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Simple Summary: Proximity to community resources is often used as a benchmark in spatial public
health analyses, but a measure that incorporates observed preferences leads to different policy
interventions.

Abstract: Understanding who in a community has access to its resources—parks, libraries, grocery
stores, etc.—has profound equity implications, but typical methods to understand access to these
resources are limited. Travel time buffers require researchers to assert mode of access as well as an
arbitrary distance threshold; further, these methods do not distinguish between destination quality
attributes in an effective way. In this research, we present a methodology to develop utility-based
accessibility measures for parks, libraries, and grocery stores in Utah County, Utah. The method relies
on passive location-based services data to model destination choice to these community resources;
the destination choice model utility functions in turn allow us to develop a picture of regional access
that is sensitive to: the quality and size of the destination resource; continuous (non-binary) travel
impedance by multiple modes; and the sociodemographic attributes of the traveler. We then use
this measure to explore equity in access to the specified community resources across income level in
Utah County: the results reveal a discrepancy between which neighborhoods might be targeted for
intervention using space-based analysis.

Keywords: accessibility; spatial analysis; location-based services data; community resources; parks;
groceries; libraries

1. Introduction

Communities provide important resources to the people who live in them. These
resources might include physical and economic resources—shared open space, libraries,
commercial establishments, etc.—as well as less identifiable resources including a sense
of membership and other forms of social capital [1]. Indeed, access to these resources
is a primary reason why communities exist [2], as well as a long-motivating objective in
transportation infrastructure planning [3].

Given the importance of these community resources, it is not surprising that so much
scholarly attention has been paid to examining the spatial and socioeconomic variation
in access to them [4,5]. What is surprising is the simplistic and arbitrary definition of
many quantitative resource accessibility measures, in spite of the widespread availability of
geographical information systems (GIS) software [6] and an understanding that proximity
to a resource is not the only consideration in its use [7]. Individuals do not always shop
at the nearest grocery store, nor do they necessarily perceive an 11-min walk to a park
as meaningfully different from a 9-min walk. A measure of access that can incorporate
travel impedance by multiple transportation modes alongside qualitative attributes of
the resources in question would provide a better theoretical comparison to what people
experience and observe in their own communities. This measure in turn may result in a
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different understanding of which groups have or do not have good access—and therefore
in different policy interventions to resolve the access gap—than more traditionally used
measures [6,8].

In this paper, we develop utility-based access measures to parks, grocery stores,
and libraries in Utah County, Utah. These measures are based in econometric choice theory
relating continuous multimodal travel impedance to attributes of the resource. The utility
preferences are estimated on location-based services data obtained from a third-party
commercial data aggregator. We then use the model estimates to construct a composite
accessibility measure and examine potential discrepancies between this measure and a
more common travel-time buffer measurement.

The paper begins with a discussion of previous findings relating access to community
resources with social, health, and equity benefits. We then describe the methodology
employed in this research, which makes use of novel third-party mobile device. A results
section describes both the estimated choice models and a comparative analysis; the pa-
per closes with a discussion of several limitations of the approach as well as associated
opportunities for future research.

2. Literature Review

In this study, we have chosen to focus on three specific community resources that have
robust histories of accessibility and spatial analysis: parks, grocery stores, and libraries. This
section first discusses research developing and classifying various accessibility measures,
followed by a discussion of previous attempts to measure access to the resources selected
for this analysis.

2.1. Developing Access Measures

Accessibility is easily defined as the ability to reach useful destinations [4], but this
ease in definition belies a wide array of potential quantitative descriptions. Dong et al. [7]
present a helpful hierarchy of access measures, which we briefly summarize here.

