon emission intensity rose the most,
at 59.96%. The inter-regional difference reached its maximum in 2019. The variation trend
of the inter-regional difference of the eastern–central was relatively stable, with a small
increase in the study period, and the inter-regional Gini coefficient of eastern–central only
increased sharply in 2016, and then decreased and maintained a slow growth.
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Figure 4. Inter-regional Gini coefficient of carbon emissions of urban production energy consumption
from 2005 to 2019. (a) Carbon emission quantity. (b) Carbon emission intensity.

4.1.3. The Evolution of Carbon Emission Dynamics of Urban Production Energy Consumption

Based on the Dagum Gini coefficient and its decomposition, the overall differences
and evolution trends of carbon emission levels were analyzed, and the relative differences
of regions were identified. In order to further study the dynamic distribution characteristics
of carbon emission levels and absolute regional differences, this paper used Kernel density
estimation to study the overall pattern and dynamic evolution of carbon emission distri-
bution in China and each region. Matlab software was used to draw a three-dimensional
perspective view of carbon emission levels in China and each of its regions from 2005
to 2019.

(1) The evolution of carbon emission quantity dynamics
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As shown in Figure 5a, the center of the peak of the kernel density curve of carbon
emission quantity shifted left and then right from 2005 to 2019, and, compared with 2005,
the center of the kernel density curve shifted right and the peak decreased significantly in
2019. However, the decline gradually slowed down and a new wave appeared at the right
end. The main peak gradually changed from a sharp peak to a broad peak. As shown in
Figure 5b–d, there was a slight rightward shift in the center of the peak of carbon emission
quantity in the eastern region from 2005 to 2019, while there was a significant rightward
shift in the central region and a significant leftward shift in the western region. The peaks in
the eastern region, central region and western region all showed a decreasing trend during
the study period and gradually evolved from sharp peaks to broad peaks. The eastern
region and western region were always single-peaked, while the western region had a side
peak to the right of the main peak from 2008 to 2019, but the peak was lower and gradually
became flat. The main peak of the kernel density curve of carbon emission quantity in the
three regions during the study period was western region > central region > eastern region.
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The above analysis showed that the imbalance of carbon emission quantities in China
deepened, and there was a trend of polarization, with large differences between regions and
an increasing trend of differences between provinces within each region. The largest differ-
ences between provinces were within the eastern region, followed by the central region, and
with polarization within the western region, but the polarization was gradually decreasing.

(2) The evolution of carbon emission intensity dynamics

As shown in Figure 6a, the overall carbon emission intensity kernel density curve
from 2005–2019 showed a right trailing phenomenon. The peak showed an upward trend,
the center of the peak first shifted right and then shifted significantly left during the study
period, and evolved from single to multiple peaks. There were two side peaks at the right
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side of the main peak in 2019, but the side peaks were smaller and the trend was flatter. As
shown in Figure 6b–d, the kernel density curves of carbon emission intensity in the eastern
region, central region and western region all evolved from single to multiple peaks with
a right trailing phenomenon from 2005 to 2019. Among them, the eastern region had a
side peak on the right side of the main peak in 2019, and the central and western regions
had two side peaks on the right side of the main peak in 2019. The main and side peaks in
the eastern region increased significantly during the study period, and the center of the
main peak did not have a significant shift. The main and side peaks in the central region
increased significantly, but the center of the main peak had a significant left shift. The main
peak in the western region increased significantly, while the side peaks had strong volatility
and the center of the main peak had a significant left shift. Overall, the main peak of the
kernel density curve of carbon emission intensity was central region > eastern region >
western region.
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The above analysis showed that the imbalance of carbon emission intensity of urban
production energy consumption in the country weakened, but the deepening of the po-
larization phenomenon indicated an obvious gradient effect. Compared with the eastern
region and western region, the central region had the weakest imbalance, followed by the
eastern region, and the western region had the strongest imbalance. The emergence of
side peaks in the eastern region and central region also showed a certain polarization phe-
nomenon. There was an obvious gradient effect, namely most provinces’ carbon intensity
decreased obviously and became gradually numerically close, but there were still some
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provinces where the decrease in carbon emission intensity was small and there was a large
gap with the carbon emission intensity in most provinces, so the phenomenon of multi
-polarization was generated.

