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Abstract: Initially, we aimed to investigate the impact of a one-year worksite low-volume, high-
intensity interval training (LOW-HIIT) on cardiometabolic health in 114 sedentary office workers.
Due to the COVID-19 pandemic outbreak, LOW-HIIT was discontinued after 6 months and partici-
pants were followed up for 6 months to analyze physical activity/exercise behavior and outcome
changes during lockdown. Health examinations, including cardiopulmonary exercise testing and
the assessment of cardiometabolic markers were performed baseline (T-1), after 6 months (T-2,
termination of worksite LOW-HIIT) and 12 months (T-3, follow-up). Cycle ergometer LOW-HIIT
(5 × 1 min at 85–95% HRmax) was performed 2×/week. For follow-up analyses, participants were
classified into three groups: HIIT-group (continued home-based LOW-HIIT), EX-group (continued
other home-based exercises), and NO-EX-group (discontinued LOW-HIIT/exercise). At T-2, VO2max

(+1.5 mL/kg/min, p = 0.002), mean arterial blood pressure (MAB, −4 mmHg, p < 0.001), HbA1c

(−0.2%, p = 0.005) and self-reported quality of life (QoL, +5 points, p < 0.001) were improved. At
T-3, HIIT-group maintained VO2max and QoL and further improved MAB. EX-group maintained
MAB and QoL but experienced a VO2max decrease. In NON-EX, VO2max, MAB and QoL deteriorated.
We conclude that LOW-HIIT can be considered a promising option to improve cardiometabolic
health in real-life conditions and to mitigate physical inactivity-related negative health impacts
during lockdowns.

Keywords: exercise; health promotion; cardiometabolic health; lockdown; occupational health
management; physical activity

1. Introduction

The multiple benefits of regular physical activity and exercise for the prevention
of numerous health problems and chronic diseases, including type 2 diabetes mellitus,
cardiovascular disease (CVD) and several types of cancer, have been documented in a
large number of studies [1–4]. Research has demonstrated, for example, that the degree
of cardiorespiratory fitness (typically quantified as maximal oxygen uptake, VO2max), is
a leading predictor of chronic disease and premature mortality—independent of other
pre-existing risk factors, such as obesity, hypertension or smoking [5]. However, despite
the overwhelming evidence of the health-protective effects of being regularly physically
active, large proportions of the population in industrialized countries fail to achieve the
recommended minimal amounts of physical activity in today’s world of increasing work-
load and technization [6]. The individual reasons for insufficient physical activity and
non-participation in specific exercise routines are manifold and complex, but large-scale
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surveys conducted over the last decade have repeatedly shown that “lack of time” and “lack
of social support” are among the major barriers for leading a physically active lifestyle and
engaging in exercise-training programs [7–9]. Consequently, in recent years, the evaluation
of the beneficial health effects of more time-efficient exercise types has increasingly become
the subject of extensive research [10].

In this context, low-volume high-intensity interval training (LOW-HIIT), a particular
time-efficient variation of the well-known interval training method, has emerged as a
popular and effective exercise modality that has shown great potential in improving a
broad range of health outcomes with substantially less time investment compared to
other exercise methods, such as moderate-intensity continuous endurance training [11–15].
Recent studies from our group revealed, for example, that LOW-HIIT can effectively
improve VO2max, cardiometabolic health outcomes and quality of life (QoL) in various
populations, including sedentary healthy individuals [16], obese metabolic-syndrome
patients [17–20] and advanced cancer patients [21]. Interestingly, data from our laboratory
also indicate that participating in LOW-HIIT may improve physical activity behavior
over the longer term as many individuals involved in our previous studies reported that
they intended to continue engaging in interval training and/or other exercise modalities
after termination of the LOW-HIIT intervention [16,18,19,21]. In line with our findings, it
has been shown that previously physically inactive, healthy individuals who performed
10 weeks of LOW-HIIT in a gym setting sustained levels of physical activity during a
3-month follow-up period [22].

Thanks to the growing awareness among employers that physical inactivity is a major
contributor to absenteeism (i.e., absence from the workplace due to illness or disability) and
presenteeism (i.e., diminished productivity at work) and increasing evidence suggesting
that promotion of physical activity at the workplace can contribute to improving the health
status and work performance of workers [23–26], an expanding number of companies have
begun to offer workplace exercise programs for their employees. Given that many people
spend a large amount of their day time at work, the workplace may indeed represent an
ideal setting to promote physical activity. In this context, LOW-HIIT, due to its high time
efficiency, may be an interesting option for worksite exercise programs. However, the
long-term effects of HIIT in real-world conditions outside of the laboratory (e.g., at the
workplace) have only been scarcely investigated to date [27,28].

Thus, it was the initial aim of the present study to evaluate the impact of a one-year
supervised LOW-HIIT program in a worksite setting on cardiometabolic health and self-
reported outcomes in a cohort of previously sedentary office workers. The original project
was intended as a longer-term and larger sample size follow-up study to a previously
published pilot study by Reljic et al. [16], in which preliminary results indicated that as little
as 28 min of LOW-HIIT per week effectively improved various aspects of cardiometabolic
health and self-reported work ability in sedentary individuals within only 8 weeks. Based
on our previous research [16–20], we initially hypothesized that LOW-HIIT performed
under real-life conditions at the workplace over a period of one year would be an effective
modality to induce beneficial long-term effects on cardiometabolic health including im-
provements in VO2max and blood pressure and positive changes in self-reported outcomes,
such as quality of life (QoL) and work ability.

However, due to the unexpected COVID-19 outbreak during our ongoing worksite
intervention and the resulting sudden shift to home-office for all study participants, the
study design was adjusted as follows: The supervised worksite program was discontinued
after 6 months and participants received a post-intervention examination to evaluate
the effects of the supervised worksite LOW-HIIT program (Study Part 1). Subsequently,
participants were followed up for 6 months during lockdown and invited back for a third
examination (Study Part 2). The aim of Study Part 2 was to analyze participants’ physical
activity and exercise behavior during the pandemic situation and to re-examine changes in
cardiometabolic and self-reported outcomes. Due to the novelty of the COVID-19 pandemic
and a lack of previous data, Study Part 2 was rather exploratory and we did not define a
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precise hypothesis but we assumed that participants’ physical activity and exercise levels
would significantly decline during lockdown, which would consequently have a negative
impact on their cardiometabolic health and self-reported outcomes.

2. Materials and Methods
2.1. Experimental Design

This study was a 6 month pre-/post-intervention assessment with a subsequent
6-month follow-up period. Data from the whole cohort were compared in a pre- (baseline
examination, T-1) versus post-intervention (after the premature termination of the super-
vised worksite LOW-HIIT program after 6 months, T-2) design. For follow-up analysis (T-3),
participants’ self-reported, unsupervised exercise behavior during the lockdown period
was evaluated and subsequently, three subgroups were classified as follows: (1) HIIT-
group = participants who continued with LOW-HIIT at home; (2) EX-group = participants
who discontinued LOW-HIIT but continued with other exercise modalities at home; and
(3) NON-EX-group = participants who discontinued LOW-HIIT and did not participate
in any other type of exercise. The primary outcome of this study was maximal oxygen
uptake (VO2max). Secondary outcomes were further cardiometabolic health indices, anthro-
pometric variables and self-reported outcomes as specified in detail below. All participants
were fully informed about the objectives and procedures of the study, which was in ac-
cordance with the Helsinki Declaration, and provided written consent before enrolment.
The study protocol was approved by the Ethics Committee of the Medical Faculty of the
Friedrich-Alexander University Erlangen-Nürnberg (approval number: 123_19B).