Among the simplest measures of access is a so-called isochrone or buffer measure,
which considers whether a person at position i traveling to a potential destination j is
within a particular travel time threshold t∗. Using this measure, a person has access to
the resource if tij < t∗. Sometimes it is possible to access multiple resources within this
threshold, in which case a a cumulative opportunities measure can be defined as

Aisochrone
i = ∑

j∈J
δij, where δij =

{
1, for tij ≤ t∗

0, for tij > t∗
(1)

Variations of this measure include elements like “number of grocery stores within
10 min” or “density of green space within 5 miles.” Further modifications might allow a
measure to include the supply of the resource in addition to its spatial location [9]. Strengths
of this method include its relative simplicity, but it has three central limitations. First, the
threshold t∗ must be defined by the researcher for a specific value by a certain travel mode,
and different definitions can have different policy outcomes [6]. Second, the binary nature
of the measure contradicts a practical understanding of travel behavior: a four minute and
fifty second trip is not functionally different from a five minute and ten second trip. Finally,
the measure assumes that all options in the choice set J are of equivalent quality.

Extensions to this basic framework relax some of these constricting assumptions. A
gravity-based accessibility measure

Agravity
i = ∑

j∈J
Sj ∗ f (tij, β) (2)

considers the “size” of the destination Sj as well as a continuous travel impedance function
that decreases the impact of further destinations. The parameters β of this impedance
function can be calibrated to match the observed trip length distribution of a survey or
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other data, or a basic distance decay function without parameters can be used. Additionally,
if no other information on the “size” or attractiveness of the destinations is available, then
Sj = 1.

Activity-based or utility-based measures rely on location choice theory, where the
probability of choosing a destination is a function of the destination’s attributes weighted
against the travel impedance to reach it. The mathematical details of this measure are
described below in Section 3.1, but the measure relies on understanding how the attributes
of a destination Xj affect the utility Vij of a person at origin i selecting that destination

Vij = Xijβ (3)

where the marginal effect of the attributes are defined by a vector of estimable parameters
β. One potential obstacle to developing utility-based accessibility measures has been
obtaining sufficient data on which to estimate these utility preference parameters. High-
quality household surveys that reveal activity locations are most commonly used for
this purpose in general travel demand modeling, but such surveys typically group many
infrequent discretionary trips into catch-all categories [10].

In the last several years, however, various commercial data products developed
from mobile device and location-based services (LBS) data have entered common use in
transportation planning activities. Applications or websites that serve mobile content based
on a user’s location will log this location information and sell the data to commercial third-
party aggregators. These aggregators in turn will weight and anonymize the data before
selling the prepared datasets to transportation planning agencies. These LBS datasets
typically contain vehicle or person flows between spatially defined zones, sometimes
segmented by inferred transportation mode, time of day, day of week, or imputed trip
purpose. These datasets have been shown to accurately reflect visits to recreation areas
and other land uses [11], and are becoming a common part of transportation planning
practice [12,13]. In recent years, researchers have begun developing methods to estimate
destination choice models (and their related utility parameters) from passive data. Zhu and
Ye [14] developed a method to estimate a destination choice model for taxi trips in Shanghai,
relying on the scale of the GPS dataset to estimate a robust model. Macfarlane et al. [15]
use location-based services data for park visitors in Alameda County, California to estimate
a destination choice model, and then apply that model to examine utility-based park
accessibility and equity.

2.2. Access to Parks, Grocery Stores, and Libraries

Parks and other open spaces are frequently understood to provide mental and physical
health benefits to the members of the community who use them [16], but specific evidence
of a link between access and these benefits is somewhat mixed, perhaps due to a wide
variety of accessibility measures used in various studies [17]. Most use some form of
isochrone-based measure. For example, Neusel Ussery et al. [18] developed a county-level
green space density measure for the entire United States based on the percentage of de-
veloped green space in each county. A popular measure called ParkScore [19] uses the
share of a population that lives within a 10-min walk of a park to provide a metropolitan-
level accessibility score. Some studies have shown that metropolitan areas with a higher
ParkScore have better health outcomes [20], but this finding has not been satisfactorily
reproduced for neighborhoods within a metropolitan region. Kaczynski et al. [21] devel-
oped ParkIndex, a measure that gives extra weight to neighborhoods near high-quality
parks by incorporating park choice preferences determined from a user survey; some of the
usefulness of this measure is limited by only weighting neighborhoods within 1 mile of
a park rather than being applied continuously across the region as a utility-based access
measure. Macfarlane et al. [8] constructed a utility-based access to parks measure derived
from an earlier park choice survey [22], and showed a positive relationship between this
measure and health outcomes that does not appear to exist when using the ParkScore
isochrone access measure.
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The accessibility of grocery stores to low-income or other disadvantaged communities
has been a similarly frequent topic in the academic literature; both in terms of identifying
the existence of so-called “food deserts” as well as correlating these deserts with mea-
sures of well-being. The U.S. Department of Agriculture (USDA) defines food deserts
for their own purposes as low-income census tracts where a certain threshold of people
live more than a mile from the nearest grocery store, or a shorter threshold if automobile
ownership is low [23]. Most other researchers have adopted similar definitions of ac-
cess. For example, Morland et al. [24] use the number of grocery stores in the same census
tract, Algert et al. [25] used the share of households within 0.8 kilometers of a store, and
Hamidi [26] uses the USDA measures directly. In conflict with these simplistic definitions
are a number of studies suggesting that the nearest grocery store is not necessarily where
people—including low-income people—obtain their food [27–29]. Wood and Horner [30]
addressed this shortcoming by considering a gravity-derived accessibility measure, weight-
ing the number of opportunities against a continuous travel time function. Other more
recent research has suggested that what matters is not home accessibility as much as
location of a store within a time-space construction of a person’s daily activities [31,32].