4.2. Carbon Emission Classification of Urban Production Energy Consumption

The carbon emission classification of urban production energy consumption inter-
provincially is shown in Table 5. From 2005 to 2019, carbon emissions evolved from
high-low category to high-high category in Liaoning, from low-low category to high-high
category in Xinjiang, and from low-low category to low-high category in Heilongjiang, in-
dicating that carbon emission intensity in Liaoning and Heilongjiang, and carbon emission
quantity and intensity in Xinjiang jumped from below-average to above-average. Hubei
evolved from high-high category to high-low category, Jilin, Guizhou and Yunnan evolved
from low-high category to low-low category, and Hunan evolved from high-low category
to low-low category, indicating that the carbon emission intensity of Hubei, Jilin, Guizhou
and Yunnan and the carbon emission quantity of Hunan all jumped from above-average
to below-average. The carbon emission classification shows that the number of provinces
in China at low carbon emission quantity and low carbon emission intensity increased
in 2019 compared to 2005, with the number of provinces reaching 50%. Most provinces
produced large changes in carbon emission categories during the study period, also show-
ing differences in their production energy consumption levels. Provinces with relatively
high carbon emission quantity or relatively high carbon emission intensity should start
from different paths to reduce emissions. For provinces in the high-low category, they
should mainly start from the perspective of energy use, focusing on the development and
utilization of clean energy and reducing the use of fossil energy, such as coal. For provinces
in the low-high category, they should mainly start from the technical level, strengthen the
level of scientific and technological innovation, and improve the efficiency of energy use.
For provinces in the high-high category, they should consider both energy consumption
and technological innovation.

Table 5. Carbon emission classification from urban production energy consumption.

Classification High-High High-Low Low-High Low-Low

Carbon emissions of
urban production

energy consumption

2005 Hebei, Shanxi, Inner
Mongolia, Hubei

Liaoning, Jiangsu,
Zhejiang, Shandong,

Henan, Hunan,
Guangdong

Jilin, Guizhou,
Yunnan, Gansu,

Qinghai, Ningxia

Beijing, Tianjin, Heilongjiang,
Shanghai, Anhui, Fujian, Jiangxi,

Guangxi, Hainan, Chongqing,
Sichuan, Shaanxi, Xinjiang

2019
Hebei, Shanxi, Inner

Mongolia, Hubei,
Liaoning, Xinjiang

Jiangsu, Zhejiang,
Shandong, Henan,
Hubei, Guangdong

Heilongjiang, Gansu,
Qinghai, Ningxia

Beijing, Tianjin, Jilin, Shanghai, Anhui,
Fujian, Jiangxi, Hunan, Guangxi,

Hainan, Chongqing, Sichuan,
Guizhou, Yunnan, Shaanxi

4.3. Analysis of Driving Factors of Carbon Emission from Production Energy Consumption

In the previous section, the analysis of carbon emission levels of urban production
energy consumption inter-provincially found that there were significant spatial distribution
characteristics. In order to further explore the strategies to reduce the carbon emission
levels of production energy consumption, it was necessary to conduct an in-depth study
of the driving mechanism. By calculating the global Moran’s I index of carbon emissions
for spatial correlation analysis (Table 6), it was found that the quantity and intensity of
carbon emissions from 2005 to 2019 had significant spatial correlation. Therefore, this paper
analyzed the driving factors of carbon emission quantity and carbon emission intensity
using a spatial econometric model. To reduce the possible heteroskedasticity and fluctuation
effects of the variables, both explanatory and explained variables were logarithmically
treated. LM tests [70] of each explanatory variable, using the spatial econometric model,
found that both the spatial error term and the spatial lag term of carbon emission quantity
and carbon emission intensity were significant (Table 7). Further, Wald and LR tests were
conducted for the spatial Durbin model of carbon emission quantity and carbon emission
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intensity, and it was found that the spatial Durbin model of carbon emission quantity and
carbon emission intensity could not degenerate into a spatial error and spatial lag model.
Finally, the Hausman test was performed on the model and the fixed-effect model was
selected, and the model was finally determined by comparing the intra-group R-square
and AIC and BIC criteria. The model selection is shown in Table 8.

Table 6. Moran’s I index of contribution rate of CEQ and CEI from 2005 to 2019.