2.2. Participants

A total of 114 (44% females) sedentary office workers employed at a large company
close to our Research Center volunteered to participate in this study. Participants were
recruited via flyers and intranet postings of the cooperating company. All interested
workers were able to contact our research staff by mail or phone to discuss the criteria for
study participation. If the criteria were formally met, the interested candidates were given
an appointment for the baseline examination. The inclusion criteria were as follows: female
and male office workers aged ≥18 years, a self-reported predominantly sedentary lifestyle
as previously defined by the American College of Sports Medicine [29] (i.e., no specific
exercise training and engaging in less than 30 min of moderate physical activity three times
per week) over at least 1 year prior to the study and no plans to start another specific
exercise program during the intervention period. The exclusion criteria were as follows:
clinical diagnosis of heart disease, cancer, severe orthopedic conditions, injuries and other
conditions that might prohibit safe participation in an exercise program, and pregnancy.
As no specific guidelines on exercise after a COVID-19 infection were available at the time,
all participants with a previous positive COVID-19 diagnosis were also excluded from the
study to ensure participant safety and to rule out unknown bias on outcomes. Participants
were asked to maintain their usual lifestyle patterns throughout the intervention period to
minimize any potential confounding effects of changes in diet and daily physical activity.

2.3. Health Examinations

The baseline health examination (T-1) was conducted 1–2 weeks before the onset of the
worksite LOW-HIIT intervention at our Research Center. The second (post-intervention,
T-2) and third (follow-up, T-3) examination was carried out at an equal day time to minimize
potential circadian effects. For each examination, participants were asked to arrive in an
overnight-fasted state and to refrain from alcohol and vigorous physical activity in the
preceding 24 h. All measurements were strictly standardized and carried out in the order
as described in the following.
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2.3.1. Blood Pressure Measurements

After arrival to the laboratory, participants were first asked to empty their bladder
if necessary and, subsequently, to rest in a seated position for 5 min. Thereupon, resting
blood pressure was measured two times on each arm using an automatic upper-arm blood
pressure analyzer (M5 professional, Omron, Mannheim, Germany). As recommended by
recent guidelines [30], the values of the arm with the higher blood pressure were averaged
and recorded for further analysis. Moreover, mean arterial blood pressure (MAB) was
calculated as follows:

MAB = diastolic blood pressure + (1/3[systolic blood pressure − diastolic blood pressure])

2.3.2. Blood Sampling

Blood samples were collected through venipuncture of the antecubital arm vein using
a disposable cannula (S-Monovette, Sarstedt, Nürmbrecht, Germany). Blood analyses were
conducted at the laboratories of the University Hospital Erlangen and included fasting
glucose, triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), which were measured photometrically (Clinical
Chemistry Analyzer AU700 or AU5800, Beckman Coulter, Brea, CA, USA), and glycated
hemoglobin A1c (HbA1c) using turbidimetric immuneassays (COBAS Integra 400, Roche
Diagnostics, Mannheim, Germany, respectively).

2.3.3. Body Composition Measurement

Body composition measurements were performed with a multifrequency segmental
bioelectrical impedance analysis device (seca mBCA 515, Seca, Hamburg, Germany), which
has been previously validated against magnetic resonance imaging [31]. Waist circum-
ference was measured in upright position to the nearest millimeter, at the approximate
midpoint between the lower margin of the last palpable rib and the upper iliac crest along
the midaxillary line, using a measuring tape.

2.3.4. Cardiopulmonary Exercise Testing (CPET)

Participants performed a standardized exercise test on a stationary electronically
braked cycle ergometer (Corival cpet, Lode, Groningen, Netherlands) to determine VO2max,
maximal power output (Wmax) and maximal heart rate (HRmax). After a 1 min period
of familiarization, the ergometer load was set at 50 W, then continuously increased in a
ramp manner by 1 W every 5 s (25 W/2 min) in female participants and by 1 W every 4 s
(30 W/2 min) in male participants, respectively, until volitional exhaustion. Using this
protocol, exhaustion was typically reached within 8–12 min as previously recommended for
CPET examinations [32]. A 12-lead ECG system (custo cardio 110, custo med, Ottobrunn,
Germany) was used to record HR at rest and continuously during the exercise test. An
open-circuit breath-by-breath spiroergometric system (Metalyzer 3B-R3, Cortex Biophysik,
Leipzig, Germany) was used to measure oxygen uptake (VO2) and carbon dioxide output
(VCO2) during rest and exercise. The criteria to assume that maximal effort (i.e., VO2max)
was reached were at least two of the following [33]: a VO2 plateau, ≥ 90% of age predicted
HRmax (APHRmax, using the equation: 220–age), maximal respiratory exchange ratio
(RERmax) ≥ 1.10, and maximal rate of perceived exertion (RPEmax) ≥ 19 at exhaustion
using the 6–20 Borg scale [34]. Additionally, power output at the ventilatory threshold
(WVT) was determined according to the V-Slope method (VCO2/VO2) [35].

2.3.5. Self-Reported Outcomes

For the assessment of self-reported outcomes, participants completed standardized
questionnaires, which were all previously validated in the German language. Health-
related quality of life (QoL) was assessed using the EuroQol Group questionnaire (EQ-
5D-5L), which consists of two measures: a visual analogue scale (EQ-VAS, 0–100 points,
with higher values reflecting better QoL) and a descriptive system of 5 health-related
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QoL-dimensions (mobility, self-care, usual activities, pain/discomfort, anxiety/depression,
each classified in 5 severity levels), which are converted to a single index value (EQ-5D-
5L) [36]. Subjective work ability was examined using the Work Ability Index (WAI), which
is composed of several dimensions, including work environment, skills and individual
health. The total score ranges from 7 to 49, with higher values reflecting better subjective
work ability [37]. The Perceived Stress Questionnaire (PSQ) was used to analyze stress
perception, including the 4 components “worries”, “tension”, “joy”, and “demands”, with
higher values reflecting higher stress levels (except for the sub-dimension “joy”) [38]. At T-2,
participants additionally provided a personal evaluation sheet, including their intentions
to further engage either in exercise in general or specifically in LOW-HIIT, respectively.

2.3.6. Monitoring of Daily Physical Activity

One week prior to each examination, participants were asked to log their daily physical
activity (including, e.g., housework, cycling to work) using an activity logbook. The logbook
consisted of an instruction page and log pages for each recording day over a period of
1 week. Participants were instructed to make daily notes regarding their sedentary times
and all physical activities, including type, time and duration of the activities. Similar
logbooks have been previously used in several other studies [39,40]. Data from the logbooks
were used to calculate the respective metabolic equivalent (MET) intensity levels of each
reported daily-life physical activity, which were classified as light (<3 METs), moderate
(3–6 METs), or vigorous (>6 METs), as suggested by Ainsworth et al. [41], and subsequently,
the average MET hours per week were estimated. During the follow-up period, participants
were additionally instructed to record all specific home-based exercise activities (including
LOW-HIIT) with the help of a training diary.