Libraries provide important educational and social opportunities for community
members through computer facilities, reference materials, and special programs [33,34].
Libraries can also be used to enhance physical and emotional well-being in a community
through public initiatives [35]. Though perhaps not as commonly studied as either parks
or libraries, a few recent efforts have examined the spatial distribution of libraries and
socioeconomic disparities in access. Allen [36] measured the gap in travel time to the nearest
library by car and by public transit, showing that transit-dependent communities were
considerably disadvantaged. Cheng et al. [37] applied travel time thresholds to examine
the share of communities in Hong Kong that lacked access. Guo et al. [38] also measured
library access disparities in Hong Kong, using two different travel-time focused measures.
None of the measures we could find considered other attributes of the library beyond its
proximity, even though these additional features play a strong role in the library’s role in
community building [34].

Certainly there are other community resources that warrant consideration; Ermagun
and Tilahun [39] consider a multiple-resource gravity accessibility measure that includes
schools, jobs, and hospitals in addition to the three that have been used here. Churches,
museums, or various other facilities might be relevant elements in shaping the quality of
life in a community. Regardless of what resources are selected, it is clear that existing acces-
sibility practice considers spatial proximity as paramount, and quality of the destination as
secondary. Further, travel times by particular modes are the default measure rather than
holistic, multimodal travel impedance measures. Using utility-based measures for both
travel impedance and for the accessibility measure might provide a more complete picture
of who can and who cannot access community resources in a region.

3. Methods

In this section, we present a method to estimate utility-based access to community
resources in Utah County, Utah.

3.1. Modeling Framework

In a destination choice modeling framework [27], an individual at origin i considering
a destination j from a set of possible destinations J has a choice probability

Pij =
eVij

∑j′∈J eVij′
(4)
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where Vij is a linear-in-parameters function representing the utility of destination j. The des-
tination utility consists of two basic elements:

Vij = βtij + Xjγ (5)

where tij is a measure of the travel impedance between i and j, Xj is a vector of attributes
of destination j, and β, γ are estimated parameters relating the travel impedance and the
destination attributes to the utility. These parameters may be estimated by maximum
likelihood given sufficient observational data.

The logarithm of the denominator of the choice probability given in Equation (4) is a
quantity called the logsum and represents the total value—or accessibility A—of the choice
set for individual i [4,40]

Ai = log

∑
j′∈J

eVij′

+ C (6)

where C is an unknown constant resulting from the fact that the utility represented in
Equation (5) is not absolute, but rather relative to the utilities of the other options. The dif-
ference in logsum values between two different origin points could be compared to de-
termine which location has “better” accessibility to the destinations in question, based on
the elements included in Equation (5). Accessibility might be improved by lower travel
impedance, or by improved amenities, or even by simply having more options available.

These other elements include attributes of the community resource relevant to the
destination choice problem: the size of the resource, amenities available, the price of
goods on sale, etc. Each of these variables has an importance weighted against the travel
impedance tij, which might take various forms depending on the data available and the
destination resource in question.

