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Abstract: Research into assisted living environments –within the area of Ambient Assisted Living
(ALL)—focuses on generating innovative technology, products, and services to provide medical
treatment and rehabilitation to the elderly, with the purpose of increasing the time in which these
people can live independently, whether they suffer from neurodegenerative diseases or disabilities.
This key area is responsible for the development of activity recognition systems (ARS) which are a
valuable tool to identify the types of activities carried out by the elderly, and to provide them with
effective care that allows them to carry out daily activities normally. This article aims to review the
literature to outline the evolution of the different data mining techniques applied to this health area,
by showing the metrics used by researchers in this area of knowledge in recent experiments.

Keywords: human activity recognition (HAR); machine learning; classification; feature selection

1. Introduction

The research area of assisted living environments (AAL) focuses on generating innova-
tive technologies, products, and services to aid, medical care, and rehabilitation to elderly
people with the purpose of increasing the time in which these people can live independently,
whether they suffer from neurodegenerative diseases or disabilities. This key research
area is responsible for the development of activity recognition systems (ARS), which are a
valuable tool to identify the types of activities carried out by elderly people, and to provide
them with effective assistance that allows them to carry out daily activities normally.

ARS are based on human activity recognition (HAR), which encompasses the recogni-
tion of a wide range of activities. Within these, this work focuses especially on activities of
daily living (ADL). To evaluate the performance of ARS in the recognition of activities of
daily living, it is necessary to use test data sets in experimental scenarios, which have been
suitably designed by the scientific community for HAR.

Currently, a large part of the world’s elderly population suffers from neurodegenera-
tive diseases. These types of diseases greatly affect the people who suffer from them, since
they cause loss of balance, reduced mobility, speech deficiencies, breathing issues, and other
alterations in cardiovascular function, which directly lead to a decrease in the cognitive
abilities of individuals and, to a great extent, make it difficult to carry out activities of daily
living [1]. Alzheimer’s, dementia, amyotrophic lateral sclerosis (ALS), and Parkinson’s are
some of the most common types of neurodegenerative diseases.

However, before implementing these systems, it is necessary to evaluate their perfor-
mance in the HAR process to optimize the classification of activities in indoor environments.
In this project, a functional model for HAR was built, combining the logistic model trees
(LMT) classification technique and the One R feature selection technique; from the latter, the
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33 features that most improve the success rates of the model were identified. The metrics
used to determine the quality level of the model were recall and precision, both at 95.90%.

This work is divided into five sections. This section introduces the work. Section 2
includes a review of the current state of the art in the field of HAR: applicability of these
systems, types of recognition, types of data collection, and existing datasets in the literature.
Section 3 details how the data was processed, how the functional model was built, and
presents the different experimentation scenarios carried out in this research. In Section 4,
the results obtained in the different scenarios are explained in detail. Finally, in Section 5,
the conclusions obtained are presented and some future work is proposed.

2. Conceptual Information
2.1. Fundamentals Related to Human Activity Recognition

Currently, a large percentage of the world’s elderly population suffers from neurode-
generative diseases that affect not only memory, thought, and behavior, but also affect
mobility, preventing the performance of certain daily activities [2]. These diseases have a
significant effect on the quality of life, since those who are unable to carry out activities
of daily living normally are forced to depend on others to try to lead a normal life and
in some cases, they suffer from social isolation. The research area of Ambient Assisted
Living (AAL) offers older adults various solutions to carry out these daily activities and
live independently for as long as possible.

This key area is bringing about innovations based on information and communi-
cation technologies that provide aid, medical care, and rehabilitation to older people to
improve their quality of life [3]. To do this, AAL solutions provide an ecosystem of sen-
sors, computers, wireless networks, and software applications that allow monitoring of
medical care with the main objective of making life easier and achieving a higher degree
of independence for the elderly [4]. Among the products and services developed in the
framework of AAL are activity recognition systems (ARS). Within such systems, one of
the most important features to be implemented in AAL technologies are human activity
recognition (HAR) processes.