2.3.7. Monitoring of Nutrition

During the week prior to each examination, participants were advised to record their
daily nutritional intakes over three consecutive days using standardized food records
(Freiburger Ernährungsprotokoll; Nutri-Science, Freiburg, Germany). Average calorie and
macronutrient intakes were analyzed using a specific nutrition analysis software (PRODI 6
expert, Nutri-Science, Freiburg, Germany).

2.3.8. LOW-HIIT Program

The worksite LOW-HIIT program took place in a training room within facilities of
the cooperating company and performed on mechanically-braked, indoor spinning bikes
(A.C Performance Plus Bike, Schwinn Bicycle Company, Vancouver, WA, USA) as group
classes. All exercise sessions were supervised by certified sports- or physiotherapists, who
were trained in implementing the specific LOW-HIIT protocol. The LOW-HIIT protocol
was similar to the protocol developed and previously described in detail by Reljic et al. [16].
Briefly, the protocol consisted of a short 2 min warm-up phase, 5 interval bouts of 1 min
duration at an intensity corresponding to 85–95% of maximum heart rate (HRmax) inter-
spersed with 1 min recovery periods of low intensity pedaling and a concluding 3 min
cool-down phase (total time effort per session: 14 min). The minimum target exercise
intensity (heart rate) to be reached during the single intervals was 85–90% HRmax during
week 1–4 week, and 90–95% HRmax from week 5, and further on. To reach their individually
prescribed target heart rate for each interval bout, participants were instructed to increase
the pedal cadence and/or the load resistance. To monitor heart rate in real-time during
each session, participants were provided with a chest strap heart rate monitor (Polar H7
heart rate sensor, Polar Electro Oy, Kempele, Finland). Heart rate values were recorded
continuously throughout each exercise session and, subsequently, analyzed using a specific
heart rate monitoring system (Polar Team, Polar Electro Oy, Kempele, Finland). Partic-
ipants were asked to attend two weekly LOW-HIIT sessions with a minimum of 1-day
rest between sessions. To maximize attendance among participants, a total of 24 possible
sessions were offered per week (Monday to Friday, distributed over several time slots
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during the day). The exercise sessions could be scheduled individually with the use of an
electronic course planner, in which the participants could sign up for up to 10 min before
the start of the course.

2.3.9. Statistical Analysis

All statistical analyses were conducted using SPSS version 24.0 (SPSS Inc., Chicago, IL,
USA). In the first step, data distribution was checked using the Shapiro–Wilk test. Pre- (T-1)
and post-intervention (T-2) data of the whole sample were compared using paired t-tests.
Additionally, subgroup analyses were performed to check whether gender and weight
status (i.e., normal range, BMI: <25.0 kg/m2; pre-obese, BMI: BMI: 25.0–29.9 kg/m2; and
obese, BMI: ≥30.0 kg/m2) had any influence on changes in the primary outcome VO2max,
cardiometabolic markers and QoL. For follow-up analysis (T-3), participants were divided
into 3 subgroups: (1) participants who continued with LOW-HIIT at home (HIIT-group),
(2) participants who did not continue LOW-HIIT but engaged in any other type of exercise
(EX-group), and (3) participants who neither continued LOW-HIIT nor engaged in any
other type of exercise (NO-EX-group). Subsequently, a 2 × 3 repeated-measures ANOVA
was conducted to test for main effects of time (T-2 vs. T-3) and group (HIIT vs. EX vs.
NO-EX), and interaction between both factors, followed by Holm–Sidak post hoc tests
where appropriate. The homogeneity of variance was checked with the Levene’s test. For
non-normally distributed data, log-transformation was used and the same analyses were
applied to the transformed values. If log-transformation did not lead to data normalization
(i.e., serum glucose, triglycerides and HbA1c, all self-reported outcomes except for WAI),
Wilcoxon tests and Friedman two-way analyses by ranks, respectively, were conducted.
Effect sizes were calculated using Cohen’s d or r, partial eta-squared

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW  6  of  19 
 

 

ally prescribed target heart rate for each interval bout, participants were instructed to in‐

crease  the pedal cadence and/or  the  load resistance. To monitor heart rate  in real‐time 

during each session, participants were provided with a chest strap heart rate monitor (Po‐

lar H7 heart rate sensor, Polar Electro Oy, Kempele, Finland). Heart rate values were rec‐

orded continuously throughout each exercise session and, subsequently, analyzed using 

a specific heart rate monitoring system (Polar Team, Polar Electro Oy, Kempele, Finland). 

Participants were asked to attend two weekly LOW‐HIIT sessions with a minimum of 1‐

day rest between sessions. To maximize attendance among participants, a total of 24 pos‐

sible sessions were offered per week  (Monday  to Friday, distributed over several  time 

slots during the day). The exercise sessions could be scheduled individually with the use 

of an electronic course planner, in which the participants could sign up for up to 10 min 

before the start of the course. 

2.3.9. Statistical Analysis 

All statistical analyses were conducted using SPSS version 24.0 (SPSS Inc., Chicago, 

IL, USA). In the first step, data distribution was checked using the Shapiro–Wilk test. Pre‐ 

(T‐1) and post‐intervention (T‐2) data of the whole sample were compared using paired t‐

tests. Additionally,  subgroup  analyses were  performed  to  check whether  gender  and 

weight status (i.e., normal range, BMI: <25.0 kg/m2; pre‐obese, BMI: BMI: 25.0–29.9 kg/m2; 

and  obese,  BMI:  ≥30.0  kg/m2) had  any  influence  on  changes  in  the  primary  outcome 

VO2max, cardiometabolic markers and QoL. For follow‐up analysis (T‐3), participants were 

divided into 3 subgroups: (1) participants who continued with LOW‐HIIT at home (HIIT‐

group), (2) participants who did not continue LOW‐HIIT but engaged in any other type 

of exercise  (EX‐group), and  (3) participants who neither  continued LOW‐HIIT nor en‐

gaged  in  any  other  type  of  exercise  (NO‐EX‐group).  Subsequently,  a  2  ×  3  repeated‐

measures ANOVA was conducted to test for main effects of time (T‐2 vs. T‐3) and group 

(HIIT vs. EX vs. NO‐EX), and interaction between both factors, followed by Holm–Sidak 

post hoc  tests where appropriate. The homogeneity of variance was  checked with  the 

Levene’s  test. For non‐normally distributed data,  log‐transformation was used and  the 

same analyses were applied to the transformed values. If log‐transformation did not lead 

to data normalization (i.e., serum glucose, triglycerides and HbA1c, all self‐reported out‐

comes except for WAI), Wilcoxon tests and Friedman two‐way analyses by ranks, respec‐

tively, were  conducted. Effect  sizes were  calculated using Cohen’s d or  r, partial  eta‐

squared (ɳp2) or Kendall’s coefficient of concordance (W), where appropriate. For all anal‐

yses, the significance level was set at p  <  0.05. All data are reported as means  ±  standard 

deviation (SD). Significant changes between T‐1 and T‐2 and between T‐2 and T‐3 are pre‐

sented with 95% confidence intervals (95% CI). 