Simple measures such as the highway travel time or the walk distance might be more
or less appropriate for particular resources. Another option commonly used in travel
demand models is actually the logsum of a mode choice model with the utility of choosing
each mode given by a set of utility equations. In this study, we adopt generic mode choice
utility equations

Vijauto = −0.028 ∗ (tijauto)

Vijtransit = −4− 0.028 ∗ (tijtransit)− 0.056 ∗ (wtij)− 0.372 ∗ (atij)

Vijwalk = −5− 0.028 ∗ (tijwalk)− 1.12 ∗ (dij|dij < 1.5)− 5.58 ∗ (dij|dij ≥ 1.5)

where tij is the travel time in minutes from i to j by each mode (including only in-vehicle
time for transit), wt is the transit wait and transfer time, at is the time to access and egress
transit by walking, and dij is the walking distance in miles. The walking distance uses two
different utility parameters depending on whether the walking distance is greater than
1.5 miles. The travel impedance logsum between i and j is then

MCLSij = log
(

exp(Vijauto) + exp(Vijtransit) + exp(Vijwalk)
)

(7)

3.2. Data

Figure 1 presents a schematic of the process to calculate the accessibility logsum
for a particular region. Though the remainder of this section provides detail on each
step and data input, a high-level overview is perhaps useful here. First, the American
Community Survey provides information on the “origins” or residence neighborhoods in
the region of study. Manual data collection efforts or other methods provide information
on the community resources under study, or the “destinations.” Routing software (R5)
generates a matrix of travel costs between pairs of neighborhoods and resource locations
using highway networks from OpenStreetMap and transit service timetables. These three
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data sets (origin information, destination information, and travel costs) are then combined
into a “synthetic” choice set representing possible activity locations for people in each
neighborhood. Location-based services data from a commercial provider reveals which
potential destination was actually chosen, information which feeds an econometric choice
model that estimates choice utility parameters. Finally, these utility parameters can then
be re-applied to the choice set—or a new dataset representing future conditions or even a
different region—to calculate utility-based accessibility measures.

Road Network (OpenStreetMap)

R5

Transit (GTFS)

Travel costs

Synthetic choice set

American Community Survey (origins) Resources (destinations)

Accessibility

mlogit

Location-based services data

Utility estimates

Figure 1. Diagram of the data assembly process.

Utah County, Utah, is among the fastest-growing urbanized regions in the United
States, with formerly agrarian areas and open rangeland being converted to predominately
suburban built environments. The population and economic center of the county is in Provo
and Orem, home to two large universities (Brigham Young and Utah Valley), but the most
rapid development in commercial and residential terms has been in communities north of
Utah Lake, between Provo and Salt Lake City to the north. Interstate 15 travels the spine of
the county, and a commuter rail system travels multiple times a day between Provo and
Salt Lake City with stations in Orem, American Fork, and Lehi. A bus rapid transit (BRT)
system connects the universities, two commuter rail stations, and the densest portions of
Provo and Orem, and other local bus services operate in other communities in the region.
Table 1 presents descriptive statistics of the block groups—a Census-defined geography
between 600 and 3000 people, and the smallest geography at which aggregate demographic
statistics are generally available—in Utah County obtained from the 2015–2019 American
Community Survey (ACS) using the tidycensus package for R [41].
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Table 1. Block Group Summary Statistics.

Pct. Missing Min Mean SD Median Max

Density: Households per square
kilometer

0 0.00 558.95 660.05 394.68 4747.20

Income: Median block group annual
income ($US)

2 20,588.00 80,309.14 31,030.52 77,099.00 196,458.00

Low Income: Percent of households
making less than $35k

1 0.00 16.58 13.37 12.67 70.36

High Income: Percent of households
making more than $125k

1 0.00 22.96 17.13 19.15 92.31

Children: Percent of households with
children under 6

1 0.00 24.17 12.33 22.13 84.62

Black: Percent of population who is
Black

0 0.00 0.45 0.95 0.00 7.37

Asian: Percent of population who is
Asian

0 0.00 1.44 2.30 0.49 20.34

Hispanic: Percent of population who is
Hispanic *

0 0.00 11.64 10.57 8.64 62.11

White: Percent of population who is
White

0 32.84 82.56 11.88 84.25 100.00

* Hispanic indicates Hispanic individuals of all races; non-Hispanic individuals report a single race alone.