Year
I E(I) SD(I) Z-Value p-Value

CEQ CEI CEQ CEI CEQ CEI CEQ CEI CEQ CEI

2005 0.266 0.230 −0.034 −0.034 0.119 0.115 2.515 2.294 0.006 0.011
2006 0.264 0.211 −0.034 −0.034 0.120 0.117 2.490 2.101 0.006 0.018
2007 0.263 0.231 −0.034 −0.034 0.120 0.118 2.491 2.250 0.006 0.012
2008 0.244 0.276 −0.034 −0.034 0.119 0.119 2.339 2.609 0.010 0.005
2009 0.236 0.321 −0.034 −0.034 0.119 0.120 2.262 2.969 0.012 0.001
2010 0.225 0.315 −0.034 −0.034 0.120 0.120 2.171 2.916 0.015 0.002
2011 0.217 0.314 −0.034 −0.034 0.120 0.118 2.098 2.943 0.018 0.002
2012 0.194 0.349 −0.034 −0.034 0.119 0.119 1.916 3.229 0.028 0.001
2013 0.191 0.358 −0.034 −0.034 0.119 0.117 1.891 3.354 0.029 0.000
2014 0.189 0.361 −0.034 −0.034 0.119 0.116 1.873 3.392 0.031 0.000
2015 0.181 0.394 −0.034 −0.034 0.119 0.115 1.811 3.727 0.035 0.000
2016 0.251 0.404 −0.034 −0.034 0.118 0.116 2.423 3.777 0.008 0.000
2017 0.164 0.400 −0.034 −0.034 0.120 0.114 1.653 3.805 0.049 0.000
2018 0.155 0.381 −0.034 −0.034 0.119 0.112 1.591 3.705 0.056 0.000
2019 0.144 0.396 −0.034 −0.034 0.119 0.113 1.499 3.825 0.067 0.000

Table 7. LM test results.

LM Test

Statistics
CEQ CEI

Lagrange multiplier 14.276
(0.000)

63.825
(0.000)

Robust Lagrange multiplier 8.043
(0.005)

10.713
(0.000)

Lagrange multiplier 19.666
(0.000)

72.954
(0.000)

Robust Lagrange multiplier 13.433
(0.000)

19.842
(0.000)

Table 8. Model selection results.

Explained Variables National Eastern Region Central Region Western Region

Carbon emission
quantity

Time, individual
double fixed effects

spatial Durbin model

Time, individual
double fixed effects

spatial Durbin model

Time, individual
double fixed effects

spatial Durbin model

Time, individual
double fixed effects

spatial Durbin model

Carbon emission
intensity

Individual fixed effects
spatial Durbin model

Individual fixed effects
spatial Durbin model

Time, individual
double fixed effects

spatial Durbin model

Time, individual
double fixed effects

spatial Durbin model

4.3.1. Analysis of the Driving Factors of Carbon Emissions from Urban Production Energy
Consumption from a National Perspective

As shown in Table 9, the carbon emission quantity from production energy con-
sumption was influenced by multiple factors, among which foreign direct investment and
scientific and technological innovation had a significant inhibiting effect on the carbon
emission quantity. Foreign direct investment had a significant suppressing effect on carbon
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emission quantity in both local and neighboring regions, while scientific and technological
innovation had a significant suppressing effect mainly on local carbon emission quantity.
Foreign direct investment and scientific and technological innovation may control the
amount of carbon emissions by promoting technological progress and, thus, improving
the efficiency of energy use, as well as promoting the upgrading of industrial structure.
The change in industrial structure (the increase of the value added of secondary industry
as a share of GDP), the increase of per capita disposable income, urbanization rate and
cultural level had significant promoting effects on carbon emission quantity. The change
of industrial structure had significant promoting effects on carbon emission quantity in
both local and neighboring regions. The effect of per capita disposable income on local
carbon emission quantity was significantly positive, and the urbanization rate only had a
significant positive total effect. The effect of cultural level only had a significant positive
effect on carbon emission quantity in neighboring regions. The upgrading of industrial
structure (increasing the ratio of third, or tertiary, industry to secondary industry) can
make industries develop to a higher level and reduce their dependence on resources, thus,
reducing carbon emission quantity. Secondly, the upgrading of industrial structure can
also significantly reduce carbon emission quantity by promoting technological innova-
tion [71], so the change of industrial structure in this study could lead to an increase in
carbon emission quantity. On the one hand, the level of urbanization might reduce carbon
emission quantity by improving the energy structure and technology level, but, on the other
hand, the urbanization rate increases the level of residential consumption, and the effect
is higher than the improvement of energy structure and technology level. The increase of
residential consumption level further leads to increase in carbon emissions quantity, so
the urbanization rate had a significant positive effect on the increase of carbon emission
quantity [72]. The increase of per capita disposable income reflected the increase of the
consumption capacity of the population, which, in turn, promoted the production efforts
of the production industries and, therefore, led to more carbon emission quantity from
energy consumption.

Table 9. Regression results of the region-wide sample of carbon emissions from urban production
energy consumption.