3. Results 

3.1. Study Flow 

A total of 200 workers responded to the study call and expressed interest in partici‐

pating in the LOW‐HIIT program. A total of 114 participants (44% females, age: 48 ± 10 

yrs)  fulfilled  the  inclusion criteria and were  invited  to  the baseline health examination 

after the initial phone screening. One participant was not able to participate due to health 

concerns detected during  the health examination and  three  individuals  lost  interest  in 

participation after the baseline examination. Thus, a total of 110 participants started the 

LOW‐HIIT program. A total of 43 participants dropped out within the first 6 months. The 

specific reasons for dropout are shown in Figure 1. There were no significant differences 

in the main baseline values between participants who dropped out (age: 44 ± 10 yrs, BMI: 

26.9 ± 5.3 kg/m2, VO2max: 33.0 ± 6.7 mL/min) and those who completed the  intervention 

period (Tables 1 and 2), except for the average age, which was lower in the dropout group 

(p = 0.008). After the premature termination of the supervised training intervention due to 

the COVID‐19 pandemic, 72 participants (39% females, age: 50 ± 10 yrs) showed up for 

or Kendall’s
coefficient of concordance (W), where appropriate. For all analyses, the significance level
was set at p < 0.05. All data are reported as means ± standard deviation (SD). Significant
changes between T-1 and T-2 and between T-2 and T-3 are presented with 95% confidence
intervals (95% CI).

3. Results
3.1. Study Flow

A total of 200 workers responded to the study call and expressed interest in participat-
ing in the LOW-HIIT program. A total of 114 participants (44% females, age: 48 ± 10 yrs)
fulfilled the inclusion criteria and were invited to the baseline health examination after
the initial phone screening. One participant was not able to participate due to health
concerns detected during the health examination and three individuals lost interest in
participation after the baseline examination. Thus, a total of 110 participants started the
LOW-HIIT program. A total of 43 participants dropped out within the first 6 months. The
specific reasons for dropout are shown in Figure 1. There were no significant differences in
the main baseline values between participants who dropped out (age: 44 ± 10 yrs, BMI:
26.9 ± 5.3 kg/m2, VO2max: 33.0 ± 6.7 mL/min) and those who completed the intervention
period (Tables 1 and 2), except for the average age, which was lower in the dropout group
(p = 0.008). After the premature termination of the supervised training intervention due to
the COVID-19 pandemic, 72 participants (39% females, age: 50 ± 10 yrs) showed up for
the post-intervention examination (T-2). Finally, a total of 57 participants (33% females)
appeared for the follow-up examination, 12 months after the onset of the study (T-3). No
significant effects of gender and weight status on changes in the primary outcome VO2max,
cardiometabolic markers and QoL were found, and therefore, the results of all subgroups
were considered together in all analyses.
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Table 1. Mean values and standard deviations (SD) of participants’ (N = 71) cardiorespiratory fitness
data pre- (T-1) and post-intervention (T-2).

Variable T-1 T-2

Relative VO2max (mL/kg/min) 34.2 ± 8.6 35.6 ± 7.5 **
Absolute VO2max (L/min) 2.9 ± 0.8 3.0 ± 0.8 **
Relative peak power output (W/kg) 2.7 ± 0.7 3.0 ± 0.7 ***
Absolute peak power output (W) 223 ± 59 247 ± 61 ***
Power output at VT (W) 99 ± 41 141 ± 46 ***

VO2max, maximum oxygen uptake; VT, ventilatory threshold. **, and *** indicate p < 0.01, and p < 0.001 vs. T-1 in
paired t-tests.
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Table 2. Mean values and standard deviations (SD) of participants’ (N = 71) body composition and
cardiometabolic data at baseline (T-1) and post-intervention (T-2).

Variable T-1 T-2

Body weight (kg) 84.3 ± 18.5 83.8 ± 18.4
Body mass index (kg/m2) 26.9 ± 4.6 26.8 ± 4.8
Waist circumference, (cm) 89.3 ± 17.1 91.4 ± 13.4
Body fat mass (%) 30.0 ± 9.4 30.7 ± 8.9
Fat free mass (kg) 58.7 ± 12.2 58.0 ± 12.0
Resting heart rate (b/min) 89 ± 20 71 ± 10 ***
Systolic BP (mmHg) 131 ± 14 129 ± 13
Diastolic BP (mmHg) 90 ± 10 85 ± 8 ***
MAB (mmHg) 103 ± 11 99 ± 9 ***
Fasting glucose (mg/dL) 102 ± 25 101 ± 13
HbA1c (%) 5.4 ± 0.6 5.2 ± 1.0 **
Triglycerides (mg/dL) 116 ± 54 109 ± 64
Total cholesterol (mg/dL) 222 ± 41 222 ± 38
HDL (mg/dL) 58 ± 14 59 ± 14
LDL (mg/dL) 145 ± 34 141 ± 30

BP, blood pressure; MAB, mean arterial blood pressure; HbA1c, glycosylated hemoglobin A1c; HDL, high-density
lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol. **, and *** indicate p < 0.01, and p < 0.001 vs. T-1
in paired t-tests and Wilcoxon test (only HbA1c), respectively.

3.2. Study Part 1: Post-Intervention Data

Over the intervention period of 6 months, participants completed on average 1.5 ± 0.2
LOW-HIIT sessions per week, which was lower than projected (i.e., 2 sessions/week). The
average peak heart rate values reached during the interval bouts corresponded to 95 ± 3%
of HRmax, indicating that the prescribed exercise intensity was well achieved. The average
heart rate during the complete exercise sessions (including warm-up, intervals, recovery
phases and cool-down) corresponded to 82 ± 4% of HRmax. No adverse events occurred
during the whole intervention period. As intended, energy and macronutrient intakes
remained stable throughout the intervention period. Daily calorie and macronutrient
intakes averaged 2179 ± 738 kcal, 228 ± 95 g carbohydrates, 87 ± 35 g fat and 86 ± 34 g
protein at T-1, and 2235 ± 888 kcal, 230 ± 91 g carbohydrates, 89 ± 46 g fat and 94 ± 42 g
protein at T-2, respectively.

3.2.1. Post-Intervention Cardiorespiratory Fitness

Participants experienced significant improvements in relative (+1.5 mL/kg/min, 95%
CI 0.6 to 2.3 mL/kg/min, p = 0.002, d = 0.19) and absolute VO2max (+0.17 L, 95% CI 0.05 to
0.19 L, p = 0.001, d = 0.13), relative (+0.3 W/kg, 95% CI 0.2 to 0.3 W/kg, p < 0.001, d = 0.38)
and absolute Wmax (+22 W, 95% CI 17 to 26 W, p < 0.001, d = 0.36) and WVT (+41 W, 95%
CI 31 to 51 W, p < 0.001, d = 0.95). Pre- and post-intervention data of all cardiorespiratory
fitness variables are shown in Table 1.

3.2.2. Post-Intervention Body Composition

There were no significant changes in any body composition variable. Pre-/post-
intervention data are shown in Table 2.

3.2.3. Post-Intervention Blood Pressure and Blood Chemistry

Resting heart rate (−18 b/min, 95% CI −24 to 14 b/min, p < 0.001, d = −1.20), diastolic
blood pressure (−5 mmHg, 95% CI −7 to −3 mmHg, p < 0.001, d = −0.63) and MAB
(−4 mmHg, 95% CI −6 to −2 mmHg, p < 0.001, d = −0.40) were significantly decreased at
T-2. Moreover, there was a significant decrease in HbA1c (−0.2%, 95% CI −0.1 to −0.4%,
p = 0.005, r = −0.27). Pre-/post-intervention data of blood pressure data and all blood
values are shown in Table 2.
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3.2.4. Post-Intervention Self-Reported Outcomes

Between T-1 and T-2, there were significant improvements in health-related QoL (EQ-
VAS, +5 score points, 95% CI 2 to 7 score points, p < 0.001, r = 0.45). Pre-/post-intervention
data of all self-reported outcomes are reported in Table 3. The major barriers to regular
exercise reported by participants at T-1 were “lack of time” (67%), “lack of motivation”
(56%) and “health problems” (15%). At T-2, 75% of participants reported that the LOW-HIIT
program was helpful to overcome the previously perceived major barrier to exercise (lack
of time) and 79% of participants stated that they intended to further engage in LOW-HIIT
after termination of the study.