3.2.1. Resource Data

Figure 2 shows the locations of three types of community resources in Utah County:
parks, grocery stores, and libraries. For each resource, an initial list of resources and
elementary attributes was obtained by executing a relevant query to OpenStreetMap (OSM).

Public parks and their attributes retrieved from OSM were verified and corrected
using aerial imagery and some site visits. The attributes included the size of the park in
acres, whether the park includes a playground, and whether the park includes facilities for
volleyball, basketball, and tennis. The constructed dataset includes 582 attributed parks.

Grocery stores were retrieved from OSM and validated using internet resources and
site visits. The complete Nutritional Environment Measures Survey (NEMS-S) [42] was
collected for each store, but this preliminary analysis only includes cursory information on
the stores including whether the store is a convenience store or some other non-traditional
grocery, whether the store includes a pharmacy or other non-food merchandise, and the
number of registers as a measure of the store’s size. The constructed dataset includes
58 stores.

Libraries were retrieved from OSM, and validated using library websites and some
site visits. The initial query returned university libraries and other specialty resources;
though some of these libraries are open to those outside the university community, these
were removed so that the resource list only includes libraries generally catering to the
general public. The amenities available include whether the library offers additional classes
and programs, and whether the library includes genealogical or family history resources.
The square footage of the library was estimated from online mapping services. Other
variables discussed in the literature such as the availability of computers and public wi-fi
networks were present in every library and therefore cannot be included in the destination
utility equations.
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10 km

N

Resource Type Groceries Libraries Parks

Figure 2. Location of community resources in Utah County.

3.2.2. Mobile Device Data

Macfarlane et al. [15] present a method for estimating destination choice models from
such data, which we repeat in this study. We provided a set of geometric polygons for
each park, grocery store, and library to StreetLight Data, Inc., a commercial aggregator.
StreetLight Data in turn provided data on the number of mobile devices observed in each
polygon grouped by the inferred residence block group of those devices during summer
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and fall 2019. We then created a simulated destination choice estimation dataset for each
community resource by sampling 10,000 block group—resource “trips” from the StreetLight
dataset. This created a “chosen” alternative; we then sampled ten additional resources
at random (each simulated trip was paired with a different sample) to serve as the non-
chosen alternatives. Random sampling of alternatives is a common practice that results in
unbiased estimates, though the standard errors of the estimates might be larger than could
be obtained through a more carefully designed sampling scheme [43].

3.2.3. Travel Times

Once the choice, alternatives, and attributes of the alternatives have been defined,
the last element of the choice utility is the travel impedance between each block group and
each resource. Using the r5r R interface [44] to the R5 routing algorithm, we estimated
the highway drive travel time, the walking route time, and the transit travel time for
trips departing on 26 April 2022 at 8 AM. The time and date are most relevant for the
transit path builder in R5, which uses detailed transit path information stored in the Utah
Transit Authority GTFS feed file for Spring and Summer 2022. The transit path contains
separate measures of the total travel time, the time in the transit vehicle, transfer time,
and access/egress time, allowing us full use of the mode choice utility equations and
resulting logsum described in Equation (7). We limited valid paths to those involving less
than 10 km of walking and 2 h of total travel time.

For groceries and libraries, we queried the shortest time path on each mode from the
population-weighted block group centroid to the centroid of the grocery store or library
polygon. Because some parks in the dataset can be relatively large and the centroid might
be far from the park access or use point, we instead sampled points along the boundary
of the park polygon, and queried the shortest time path by each mode to the nearest
boundary point.

4. Results
4.1. Destination Choice Models

Using the simulated trip choices assembled from the location-based services data, we
estimate destination choice models with the mlogit package for R [45,46].