Variable lnCEQ lnCEI

lnIS 0.1406 −0.2389 ***
lnFDI −0.0435 *** −0.0378 ***

lnPCDI 1.6895 *** −0.4153 ***
lnECS 0.1216 *** 0.1575 ***

lnDREP 0.0293 −0.0018
lnPD 0.0134 0.0012

lnGCR 0.2361 ** 0.1935 **
lnUR 0.2419 0.1908
lnCL −0.1314 −0.5789 **
lnSTI −0.0401 *** −0.0634 ***

Spatial
ρ 0.1233 * 0.3134 ***

Variance
σ2 _e 0.0090 *** 0.0107 ***

Time effect Yes No
Individual effect Yes Yes

R2 0.7793 0.8990
AIC −799.0385 −709.7291
BIC −708.635 −619.3257
N 450 450

Note: *, **, *** denote significant levels of 10%, 5%, and 1% levels, respectively.
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Carbon emission intensity was also affected by multiple factors, as shown in Table 10.
The direct, indirect and total effects of foreign direct investment and scientific and tech-
nological innovation on carbon emission intensity were significantly negative, indicating
that foreign direct investment and scientific and technological innovation could effectively
suppress the carbon emission intensity of local and neighboring areas. The change of
industrial structure had a significant inhibitory effect on local carbon emission intensity,
but significantly increased the carbon emission intensity of neighboring areas, because the
secondary industry consumed more local energy, but also promoted the economic level,
so the effect on local areas was economic enhancement > carbon emission, but the effect
on neighboring areas was carbon emission > economic enhancement. So, the effect on
carbon emission intensity was heterogeneity. Per capita disposable income reflects the
improvement of local economic level, so the increase of per capita disposable income could
significantly suppress local carbon emission intensity, but the indirect effect and total effect
were not significant. Energy consumption structure and greening coverage of built-up
areas had a significant direct contribution effect on carbon emission intensity, and cultural
level had a significant direct suppression effect. The dependency ratio of elderly population
and cultural level had significant spatial spillover effects that significantly increased carbon
emission intensity in neighboring provinces, where the total effect of dependency ratio of
elderly population on carbon emission was significantly positive. This showed that the
increase of dependency ratio of elderly enhanced the pressure on the young population,
leading to brain drain, enterprise migration, etc., and slow economic growth, which, in
turn, led to the increase of carbon emission intensity [62]. When the spatial factor was not
considered, the increase of urbanization rate could reduce the carbon emission intensity of
energy consumption [73], but this study found that the inhibitory effect of urbanization
rate on the carbon emission intensity of energy consumption of provincial production was
not significant after considering the spatial spillover effect, and the urbanization rate still
mainly had a significant effect on carbon emission quantity. The growth of tertiary industry
value added as a share of GDP and economic growth could suppress carbon emission
intensity, and there was also a significant causal relationship between urbanization rate
and economic growth. Therefore, a high-quality level of urbanization is essential for energy
saving and emission reduction and reducing carbon emission intensity [74].

Table 10. Decomposition of carbon emission intensity effect of urban production energy consumption.

Variable
CEQ CEI

Direct Effect Indirect Effect Total Effect Direct Effect Indirect Effect Total Effect

lnIS 0.1458 * 0.3569 * 0.5027 * −0.1944 ** 0.7738 *** 0.5794 *
lnFDI −0.0457 *** −0.1224 *** −0.1681 *** −0.0468 *** −0.1658 *** −0.2126 ***

lnPCDI 1.6967 *** −0.0970 1.5997 *** −0.4014 *** 0.1865 −0.2150
lnECS 0.1199 *** −0.0762 0.0437 0.1578 *** −0.0011 0.1567 *

lnDREP 0.0301 0.0538 0.0839 0.0168 0.3042 ** 0.3210 **
lnPD 0.0150 0.0205 0.0356 −0.0004 −0.0403 −0.0407

lnGCR 0.2289 ** −0.2675 −0.0386 0.1944 * 0.0096 0.2040
lnUR 0.2431 0.2733 0.5165 * 0.1528 −0.5059 −0.3531
lnCL −0.0559 1.9291 *** 1.8732 *** −0.4873 * 1.2247 *** 0.7374
lnSTI −0.0402 *** −0.0182 −0.0583 * −0.0675 *** −0.0760 ** −0.1435 ***

Note: *, **, *** denote significant levels of 10%, 5%, and 1% levels, respectively.

4.3.2. Analysis of the Driving Factors of Carbon Emissions from Urban Production Energy
Consumption in a Regional Perspective