Table 3. Mean values and standard deviations (SD) of participants’ (N = 71) self-reported outcomes
at baseline (T-1) and post-intervention (T-2).

Variable T-1 T-2

EQ-5D-5L (index) 0.96 ± 0.06 0.94 ± 0.09
EQ (VAS) 78 ± 12 83 ± 10 ***
Work Ability Index 41 ± 4 42 ± 4
PSQ-worries 21 ± 18 18 ± 14
PSQ-tension 30 ± 21 27 ± 17
PSQ-joy 67 ± 22 70 ± 22
PSQ-demands 39 ± 21 36 ± 18

EQ, EuroQol Group questionnaire; VAS, visual analogue scale; PSQ, Perceived Stress Questionnaire. *** indicates
p < 0.001 vs. T-1 in Wilcoxon test.

3.3. Study Part 2: Follow-Up Data
3.3.1. Physical Activity Behavior and Diet during Lockdown

At T-3, 19 participants (HIIT-group, 21% females) reported that they have continued
with LOW-HIIT using an own cycle ergometer at home. On average, LOW-HIIT was
performed 1.6 ± 0.7 times per week. Twelve participants (EX-group, 33% females) reported
that they have discontinued LOW-HIIT (N = 11: no cycle ergometer available at home, N = 1:
lack of motivation) but performed other types of exercise at home, including moderate-
intensity continuous jogging (N = 2), walking (N = 8) and yoga (N = 2). Other exercise
modalities were performed 1.8 ± 0.6 times per week for an average duration of 23 ± 7 min
per session (average time commitment per week: 42 ± 16 min). Twenty-six participants
(NO-EX-group, 42% females) discontinued LOW-HIIT and did not perform any other type
of exercise during lockdown. The reported reasons for discontinuation of LOW-HIIT and
other types of exercise were: COVID-19 pandemic (N = 16), no ergometer available (N = 8)
and lack of time (N = 2). The analysis of the activity logbooks revealed that habitual physical
activity was generally very low in study participants during all recording periods. None of
the participants met the physical activity guidelines of at least 150 min moderate-intensity
activity per week [42]. Daily physical activities (excluding LOW-HIIT and other exercise
types), especially moderate-intensity activities (e.g., cycling to work), and respective MET
hours per week decreased significantly during lockdown in all groups. There were no
significant differences in mean age and habitual physical activity between the three groups
and no significant within- and between-group differences in calorie and macronutrient
intakes, except for fat consumption, which was significantly higher in the HIIT- compared
to the EX-group (p = 0.034). Group-specific physical activity and nutritional data during
the weeks prior to T-2 and T-3 are displayed in Table 4.

3.3.2. Follow-Up Cardiorespiratory Fitness

There were significant group-by-time interactions for relative (p < 0.001, ή2 = 0.34)
and absolute VO2max (p < 0.001, ή2 = 0.37). Significant main-time effects were found for
relative (p < 0.001, ή2 = 0.30) and absolute VO2max (p < 0.001, ή2 = 0.37), relative (p < 0.001,
ή2 = 0.36) and absolute Wmax (p < 0.001, ή2 = 0.42) and WVT (p < 0.001, ή2 = 0.49). Post
hoc tests revealed that relative and absolute VO2max and WVT only remained stable in the
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HIIT-group, while both the EX-group (relative VO2max: −3.7 mL/kg/min, 95% CI −5.7 to
−1.7 mL/kg/min, p < 0.001, d = −0.54, absolute VO2max: −0.26 L, 95% CI −0.40 to −0.13 L,
p < 0.001, d = −0.39, and WVT: −36 W, 95% CI −47 to −24 W, p < 0.001, d = −0.85) and the
NON-EX group (relative VO2max: −5.8 mL/kg/min, 95% CI −7.6 to −4.1 mL/kg/min,
p < 0.001, d = −0.72, absolute VO2max: −0.51 L, 95% CI −0.64 to −0.38 L, p < 0.001,
d = −0.58, and WVT: −41 W, 95% CI −59 to −24 W, p < 0.001, d = −0.89) experienced
significant decreases in cardiorespiratory fitness measures during the follow-up period
(Table 5).

Table 4. Mean values and standard deviations (SD) of participants’ (N = 57) age at follow-up
(T-3), physical activity and nutritional intakes prior to the post-intervention (T-2) and follow-up
examination (T-3).

Variable
HIIT-Group (N = 19) EX-Group (N = 12) NO-EX-Group (N = 26)

T-2 T-3 T-2 T-3 T-2 T-3

Age (yrs) — 50 ± 9 — 52 ± 8 — 47 ± 12
Light PA (hours/week) 4.0 ± 2.0 2.9 ± 1.0 * 3.6 ± 1.6 3.0 ± 1.2 4.4 ± 2.1 3.4 ± 1.9 ***
Moderate PA (hours/week) 0.8 ± 0.8 0.3 ± 0.5 ** 0.8 ± 0.7 0.2 ± 0.4 * 1.2 ± 0.8 0.4 ± 0.5 ***
MET hours/week 11.0 ± 5.5 6.1 ± 3.3 *** 10.9 ± 4.2 6.2 ± 3.1 ** 13.6 ± 6.6 8.2 ± 4.3 ***
Energy intake(kcal) 2403 ± 858 2697 ± 1389 1946 ± 584 2051 ± 637 2174 ± 642 2062 ± 529
CHO intake (g) 246 ± 92 272 ± 137 209 ± 71 210 ± 75 219 ± 79 210 ± 57
Fat intake (g) 101 ± 43 110 ± 63 70 ± 29 + 79 ± 31 + 91 ± 28 83 ± 30
Protein intake (g) 96 ± 41 114 ± 62 77 ± 30 89 ± 38 87 ± 32 89 ± 29

PA, physical activity; MET, metabolic equivalent; CHO, carbohydrates. *, **, and *** indicate p < 0.05, p < 0.01, and
p < 0.001 vs. T-2, and + indicates p < 0.05 vs. HIIT-group, respectively, in 2-way repeated measures ANOVAs.

Table 5. Mean values and standard deviations (SD) of participants’ (N = 57) cardiorespiratory fitness
data at post-intervention (T-2) and follow-up (T-3).