Table 2 presents the model estimation results for five different specifications of park
destination choice. The “Car” model includes only the network travel time by car as
a predictor of park choice; the “MCLS” model similarly contains only the mode choice
logsum as an impedance term. The signs on the coefficient indicate that people are more
likely to choose parks with lower car distance or higher multi-modal access, all else equal.
The “Attributes” model includes only information on the park attributes including size and
amenities. On balance, people appear attracted to larger parks and parks with playgrounds,
while somewhat deterred by various sports facilities. The “All” models include both the
relevant travel impedance term as well as destination attributes.

Table 2. Park Destination Choice Utilities.

Car MCLS Attributes All-Car All-Logsum

Drive time −0.286 (−93.013) ** −0.267 (−67.263) **
Mode Choice Logsum 10.203 (93.013) ** 9.547 (67.263) **
log(Acres) 1.317 (77.828) ** 1.307 (45.585) ** 1.307 (45.582) **
Playground 4.574 (34.228) ** 4.467 (30.248) ** 4.466 (30.247) **
Volleyball −0.344 (−8.989) ** −0.555 (−9.379) ** −0.555 (−9.379) **
Basketball −0.665 (−15.643) ** −0.508 (−7.024) ** −0.508 (−7.024) **
Tennis −0.566 (−13.515) ** −0.881 (−14.706) ** −0.881 (−14.708) **

Num.Obs. 9119 9119 9119 9119 9119
Log Likelihood −8945.6 −8944.8 −11,954.7 −4603.5 −4603.2
McFadden Rho-Sq 0.591 0.591 0.453 0.789 0.789

t-statistics in parentheses. ** p < 0.01.

For most block group-park pairs, the transit and walk travel costs are sufficiently
high that choosing these travel modes is unlikely. As a result, the mode choice logsum is
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highly collinear with the car travel time. Nevertheless, there are small differences between
the models with the different impedance terms. Using a non-nested likelihood statistic
test presented by Horowitz [47], we cannot reject the null hypothesis that the two “All”
models have equivalent likelihood (p-value of 0.195), and therefore cannot infer that the
mode choice logsum is a marginally better estimator of park choice than the vehicle travel
time alone.

Table 3 presents the model estimation results for the grocery store models. As with the
parks models in Table 2, the most predictive model contains both a travel impedance term
and attributes of the destination grocery store. The number of registers suggests that people
prefer larger stores, all else equal; ethnic markets, convenience stores, and other facilities
are less preferred while stores with pharmacies and other merchandise (clothes, home
goods, etc.) attract visitors. The ratio of the drive time and convenience store coefficients
suggests that on average, people are willing to drive 4.97 min to reach a store that is not a
convenience store. In terms of the travel impedance, there is again not a sufficiently large
gap in the model likelihoods to reject that the mode choice logsum and the drive time are
equivalent predictors of grocery store choice.

Table 3. Grocery Destination Choice Utilities.

Car MCLS Attributes Size All-Car All-Logsum

Drive time −0.251 (−94.328) ** −0.270 (−82.644) **
Mode Choice Logsum 8.972 (94.329) ** 9.643 (82.645) **
Convenience Store −2.231 (−12.434) ** −1.520 (−8.412) ** −1.343 (−6.987) ** −1.343 (−6.987) **
Other non-standard −2.224 (−15.998) ** −1.618 (−11.535) ** −1.418 (−9.430) ** −1.418 (−9.429) **
Has pharmacy 0.603 (20.852) ** 0.359 (10.659) ** 0.330 (7.848) ** 0.330(7.850) **
Ethnic market −1.639 (−18.212) ** −0.976 (−10.569) ** −0.887 (−9.080) ** −0.887 (−9.082) **
Has other merchandise 1.495 (51.750) ** 0.791 (21.345) ** 0.909 (19.288) ** 0.909 (19.291) **
Number of registers 0.071 (44.314) ** 0.087 (40.073) ** 0.087 (40.074) **
Number of self-checkout 0.026 (13.475) ** 0.020 (8.207) ** 0.020 (8.206) **

Num.Obs. 10,000 10,000 10,000 10,000 10,000 10,000
Log Likelihood −14,256.7 −14,257.0 −20,199.6 −19,031.4 −10,542.9 −10,542.9
McFadden Rho-Sq 0.405 0.405 0.158 0.206 0.560 0.560

t-statistics in parentheses. ** p < 0.01.