2.2. Human Activity Recognition

HAR aims to identify the actions carried out by a person through a set of observations
of the subject and the environment in which they operate [5]. Below we provide a review
of the areas of application, types of data collection, and types of recognition. A summary of
this content is provided in Table 1.

Table 1. Summary of HAR features.

Data Collection Type [6] Recognition Type [7,8] Application Areas [7,9]

Wearable devices and sensors:
accelerometers, gyroscopes,

GPS, electrocardiogram,
magnetometer, and heart rate,

among others

Environmental
sensors: binary sensors

and cameras

Gestures, actions, interactions,
and activities (e.g., daily living)

Computer vision, video
surveillance (e.g., banks or airports),
sport technique analysis, interaction
with video games through gestures,

military tactics, assisted living
environments for health care of the

elderly people or other diseases

HAR is an area of research with numerous applications such as computer vision [6],
video surveillance implemented in banks or airports, sports technique analysis, systems
that allow interaction with video games through gestures and military tactics [7], in addition
to assisted living environments providing care for the elderly or people with mental illness.
This wide range of applications makes HAR a highly relevant and current research topic.

HAR recognizes patterns of human activity from different types of data, which are
collected through different devices that contain a variety of sensors. For example (1)
wearable devices that integrate accelerometers, gyroscopes, GPS, and heart rate sensors,
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among others; or (2) environmental sensors that collect numerical or categorical data
directly from cameras that record image or video data. Thus, human activity recognition
has been approached in two different ways in terms of the source or the type of device that
collects the data: the first is wearable sensors which are directly attached to the user. The
second source is external sensors, which are fixed by default to objects with which people
will interact within a given area of interest [8].

Regarding human activities, in [6] these have been categorized or classified at different
levels according to their complexity: gestures, actions, interactions, and group activities.
Gestures are considered elementary movements of a part of the person’s body such as
stretching an arm or lifting a leg. Actions are activities that can be composed of multiple
gestures organized in a space of time performed by a person, such as walking or jumping.
Interactions are human activities involving two or more people and/or objects; for example,
two people fighting or one person doing the dishes. Finally, group activities involve
multiple people and/or objects, such as a group hike or a fight between two groups.

Although the field of HAR is very broad, this research work focuses on the recognition
of activities of daily living (ADL), which were defined in [9] as the set of activities that a per-
son performs independently for their personal care, transport, and communication, such as
personal mobility, eating, cleaning and resting, among others. Indeed, ARS based on HAR
to recognize activities of daily living has the potential to bring significant improvements in
the quality of life of people suffering from neurodegenerative diseases, but the performance
of these systems must be previously tested and measured by evaluating various test data
sets in experimental scenarios. To achieve this end, the scientific community has developed
and promoted a variety of data collections available online, which contain information
regarding activities of daily living, performed both in indoor and outdoor environments.

2.3. HAR Dataset

In the scientific literature in the field of ADL recognition, seven datasets [10] are highly
referenced and the main characteristics of these are summarized below in Table 2.

Table 2. Main datasets for ADL and their main characteristics.

Dataset Event Occupancy Devices Datatype Context

Van Kasteren [11] Activities Single
Wireless Sensor

Network
and sensors

Binary values
Two houses
(kitchen and
bathroom)

CASAS Kyoto [12] Activities Single
Motion, associated

with objects and
telephone sensors

Datetime, sensor id,
and value (binary

or numerical)

Washington State
University smart

workplace

CASAS Aruba [13] Activities Multi-occupancy Motion, door, and
temperature sensors

Datetime, sensor id,
and value (binary

or numerical)

Washington State
University smart

workplace

CASAS
Multiresident [14] Activities Multi-occupancy

Motion, item,
cabinet, water,

burner, phone, and
temperature sensors

Datetime, sensor id,
value (binary),

inhabitant id, and
task id

Washington State
University smart

apartment

UCI HAR [5] Actions N/A Accelerometer
and gyroscope

Normalized
values between

[−1, 1]

Handset mounted:
on the left side of

the belt and placed
according to the
user’s preference

Opportunity [15] Activities
Interleaved and

hierarchical
naturalistic activities

Inertial sensors and
accelerometers

Text file (array, each
row is a sample)

A room simulating
a studio flat
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Table 2. Cont.