Variable
HIIT-Group (N = 19) EX-Group (N = 12) NO-EX-Group (N = 26)

T-2 T-3 T-2 T-3 T-2 T-3

Relative VO2max (mL/kg/min) 35.0 ± 5.7 35.0 ± 6.1 36.7 ± 6.5 32.9 ± 7.6 *** 37.5 ± 8.2 31.6 ± 8.2 ***
Absolute VO2max (L/min) 3.0 ± 0.6 2.9 ± 0.6 2.7 ± 0.6 2.4 ± 0.7 *** 3.1 ± 0.6 2.5 ± 0.9 ***
Relative peak power output (W/kg) 2.9 ± 0.6 2.9 ± 0.5 3.2 ± 0.6 3.1 ± 0.6 3.0 ± 0.7 2.9 ± 0.7
Absolute peak power output (W) 253 ± 46 241 ± 40 243 ± 60 238 ± 62 251 ± 65 241 ± 60
Power output at VT (W) 137 ± 47 122 ± 30 154 ± 45 112 ± 47 *** 146 ± 47 110 ± 37 ***

VO2max, maximum oxygen uptake; VT, ventilatory threshold. *** indicates p < 0.001 vs. T-2 in 2-way repeated
measures ANOVAs.

3.3.3. Follow-Up Body Composition

In all three groups, there were no significant changes in body composition during the
follow-up period. Group-specific data for T-2 and T-3 are shown in Table 6.

3.3.4. Follow-Up Blood Pressure and Blood Chemistry

There were significant group-by-time interactions for systolic blood pressure (p = 0.002,
ή2 = 0.15) and MAB (p = 0.013, ή2 = 0.18). Significant main-time effects were found for
resting heart rate (p < 0.001, ή2 = 0.20), systolic (p < 0.001, ή2 = 0.31) and diastolic blood
pressure (p < 0.001, ή2 = 0.37). In the HIIT-group, systolic blood pressure (−9 mmHg, 95%
CI −15 to −2 mmHg, p = 0.008, d = −0.75), diastolic blood pressure (−4 mmHg, 95% CI −8
to 0 mmHg, p = 0.029, d = −0.63) and MAB (−4 mmHg, 95% CI −8 to 0 mmHg, p = 0.032,
d = −0.47) further decreased during the follow-up period. MAB remained stable in the
EX-group, while in the NO-EX-group, MAB (+3 mmHg, 95% CI +6 to +3 mmHg, p = 0.035,
d = 0.40) and resting heart rate (+10 b/min, 95% CI +6 to +14 b/min, p < 0.001, d = 1.0)
increased again significantly during lockdown. No significant changes occurred in any of
the analyzed blood variables between T-2 and T-3 in all three groups. Group-specific data
of all blood pressure and blood chemistry values are shown in Table 6.
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Table 6. Mean values and standard deviations (SD) of participants’ (N = 57) body composition and
cardiometabolic data at post-intervention (T-2) and follow-up (T-3).

Variables
HIIT-Group (N = 19) EX-Group (N = 12) NO-EX-Group (N = 26)

T-2 T-3 T-2 T-3 T-2 T-3

Body weight (kg) 87.5 ± 18.8 86.3 ± 18.4 73.4 ± 13.3 75.4 ± 14.0 83.7 ± 20.2 83.4 ± 19.2
Body mass index (kg/m2) 27.8 ± 4.7 27.5 ± 5.1 24.9 ± 3.1 25.0 ± 3.2 25.9 ± 4.8 25.8 ± 4.6
Waist circumference, (cm) 96.8 ± 14.1 95.3 ± 12.9 87.2 ± 11.5 86.8 ± 10.1 89.8 ± 13.7 89.7 ± 13.5
Body fat mass (%) 29.9 ± 7.7 29.1 ± 7.9 27.9 ± 6.4 28.0 ± 6.6 29.6 ± 9.9 29.5 ± 9.1
Fat free mass (kg) 60.5 ± 10.8 60.4 ± 10.7 54.4 ± 11.4 54.4 ± 11.0 58.6 ± 13.2 58.3 ± 13.1
Resting heart rate (b/min) 73 ± 12 71 ± 9 69 ± 8 70 ± 12 72 ± 9 83 ± 10 ***
Systolic BP (mmHg) 135 ± 12 126 ± 12 ** 126 ± 15 123 ± 13 126 ± 12 127 ± 11
Diastolic BP (mmHg) 89 ± 8 84 ± 8 * 85 ± 9 83 ± 7 84 ± 6 86 ± 7
MAB (mmHg) 102 ± 9 98 ± 8 * 98 ± 11 97 ± 9 98 ± 7 101 ± 8 *
Fasting glucose (mg/dL) 100 ± 10 101 ± 11 102 ± 19 108 ± 21 101 ± 13 105 ± 19
HbA1c (%) 5.4 ± 0.3 5.4 ± 0.3 5.5 ± 0.5 5.5 ± 0.4 5.3 ± 0.4 5.4 ± 0.5
Triglycerides (mg/dL) 120 ± 68 120 ± 91 85 ± 32 94 ± 44 108 ± 68 119 ± 71
Total cholesterol (mg/dL) 226 ± 36 228 ± 39 215 ± 28 221 ± 37 222 ± 45 228 ± 45
HDL (mg/dL) 54 ± 11 57 ± 11 62 ± 15 62 ± 17 62 ± 18 62 ± 16
LDL (mg/dL) 147 ± 29 149 ± 33 134 ± 30 140 ± 34 139 ± 33 146 ± 34

BP, blood pressure; MAB, mean arterial blood pressure; HbA1c, glycosylated hemoglobin A1c; HDL, high-density
lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol. *, **, and *** indicate p < 0.05, p < 0.01, and
p < 0.001 vs. T-2 in 2-way repeated measures ANOVAs.

3.3.5. Follow-Up Self-Reported Outcomes

There was a significant main-time effect for the EQ-VAS score (p = 0.017, W= 0.10). Post
hoc tests revealed that in the HIIT- and EX-group, EQ-VAS remained unchanged between
T-2 and T-3, while the NO-EX-group experienced a significant decrease in the score during
the follow-up period (−5 score points, 95% CI −9 to −1 score points, p < 0.001, r = 0.45).
Pre-intervention and follow-up data of all self-reported outcomes are reported in Table 7.

Table 7. Mean values and standard deviations (SD) of participants’ (N = 57) self-reported outcomes
at post-intervention (T-2) and follow-up (T-3).

Variable
HIIT-Group (N = 19) EX-Group (N = 12) NO-EX-Group (N = 26)

T-2 T-3 T-2 T-3 T-2 T-3

EQ-5D-5L (index) 0.92 ± 0.07 0.93 ± 0.07 0.96 ± 0.06 0.94 ± 0.08 0.95 ± 0.04 0.94 ± 0.06
EQ (VAS) 81 ± 10 80 ± 13 86 ± 8 85 ± 8 85 ± 7 80 ± 11 *
Work Ability Index 42 ± 4 42 ± 3 43 ± 4 43 ± 3 42 ± 4 43 ± 3
PSQ-worries 20 ± 15 21 ± 16 23 ± 16 19 ± 16 14 ± 18 16 ± 13
PSQ-tension 32 ± 22 35 ± 22 27 ± 11 34 ± 22 26 ± 12 30 ± 22
PSQ-joy 64 ± 28 60 ± 27 75 ± 17 71 ± 23 73 ± 20 70 ± 17
PSQ-demands 45 ± 19 43 ± 20 37 ± 16 42 ± 23 36 ± 18 34 ± 22
PSQ-total 34 ± 19 35 ± 18 27 ± 13 32 ± 21 27 ± 11 27 ± 15

EQ, EuroQol Group Questionnaire; VAS, visual analogue scale; PSQ, Perceived Stress Questionnaire. * indicates
p < 0.05, vs. T-2 in Friedman two-way analyses by ranks.