Table 4 presents the model estimation results for the library destination choice models.
As with parks and grocery stores, both travel impedance and destination attributes are
significant predictors of library choice. The strength of the attributes vector is somewhat
surprising, because virtually all libraries in the data set offer the same set of basic amenities
other than the size of the facility. Further, each municipality in Utah County operates
its own library rather than having a system of interconnected library branches as might
be typical in larger cities or other regions. As with grocery stores and parks, there is no
significant difference between the prediction power of the mode choice logsum versus the
car travel time.

Table 4. Library Destination Choice Utilities.

Car MCLS Attributes All-Car All-Logsum

Drive time −0.303 (−91.448) ** −0.313 (−72.838) **
Mode Choice Logsum 10.814 (91.447) ** 11.195 (72.836) **
Offers Classes −0.471 (−11.662) ** −0.819 (−12.050) ** −0.819 (−12.051) **
Genealogy Resources −0.831 (−30.213) ** −0.867 (−20.844) ** −0.867(−20.840) **
log(Square Footage) 1.114 (79.831) ** 1.219 (44.555) ** 1.219 (44.552) **

Num.Obs. 10,000 10,000 10,000 10,000 10,000
Log Likelihood −11,198.0 −11,197.5 −17,667.4 −9389.7 −9389.6
McFadden Rho-Sq 0.533 0.533 0.263 0.608 0.608

t-statistics in parentheses. ** p < 0.01.

4.2. Accessibilities

Using the results of the “All - Logsum” models estimated for each community resource
in the last section, we calculate the total utility-based accessibility measure for each block
group in Utah County. For comparison to a more traditional measure, we also created
buffer-based accessibility terms where a block group has “access” to a grocery store if there
is one within a 5-min drive, a park if there is one within a five-minute walk, and a library if
there is one within a ten-minute drive.



Int. J. Environ. Res. Public Health 2022, 19, 12352 11 of 16

Figure 3 spatially presents the difference between the buffer-based measure and the
logsum-based measure. The two measures largely show the same basic shape: block groups
along the spine of the county tend to have binary access in the buffer and also have a higher
logsum value. The difference is at the margins, where the discontinuity of the buffer
measure is replaced by a smoother access surface, more spatially reflective of what people
are likely to experience.

Buffer Logsum

-2

0

2

Logsum

< 5 minute drive

FALSE

TRUE

Figure 3. Spatial comparison of grocery access threshold versus logsum value.

The potential for the buffer measure to oversimplify the accessibility problem is further
illustrated in Figure 4. This figure shows the utility-based accessibility logsum calculated
using the mode choice logsum as an impedance term against the travel time in minutes
(drive time for grocery stores and libraries; walk time for parks), for block groups in
the study region. It is clear that for all three land uses, lower travel time is significantly
correlated with higher accessibility. However, for block groups with equivalent travel time
to a particular community resource, the accessibility logsum value varies substantially.
Even for block groups along the buffer—where a small change in travel time might place
a block within or without the buffer—the variance in accessibility logsum appears to be
almost as large as the variance in the travel time. This variance in accessiblity logsum might
be due to a travel time differential between drive, walk, and transit modes captured in
the mode choice logsum, or it could also be because the resources available near the set of
block groups have substantial variance in their amenities. Being near a single poor-quality
grocery store is not the same thing as being near multiple high-quality groceries, and the
logsum value can capture this variance in its construction.
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Figure 4. Relationship between travel time and logsum access value for block groups in Utah County.
Travel time thresholds shown as dashed lines, with best fit regresssion line added for context.

4.3. Spatial Distribution

In this analysis, we estimate that 18,750 households live in block groups outside the
boundary of all three resource buffers: 10-min drive for a library, 5-min drive for a grocery
store, and 5-min walk for a park. Of these, 1648 make less than $35,000 per year. At the same
time, only 33,814 households live in block groups that are beneath the regional mean utility-
based access to all three resources; that is, they have less-than the regional average access
to grocery stores, and to libraries, and to parks. Of these households, 3073 are similarly
low-income. Perhaps more importantly, the overlap between the households in both groups
is not very high: only 9405 households live in block groups with low access determined by
both buffers and by accessibility logsum, 739 of which are low-income households.