The results of the analysis of carbon emission driving factors of urban production
energy consumption in the three major regions of China are shown in Tables 11 and 12.
The change in industrial structure could significantly enhance carbon emission quantity in
the eastern and central regions and reduce carbon emission quantity in the western region,
among which the direct effect of the change in industrial structure on the central region
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was not significant, but had a significant positive effect on the indirect and total effects. The
direct, indirect and total effects of industrial structure on the western region all significantly
showed that the increase in the proportion of value added in secondary industry could
reduce carbon emission quantity in the western region. There was no significant spatial
spillover effect of foreign direct investment on the eastern and western regions, but it could
significantly raise the local carbon emission quantity in the western region and reduce the
carbon emission quantity in the neighboring provinces, which, in turn, had a significant
inhibitory effect on the overall carbon emission quantity at the provincial level. Per capita
disposable income had a more significant effect on carbon emission quantity in the eastern
region, which could increase local carbon emission quantity and suppress carbon emission
quantity in neighboring provinces, but its contribution to carbon emission quantity was
stronger, thus making overall carbon emission quantity higher, which was consistent with
the results of the China-wide regression. The spatial spillover effect of the change in energy
consumption structure (rising share of coal consumption in energy consumption) was not
significant, but could significantly raise carbon emission quantity in the eastern, central and
western regions. The increase in urbanization rate and cultural level could reduce carbon
emission quantity in the western region, but it mainly had a significant inhibitory effect on
local carbon emission quantity. The opposite effect of the increase in urbanization rate for
the eastern and central regions was mainly due to the difference in the development stages
of urbanization rate between the eastern, central and the west regions during the study
period, and, therefore, might have had different effects on the carbon emission quantity.

Table 11. Regression results of carbon emissions from urban production energy consumption by
region sample.

Variable
Eastern Region Central Region Western Region Eastern Region Central Region Western Region

lnCEQ lnCEQ lnCEQ lnCEI lnCEI lnCEI

lnIS 0.2926 * 0.2638 −0.3257 ** 0.4619 *** −0.7836 *** −0.7022 ***
lnFDI −0.0136 −0.0547 ** 0.0221 * 0.0167 −0.0349 0.0015

lnPCDI 1.1254 *** 1.2471 ** 0.0318 −0.4945 *** −0.0839 −0.5072 *
lnECS 0.0658 ** 0.2046 *** 0.4426 *** 0.0817 ** 0.3085 *** 0.4751 ***

lnDREP 0.1096 −0.2584 ** −0.1035 0.2065 *** −0.1471 −0.0281
lnPD 0.0222 0.0351 −0.0260 −0.0671 −0.0122 −0.0261

lnGCR 0.1067 0.6304 *** 0.1140 −0.1242 0.9837 *** 0.0339
lnUR 0.3179 0.0128 −2.2996 *** 0.1686 0.1097 −2.3494 ***
lnCL 0.1700 −0.2085 −0.6438 ** −0.2728 0.0423 −0.8921 ***
lnSTI 0.0208 0.0118 0.0059 0.0008 0.0103 −0.0155

Spatial
ρ −0.1490 −0.3893 *** −0.1325 −0.1576 −0.3500 *** 0.3228 ***

Variance
σ2 _e 0.0038 *** 0.0034 *** 0.0035 *** 0.0059 *** 0.0036 *** 0.0038 ***

Time effects Yes Yes Yes No Yes Yes
Individual

effects Yes Yes Yes Yes Yes Yes

R2 0.8438 0.8037 0.7723 0.9431 0.9557 0.8183
AIC −403.8642 −289.4422 −412.9957 −333.3009 −284.2851 −407.0186
BIC −335.5334 −228.1174 −344.6649 −264.9701 −222.9603 −338.6878
N 165 120 165 165 120 165

Note: *, **, *** denote significant levels of 10%, 5%, and 1% levels, respectively.

As can be seen from Tables 11 and 13, the change in industrial structure had significant
direct and indirect effects on the eastern region, but the total effect was not significant,
that is, it could significantly enhance the local carbon emission intensity and suppress
the carbon emission intensity of neighboring regions, but the direct and indirect effects
interacted with each other, so that the effect of the change in industrial structure on the
overall inter-provincial carbon emission intensity was not significant. At the same time, the
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change in industrial structure could significantly suppress the carbon emission intensity
in the western region, and had a strong spatial spillover effect. The increase of foreign
direct investment had significant spatial spillover and total effects on carbon emission
intensity in the eastern and western regions, but the difference was that foreign direct
investment raised the carbon emission intensity in the eastern region and suppressed
the carbon emission intensity in the western region. The total effect of rising per capita
disposable income was negative and significant for the eastern, central and western regions,
which could suppress carbon emission intensity, with per capita disposable income having
comparable suppression effects on carbon emission intensity of local and neighboring
provinces in the eastern region, and tending to suppress carbon emission intensity of
neighboring provinces more for the central region. The change in energy consumption
structure had a significant positive effect on the local provincial carbon emission intensity in
the eastern, central and western regions, and the total effect on the carbon emission intensity
in the central and western regions was significantly positive, and had a significant spatial
spillover effect on the western region and a negative effect on the neighboring provinces
in the eastern region. Therefore, the direct and indirect effects in the eastern provinces
had a mutual offset, thus, leading to an insignificant total effect. The dependency ratio of
elderly population had a significant effect on the western region, which would significantly
increase the carbon emission intensity of local and neighboring provinces. The direct and
total effects of increasing green coverage of built-up areas on carbon emission intensity in
the central region were significantly positive, with no significant spatial spillover effect. The
increase in urbanization rate had no significant effect on the central region, but the effect
on the eastern region was opposite to the western region. The increase in urbanization
rate increased the carbon emission intensity of the neighboring provinces in the eastern
region, but was able to suppress the carbon emission intensity of the local provinces in the
western region. The spatial spillover effect and the total effect of cultural level in the central
region were significantly positive, while the increase of cultural level in the western region
could effectively reduce the carbon emission intensity of the province and neighboring
provinces. The improvement of scientific and technological innovation had a negative
spatial spillover effect and total effect on carbon emission intensity in the western region,
i.e., it could significantly reduce carbon emission intensity in the western region.