4. Discussion

Originally designed as a one-year, workplace-based, exercise intervention for previ-
ously sedentary office workers, this study fell in the midst of the unexpected COVID-19
pandemic, requiring the project to be adjusted and divided into two sections: (1) a 6-month
supervised worksite LOW-HIIT intervention period, and (2) a subsequent 6-month follow-
up period during lockdown. The main findings of the study were as follows: (i) as little
as 2 weekly sessions of worksite LOW-HIIT (<30 min time effort per week) significantly
improved several cardiometabolic health indices, including VO2max, blood pressure and
HbA1c as well as self-reported QoL within 6 months, (ii) participants who discontinued
LOW-HIIT and did not practice any other type of exercise during 6 months of COVID-19
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related lockdown experienced a significant deterioration in VO2max, blood pressure and
QoL, (iii) participants who discontinued LOW-HIIT but regularly performed other types of
exercise maintained blood pressure values and QoL but experienced a significant decrease
in VO2max, and (iv) participants who continued LOW-HIIT during lockdown maintained
VO2max and QoL and further improved blood pressure values.

4.1. Study Part 1
4.1.1. Effects of the Worksite LOW-HIIT Intervention of Physiological Outcomes

As expected, the supervised, worksite-based, LOW-HIIT program improved various
aspects of cardiometabolic health in our study participants. Previous studies from our
group [16–20], applying the same LOW-HIIT protocol in sedentary but otherwise appar-
ently healthy individuals and in obese metabolic syndrome patients, have also found
significant improvements in cardiorespiratory fitness outcomes, blood pressure, glycemic
control and self-reported outcomes including QoL. The results of the present study under-
pin our previous findings and reports from other research groups [10,11,15], indicating
that brief, low-volume exercise modalities can be an effective and time-efficient approach
to provide a broad range of health benefits in various populations. Referring to the call
for more “real-world” HIIT studies over longer periods of time [27,28], the first part of
our study expands the knowledge in this research field by showing that the health-related
benefits associated with LOW-HIIT appear to be robust in longer-term authentic conditions
outside of strictly standardized laboratory settings.

In this context, it is also important to note that no adverse events occurred during
the whole intervention period and the majority of participants (79%) reported that they
enjoyed the exercise program and intended to continue engaging in LOW-HIIT, indicating
that this type of exercise is feasible and well accepted by previously sedentary individuals
in real world conditions. The dropout rates (~24%, excluding those who dropped out due
to the COVID-19 pandemic or other unrelated diseases/injuries) were lower compared to
those frequently reported in the literature for other (more traditional) exercise interventions
(30–50%) [43–47], but higher than in our pilot study (8%) [16] and other (LOW-)HIIT studies
with previously untrained individuals (~18%) [48]. This finding could be due to the longer
intervention duration (6 months) compared to previous (LOW-)HIIT studies (average
duration: ~9 weeks) [48] and the fact that a larger proportion of our study participants
who dropped out were involved in frequent business travels, which may have hampered
longer-term regular participation in the training sessions.

The average increase in VO2max in the present study (+1.5 mL/kg/min) was smaller
compared to the values observed in our previous studies (ranging from 3.0 to
7.1 mL/kg/min) [16–20], which could be due to the low weekly exercise frequency/volume
(i.e., ~1.5 sessions/week corresponding to 21 min of exercise/week). Compared to our
previous studies (mainly conducted in laboratory settings), the present real-world inter-
vention was less strictly standardized (including the mandatory compliance with 2 weekly
exercise sessions). General physical activity guidelines typically recommend an exercise
frequency of at least 3 sessions per week to provide adequate health benefits [49]. Although
we [16–21] and others [50] have demonstrated that 2 sessions of targeted exercise per week
may be sufficient to induce physiological adaptations that are linked to improved health,
our present data suggest that less than 2 weekly sessions appear to be associated with
smaller improvements in cardiorespiratory fitness compared to higher exercise frequencies.
Moreover, it is well established that there is strong heterogeneity in VO2max responses to
training programs [51], which could also explain the differences to previous studies to
some extent. However, given that each 1 mL/kg/min increase in VO2max has been linked
to a reduction in CVD-related mortality by 9% [52], the achieved VO2max improvement in
the present study can still be considered to be clinically meaningful. This is an important
finding since lack of time is one of the most frequently reported barriers to engage in
regular exercise, and the present findings suggest that VO2max can effectively be improved
with an average weekly time commitment of as little as 21 min. Additionally it is to note
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that we found a substantial increase in power output at the ventilatory threshold, which is
an important submaximal indicator of cardiorespiratory fitness and recognized as a key
marker of one’s ability to perform moderate-intensity activities of daily living for a longer
duration [53].

Reductions in blood pressure following LOW-HIIT have been a consistent finding in
the literature [54], including our own studies, which may be related to exercise-induced
improvements in vascular function [55]. The observed mean reduction in diastolic blood
pressure by 5 mmHg is very likely to provide a clinically significant benefit since each
blood pressure decrease of 5 mmHg has been reported to reduce the risk of CVD and
stroke by 22% and 41%, respectively, [56]. In this context, it is important to note that
the average baseline blood pressure values of our participants were in the upper normal
range (i.e., 131/90 mmHg), indicating a preventive anti-hypertensive effect of LOW-HIIT
in normotensive individuals. The significant decline in HbA1c levels by 0.2% is in line
with our previous findings [20] and can also be regarded meaningful as changes in glucose
control of this magnitude have been considered to lower premature mortality risk by
10% [57].

4.1.2. Effects of the Worksite-Based, LOW-HIIT Intervention of Self-Reported Outcomes

Apart from physical health benefits associated with physical activity, there is a body
of evidence demonstrating that exercise [58], including HIIT [59], can also improve a
variety of subjective measures, such as wellbeing and QoL. In line with previous research
from our group [18,19], we found a significant improvement in QoL following LOW-
HIIT. Compared to the individuals included in our previous studies, who were obese
metabolic syndrome patients with a markedly diminished self-reported baseline QoL, the
participants of the present study exhibited a higher mean pre-intervention EQ-VAS score
(78 points) in relation to the general population (71 points) [36]. Thus, our data suggest
that even in individuals with high initial EQ-VAS scores, subjective QoL can be further
improved in response to LOW-HIIT. Although this was not specifically investigated in our
study, the improvement in QoL may be a result of physiological as well as psycho-social
adaptations [60]. The physiological mechanisms could include improved cerebrovascular
function [61] and neuronal effects, such as increased release of neurotransmitters and
brain-derived neurotrophic factors [62]. At the psycho-social level, it is conceivable that
engaging in LOW-HIIT improved participants’ physical self-perception [63]. By contrast,
in comparison to our preceding studies [16,18], we did not find an increase in self-reported
work ability, which could possibly be attributed to the restructuring of working conditions
due the emerging COVID-19 pandemic (in particular the shift to home-office).