5. Discussion

The results presented in the previous section suggest that professionals and academics
must understand the implications of accessibility definitions when conducting spatial
analysis of community resources. This study does not attempt to correlate the accessibility
measure it presents with measures of nutrition, health, or numerous other potential covari-
ates. However, it is not difficult to forsee how the results of such an analysis could change
substantially based on whether a binary distance-based or utility-based definition is used.
Further, the lack of spatial agreement on which people in the community have access or do
not have access implies that policy interventions constructed based on distance alone may
target neighborhoods that actually have good access from a more holistic perspective.

Surely there are limitations to the specific methods developed in this study. The
location-based services data reveals the likely home location of devices observed within a
geographic polygon, within some measurement error. It cannot tell us whether the device
holder actually accomplished the assumed activity; that is, there may be a reason why a
device was observed near a library even though the person did not actually patronize the
library. Additionally, the method we use to compile the estimation dataset presumes that
the choice to make a trip to the community resource has already been made. Though it can
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suggest how the accessibility of a neighborhood to these resource would improve were
transportation impedance decreased or the resources expanded or improved, it cannot tell
us how many more people might take advantage of the resource in that case.

In this research, all simulated trips were grouped into a single pooled model for
analysis. This implies that the effect of amenities and travel impedance on destination
choice is similar for all neighborhoods. A segmented model where, for example, low-
income block groups and high-income block groups were estimated separately could allow
for flexibility in these estimates and reveal differences in preferences among residents of
the different neighborhoods. Some neighborhoods might show a particular preference for
access utilities by transit, or for specific park amenities. A latent class choice model [48]
would go further in potentially informing which demographic variables are meaningful in
defining possible data segmentation schemes. It may be also be possible to estimate the
models using a synthetic population with statistical resampling instead of block group-level
aggregate demographic measures.

A necessary assumption made when constructing the estimation dataset is that people
experience access from their home neighborhood. This may not always be true; for instance,
people may choose to shop at grocery stores or visit libraries that are near their workplace,
or that are between their homes and some other frequent destination. Methods to account
for access and destination choices experienced at other points in the day would be a useful
and interesting extension. Similarly, we assumed that the distance between a home and a
community resource was represented by the distance between the block group centroid and
the resource. For some block groups in less dense areas of the county, the error in measured
travel time between the block group centroid and the actual home location might be larger
than the total travel time. It might be possible to simulate home locations within each block
group and use those locations in the travel time calculations. Alternatively, it might be
possible to estimate the model using block group data as in this study but apply the model
at a more fine resolution (e.g., block) when investigating accessibilities and conducting
policy analyses.

This paper presents preliminary model estimates using plausible destination choice
utility values. Several additional variables might be further explored, particularly in
regards to the grocery resources. The NEMS-S survey is a highly detailed picture of the
offerings of a particular grocery store, including information on the availability of relatively
healthier or fresher foods and their prices. This study was only able to explore a few
key size variables, but a deeper investigation into grocery store amenities and offerings
preferences—and how they might influence a collective understanding of nutrition access
more broadly—is needed.

6. Conclusions

This paper developed accessibility-based measures of accessibility to three types of
community resource: parks, grocery stores, and libraries. These metrics were informed by
observing trips to specific facilities in mobile device data, allowing the measures to incor-
porate attributes of the resource as well as attributes of the journey there. The computed
measures are fundamentally different from buffer-based measures more commonly used to
inform spatial policy analysis.

Ultimately, the purpose of any accessibility measure to a community resources is to
enable a subsequent analysis of some metric of well-being. Macfarlane et al. [8] suggest
that a utility-based access to parks measure is more predictive of physical health outcomes
than a buffer-based measure. Is this true for more community resources? Would using a
more subtle or nuanced measure of access to libraries help in understanding a link between
community form and social isolation or mental health? A key benefit of this method is that
it provides a way to evaluate the benefit of investments in resources against the benefits of
investing in the transportation system. Will a community benefit more from a new grocery
store nearby, or expanded options at an existing grocery store, or from improving bike or
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bus connections to that existing store? An examination of this question is left for future
research, but this paper presents a method for how this could be approached.
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