Table 12. Decomposition of sample effects of carbon emission quantity of urban production and
energy consumption by region.

Variable
Eastern Region Central Region Western Region

Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnIS 0.3009 * −0.2644 0.0365 0.1678 0.3572 ** 0.5251 * −0.2950
**

−1.0332
***

−1.3283
***

lnFDI −0.0123 0.0061 −0.0062 −0.0610
** 0.0329 −0.0281 0.0270 ** −0.0987

***
−0.0717

***

lnPCDI 1.1831 *** −0.5774
*** 0.6057 * 1.4165 ** −0.5817 0.8348 0.0847 −1.1614

** −1.0767

lnECS 0.0650 ** 0.0221 0.0871 0.2040 *** −0.0047 0.1993 0.4545 *** −0.3217 * 0.1328
lnDREP 0.1187 −0.1478 −0.0290 −0.2641 * 0.0266 −0.2375 −0.1109 0.1399 0.0290

lnPD 0.0208 0.0825 0.1034 0.0119 0.1040 *** 0.1159 *** −0.0247 −0.0064 −0.0311
lnGCR 0.1122 0.0145 0.1267 0.6026 *** 0.1598 0.7625* 0.1190 −0.1442 −0.0252

lnUR 0.3220 0.0129 0.3349 −0.1428 0.5972 0.4544 −2.3118
*** −0.3062 −2.6180

***

lnCL 0.1779 0.4766 0.6544 −0.4169 1.0451 * 0.6282 −0.5925
** −0.6775 −1.2700 *

lnSTI 0.0189 0.0307 0.0496 0.0042 0.0365 0.0408 0.0081 −0.0366* −0.0286

Note: *, **, *** denote significant levels of 10%, 5%, and 1% levels, respectively.
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Table 13. Decomposition of sample effects of carbon emission intensity of urban production and
energy consumption by region.

Variable
Eastern Region Central Region Western Region

Direct Indirect Total Direct Indirect Total Direct Indirect Total

lnIS 0.4460 *** −0.5545 * −0.1085 −0.8449
*** 0.2351 −0.6098

**
−0.6809

***
−1.8207

***
−2.5016

***

lnFDI 0.0203 0.0694 ** 0.0896 ** −0.0382 0.0240 −0.0142 0.0049 −0.1382
***

−0.1333
***

lnPCDI −0.5068
***

−0.5983
***

−1.1051
*** 0.4190 −2.1953

**
−1.7763

** −0.4827 -0.9098 −1.3925 *

lnECS 0.0808 ** -0.0713 0.0095 0.2943 *** 0.0636 0.3579 *** 0.4692 *** 0.3759 ** 0.8451 ***
lnDREP 0.2041 *** -0.1237 0.0804 −0.1749 0.1281 −0.0468 −0.0403 0.5940 ** 0.5537 **

lnPD -0.0640 0.0172 −0.0468 −0.0177 0.0342 0.0165 −0.0248 −0.0138 −0.0386
lnGCR -0.1184 −0.0068 −0.1251 0.9422 *** 0.2390 1.1812 *** 0.0394 −0.3587 −0.3194

lnUR 0.2040 1.5869 *** 1.7909 *** 0.0191 0.3844 0.4035 −2.3682
*** −0.1752 −2.5434

***

lnCL -0.2411 0.4186 0.1775 −0.2053 1.3660 ** 1.1607 * −0.8434
*** −1.3590 * −2.2025

**

lnSTI 0.0004 −0.0110 −0.0105 0.0069 0.0207 0.0275 −0.0136 −0.0628
***

−0.0764
**

Note: *, **, *** denote significant levels of 10%, 5%, and 1% levels, respectively.