4.2. Study Part 2

Participants’ Exercise Behavior and Changes in Study Outcomes during Lockdown
The sudden outbreak of the COVID-19 pandemic has led to profound changes in many

facets of society and culture, including lockdowns, social distancing, closure of cultural and
sports facilities and the widespread implementation of home-office. One of the negative
side effects of the pandemic was a substantial decline in physical activity in many countries
worldwide [64–66]. A descriptive study has reported, for example, that globally, there was
a ~27% decrease in mean daily steps within 30 days after declaration of the pandemic [67].
More specifically, a larger-scale representative survey involving more than 1000 German
adults has shown, for example, that 31% of Germans significantly reduced their leisure time
sport and exercise activities at the beginning of the COVID-19 pandemic [68]. Similarly,
another longitudinal study assessing the data of almost 3000 people living in different
Alpine regions (including Germany, Austria and Italy) revealed that 42.5% of all partic-
ipants reduced their frequency of physical activity during the first lockdown. [69]. This
recent trend is alarming because the reduction in physical activity and exercise due to con-
straints from the COVID-19 pandemic not only substantially contributes to the widespread
inactivity-related health problems, but is also associated with the development of psy-
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chological problems such as stress, anxiety and depression [70,71] and is linked with an
increased risk of developing a severe COVID-19 disease course [72]. Paradoxically, it has
been suggested that regular exercise, including HIIT, may have a preventive role across the
COVID-19 pandemic and reduce infection rates and diseases severity [73].

In line with these data, 46% of our study participants who showed up for the follow-up
examination reported to have stopped any sports activities during 6 months of lockdown.
The significant drop in VO2max observed in the NON-EX group at T-3 by 5.8 mL/kg/min
is in accordance with the literature, showing that prolonged periods of physical inactivity
result in a gradual decline in cardiorespiratory fitness [74]. Given the reported associations
between participation in endurance exercise [75], the degree of VO2max [76] and blood pres-
sure values, it is not a surprising finding that the NON-EX-group experienced a significant
increase in MAB during the 6-month follow-up period. Moreover, although we did not
detect any significant changes in self-reported perceived stress among participants, it can-
not be ruled out that increased mental strains during the pandemic may have contributed
to the elevation in participants’ blood pressure [77]. Accordingly, we found a significant
reduction in self-reported QoL in the NON-EX-group, which is in line with the literature,
reporting a significant decline in QoL during the COVID-19 pandemic in more than the
half of participants of a population-based sample in Germany [78].

In contrast, participants who continued with LOW-HIIT or other exercise types, main-
tained EQ-VAS scores, which underpins the well-established association between a physi-
cally active lifestyle and self-reported QoL [79]. It is noteworthy, however, that only the
HIIT-group maintained VO2max during the follow-up period, while in the EX-group, we
found an average decline of 3.7 mL/kg/min between T-2 and T-3. It is well established that
more intense exercise is more effective at increasing/maintaining VO2max [80] and thus,
the observed difference between both groups is plausible as participants in the EX-group
reported to have exclusively performed moderate-intensity aerobic training or other non-
vigorous activity types. Moreover, this finding indicates that occasional moderate-intensity
exercise at low frequency (i.e., ~1.8 sessions/week and ~42 min total volume/week, re-
spectively) was not enough to compensate an otherwise physically inactive lifestyle when
it comes to preserve VO2max. However, our data suggest that as little as 2 weekly ses-
sions of home-based, unsupervised LOW-HIIT (<30 min time effort/week) performed
over 6 months appear to be sufficient to counteract the negative impact of physical inac-
tivity in daily life during lockdown on cardiorespiratory fitness and, concomitantly, to
further improve blood pressure values in sedentary office workers. Therefore, home-based
LOW-HIIT can be regarded as a feasible, time-efficient and effective exercise modality to
maintain/improve cardiometabolic health and QoL during COVID-19 induced lockdown.
Since it cannot be ruled out that renewed lockdowns or other restrictions could possibly
occur again in the pandemic, which remains ongoing, LOW-HIIT may, therefore be par-
ticularly an interesting exercise option for individuals with time restrictions who wish to
maintain their physical fitness at home.

4.3. Limitations

We point out some limitations of our study that should be taken into account. First, we
only recruited previously sedentary but otherwise healthy individuals. Thus, the results of
this investigation cannot be generalized to other populations, in particular individuals with
health conditions or pre-existing risk factors. In this context, we highlight that a proper
medical examination should be conducted prior to performing (particularly home-based)
LOW-HIIT to ensure safe exercise, as generally recommended prior to starting a training
program after longer periods of inactivity.

Second, we note that self-reported outcomes, such as QoL, may be biased by several
factors, such as social desirability, conscientious responses or lack of memory. Additionally,
questionnaire-based surveys only display a “snapshot” of subjective outcomes on a certain
day and may not necessarily reflect a causal association. However, the observed improve-
ments in QoL in our investigation are supported by previous research, documenting the
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beneficial effects of exercise and specifically HIIT on several self-reported outcomes [59,63].
Regarding physical activity and unsupervised exercise reporting, in particular, it must be
considered that individuals, typically, rather tend to overestimate their physical activity
levels [81]. We suppose, however, that the thorough explanation and briefing on how to
record physical activity and home-based LOW-HIIT/exercise should have decreased the
degree of potential errors.

It is a further limitation of this study that we did not include a passive control group.
However, the benefits of physical exercise compared to an inactive lifestyle are already
very well established based on decades of research. More specifically, a number of recent
meta-analyses [82–85], including studies from our laboratory [17–20], have demonstrated
that (LOW-)HIIT interventions elicit significantly greater improvements in VO2max and
cardiometabolic outcomes compared to no-training control conditions in both healthy and
clinical populations. Thus, we felt that the inclusion of a passive control group without
training would not have provided any essential new knowledge to the research field
and that withholding of an established exercise modality would not have been ethically
justifiable. We also note that we did not standardize participants’ diet throughout the
intervention period. Thus, although there were neither significant differences in daily
nutrition between the recording periods (T-1 vs. T-2, and T-2 vs. T-3) nor between the
3 sub-groups at T-3 (except for fat intakes in the HIIT- vs. EX-group) and no changes in
body composition over time, it cannot be ruled out that potential within- or between-group
variations in nutrition might have affected the results to some extent. However, we point
out that it was the aim of our investigation to explore the effects of a worksite-based,
LOW-HIIT program in a real-world setting without influencing our participants’ habitual
daily nutrition. Moreover, a strict dietary standardization over a period of one year would
not have been realizable under authentic conditions.

Finally, we acknowledge that the continuation of LOW-HIIT at home was strongly
dependent on the availability of a cycle-ergometer, which constitutes a key bias in this study.
Indeed, cycle ergometer-based exercise allows a very feasible implementation of our LOW-
HIIT protocol because it is technically less demanding and probably better tolerated by
previously untrained individuals compared to other exercise modalities, such as running or
body weight exercises [48]. However, we note that LOW-HIIT is not exclusively limited to
cycle ergometers, but can also be applied using other exercise modes. It has been reported,
for example, that brief, vigorous stair climbing may be a readily accessible exercise modality
to improve cardiorespiratory fitness in sedentary individuals [86]. Future studies may wish
to further focus on investigating the potential health-related benefits that could arise from
“equipment-free” LOW-HIIT protocols.

5. Conclusions

In summary, our data demonstrate that a 6-month, worksite-based, LOW-HIIT pro-
gram resulted in improvements in VO2max, several cardiometabolic health outcomes and
QoL in previously sedentary office workers. Study participants who continued unsuper-
vised LOW-HIIT at home for 6 months during the COVID-19-related lockdown maintained
VO2max and QoL and further improved blood pressure values. Therefore, we conclude
that LOW-HIIT appears to be an effective and extremely time-efficient exercise modality to
mitigate the negative health impacts of COVID-19 pandemic-induced physical inactivity.
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