4.3.3. Test for Robustness

In order to test the feasibility and robustness of the research results, this article adopted
a replacement indicator method for a robustness test. The per capita disposable income of
important indicators was replaced by per capita consumption expenditure. The robustness
test results are shown in the Table 14. The coefficient of the per capita consumption
expenditure effect could promote carbon emission quantity at a significant level of 1%,
reducing carbon emission intensity at a significant level of 1%, which was the same as the
result of the per capita disposable income. The coefficients of indirect effects and total
effects were similar to the coefficients of per capita disposable income. In addition, other
important indicators were the same as the return of regression after replacing the per
capita consumption expenditure. Therefore, urban living standards could promote the
carbon emission quantity from production energy consumption and inhibit the carbon
emission intensity from production energy consumption. It also showed that the carbon
emission quantity and carbon emission intensity from production energy consumption
were inseparable from the impact of urban energy consumption level, urban population
size and urban development level.

Table 14. Robustness test results of carbon emission quantity and carbon emission intensity.

Variable lnCEQ Direct
Effect

Indirect
Effect

Total
Effect lnCEI Direct

Effect
Indirect
Effect

Total
Effect

lnIS 0.2913 *** 0.2943 *** 0.4847 ** 0.7790 *** −0.2409 *** −0.1775 ** 1.0079 *** 0.8303 ***
lnFDI −0.0363 *** −0.0372 *** −0.1390 *** −0.1762 *** −0.0405 *** −0.0520 *** −0.1921 *** −0.2441 ***

lnPCCE 0.4643 *** 0.4685 *** −0.0916 0.3769 * −0.4942 *** −0.4629 *** 0.4417 *** −0.0212
lnECS 0.1015 *** 0.1009 *** −0.0518 0.0491 0.1587 *** 0.1576 *** −0.0200 0.1376

lnDREP −0.0166 −0.0149 0.1772 0.1623 −0.0034 0.0167 0.3074 ** 0.3240 **
lnPD −0.0007 −0.0001 −0.0260 −0.0261 0.0073 0.0038 −0.0675 −0.0637

lnGCR 0.1540 0.1495 −0.2871 −0.1376 0.1893 ** 0.1764 * −0.2016 −0.0253
lnUR 0.4843 *** 0.4796 *** 0.0834 0.5630 * 0.3152 ** 0.2570 * −0.7837 ** −0.5267
lnCL 0.1050 0.1469 1.0464 * 1.1932 * −0.6132 ** −0.5274 ** 1.0432 ** 0.5158
lnSTI −0.0487 *** −0.0487 *** −0.0295 −0.0782 ** −0.0609 *** −0.0663 *** −0.0894 *** −0.1557 ***

Spatial
ρ 0.0639 0.3438 ***
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Table 14. Cont.

Variable lnCEQ Direct
Effect

Indirect
Effect

Total
Effect lnCEI Direct

Effect
Indirect
Effect

Total
Effect

Variance
σ2 _e 0.0101 *** 0.0104 ***

Time effects Yes No
Individual

effects Yes Yes

R2 0.7793 0.8990
N 450 450

Note: *, **, *** denote significant levels of 10%, 5%, and 1% levels, respectively.

5. Conclusions

This study measured the carbon emission levels (carbon emission quantity and carbon
emission intensity) of urban production energy consumption in inter-provincial areas in
China based on data from 2005–2019. The study measured and decomposed the overall re-
gional differences in carbon emission levels using the Dagum Gini coefficient, analyzed the
dynamic characteristics of the distribution of carbon emission levels and absolute regional
differences using the Kernel density estimation method, and used a spatial econometric
model to analyze the driving factors of carbon emission levels in the whole region and three
regions (eastern region, central region and western region). The main research findings are
as follows.

First, the carbon emission quantity increased year by year during the study period, but
the growth rate decreased, and the carbon emission intensity had an obvious decreasing
trend. Besides this, the carbon emission quantity and carbon emission intensity showed
obvious spatial differences, i.e., the carbon emission quantity showed the characteristic of
eastern region > central region > western region, while the carbon emission intensity, on
the contrary, showed the characteristic of western region > central region > eastern region,
and the spatial characteristics were more obvious as time went on.

Second, the overall difference of carbon emission quantity showed a decreasing trend.
The intra-regional difference of carbon emission quantity evolved from eastern region >
central region > western region to eastern region > western region > central region, and
the overall difference of carbon emission intensity showed an increasing trend, and the
intra-regional difference of carbon emission intensity was always western region > eastern
region > central region. The imbalance of carbon emission quantity increased in the country,
and the imbalance of carbon emission quantity increased in different degrees in the eastern
region, central region and western region. There was a significant gradient effect in the
carbon emission intensity, and there was also a trend of multi -level differentiation in the
provinces in various regions. From the perspective of carbon emission classification, the
inter-provincial carbon emission classification had some changes from 2005 to 2019, but
most of the carbon emission provinces were in the low-low category.

Third, carbon emission level was influenced by multiple factors, among which carbon
emission quantity was mainly influenced by industrial structure, per capita disposable
income, energy consumption structure, urbanization rate, cultural level, scientific and
technological innovation. Carbon emission intensity was mainly influenced by industrial
structure, foreign direct investment, energy consumption structure, the dependency ratio
of elderly population and scientific and technological innovation. Different regions had
heterogeneity, and the level of driving factors was different. Industrial structure, per capita
disposable income, energy consumption structure, urbanization rate were the important
driving factors of regional carbon emissions.

6. Policy Suggestions

Based on the above findings, this paper proposes the following recommendations to
reduce carbon emissions from urban production energy consumption in China, to promote
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the achievement of carbon peaking and carbon neutral goals, and to realize green and
sustainable economic and social development.

First, on a national scale, the energy consumption structure has more room for trans-
formation. On the one hand, China’s natural resource profile of “coal-rich and oil-poor”
has influenced the energy consumption structure, so China’s current production energy
consumption is still coal-based fossil energy, which leads to a large amount of CO2 emis-
sions [75]. On the other hand, the energy consumption structure also depends on the
industrial structure, and as a large industrial country, China’s industrial sector consumes
relatively more energy. Therefore, we should optimize the energy consumption structure
and industrial structure. Industrial structure is the core driving force for the development
of low-carbon cities [76]. Adjusting the industrial structure, accelerating the transforma-
tion and upgrading of high-energy-consuming industries, and then adjusting the energy
consumption structure could effectively reduce urban carbon emissions. In addition,
strengthening scientific and technological innovations, especially the development and
utilization of clean energy, improving the construction of new energy systems with clean
power as the main body, strengthening the development of wind power and nuclear power,
reducing the energy consumption of industrial products, and reducing the dependence
on fossil fuels, such as coal, and realizing a low-carbon economy would all be beneficial.
From a regional perspective, the energy consumption structure has a heterogeneous impact
on the region, and more attention should be paid to the transformation of the energy
consumption structure in the central region and western region. The change of industrial
structure also has an important impact on economic development, and “low carbon” can
be used to force traditional industries to upgrade and promote the development of new
industries, but it should also be considered that industrial restructuring should go hand in
hand with economic development, and excessive pursuit of economic growth or excessive
emphasis on low carbon is not conducive to the long-term development of the country.
Balance of the low carbon economy must be sought.

Secondly, the regional differences should be balanced to achieve dual balance between
carbon emission quantity and carbon emission intensity. The regional differences in carbon
emission quantity and carbon emission intensity of urban production energy consumption
reflect imbalance in intra- and inter-regional economic development and energy utilization.
The eastern region as a whole has a relatively developed economy and higher technology
level, but its internal imbalance is also stronger. Therefore, important provinces in the
eastern region, such as Shanghai and Zhejiang, should actively play the role of central
cities to strengthen the economic and technological radiation to the surrounding areas,
improving the economic levels of the surrounding provinces while reducing the differences
in the level of carbon emissions of production energy within the region. The eastern region
should give full play to its advantages in high and new technology, and transport technical
talents to the central region and western region, so as to provide important support for
the industrial development and upgrading of the central region and western region. The
difference of carbon emission level and economic development within the central region
is smaller, therefore, as an important hub between the eastern region and western region,
the central provinces should play a good role as a mediator, while maintaining a stable
and positive development. The western region should pay more attention to economic
construction and low-carbon development of secondary and tertiary industries, while
industrial structure transformation is crucial to strengthen the upgrading of low-end
manufacturing industries to high-end manufacturing industries, accelerate the transfer
from labor and capital-intensive industries to high-tech-intensive ones, and narrow the
economic differences with the eastern region and central region, so as to reduce the carbon
emission intensity of production.

Finally, the construction of new urbanization should be strengthened. The increase
of urbanization rate has significant heterogeneity for regions, and the urbanization rate
is higher in the eastern region and central region at the present stage. Further increasing
the level of urbanization rate will raise the level of production of carbon emissions, so the
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transformation of new urbanization should be accelerated, and new urbanization should
play an important role in revitalizing the economy, while being a key step in the coordinated
development of economic and ecological environments [77]. Therefore, new-type urbaniza-
tion should be strengthened, especially in the eastern region and central region, to eliminate
the high pollution and carbon emissions brought by traditional urbanization construction.
Specifically, the new urbanization should, on the one hand, strengthen the urbanization
of population, not only the migration of population from rural to urban areas, but more
importantly, the overall improvement in production and living consumption levels, and, on
the other hand, strengthen the rationalization of planning so that development is not at the
expense of environment Development of special industries according to local conditions,
etc. should be encouraged.
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