Dataset Event Occupancy Devices Datatype Context

mHealth [16] Actions N/A

Accelerometer,
electrocardiogram,

gyroscope, and
magnetometer

Fine-grained
real-valued sensor
readings of actions

over a short
time interval

Chest, wrist,
and ankle

The most relevant data sets are (1) the Van Kasteren dataset [11], which is a collection
of binary values collected from a wireless sensor network (WSN) deployed in an enclosure
occupied by two men; (2) the Kyoto [12], Aruba [13] and Multiresident [14] datasets, all of
which are part of the CASAS project [12] carried out by WSU (Washington State University).
The latter deployed a variety of environmental sensors in an apartment, which consisted of
three bedrooms, a bathroom, a kitchen, and a living room.

For this study, we decided to evaluate the Aruba CASAS dataset, since it is a compre-
hensive dataset, whose raw files are available online on the official project site. Although it
has been shown that the evaluation metrics [17] are 100% in terms of accuracy, in this study
the second-best result so far was obtained, with an improvement in terms of accuracy and
in computation times. This was achieved by evaluating other classification techniques and
reducing the scope of the data by applying various feature selection techniques.

In this paper, the single and multiple occupancy dataset known as Aruba CASAS
smart home project [13] from WSU (Washington State University) is used. This dataset
collected different data sources in the home of an adult volunteer. The resident of the house
was a woman who received visits from her children and grandchildren regularly between
4 November 2010 and 11 June 2011. Two data sources gave rise to the information, the first
source was binary and was made up of movement and contact sensors, and the second
source was made up of temperature sensors.

The binary source consisted of 35 sensors, of which 31 were movement sensors,
identified by the letter M. These sensors were installed on the floor and detected the
pressure exerted by the individual when stepping on the ground, representing the activation
and deactivation states (ON/OFF). The remaining four (4) sensors were contact sensors,
installed on the doors and identified by the letter D. These types of sensors detect the
opening and closing states of the doors (OPEN/CLOSE). The second source was made up
of 5 temperature sensors located in different places in the house and identified by the letter
T. This type of sensor detects the temperature of the environment in continuous values
represented in degrees Celsius.

The information contained in this dataset is made up of the recorded events, a product
of the individual’s interactions with each of the sensors. For each event (each activity
performed by the individual), the start and end date and time are recorded. In total, eleven
activities were labeled, but in this study, only nine (9) were considered because the other
two activities have a very low number of samples. For evaluation purposes, the following
activities were considered: preparing meals (Meal_Preparation), resting (Relax), eating (Eat-
ing), working (Work), sleeping (Sleeping), going from bed to the bathroom (Bed_to_Toilet),
getting home (Enter_Home), leaving home (Leave_Home) and cleaning (Housekeeping).

3. Building Predictive Models for HAR

This section describes the methodology applied: pre-processing of the datasets, aggre-
gation functions, model building, and experimentation.

The proposal described here is based on the pre-processing of the original data [18–20]
provided by the Aruba CASAS dataset. This resulted in the processed dataset, from which
three new subsets of data were generated: Aruba CASAS–raw, Aruba CASAS–duration,
and Aruba CASAS–sensor-based.
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For each of the three datasets, the process of building a functional model was car-
ried out, followed by a comparison of the quality metrics for each model and, finally,
choosing the best-validated model and the correct configuration of the dataset in terms of
feature categories.

This whole process is summarised in Figure 1.
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3.1. Pre-Processing of Datasets

The starting point for this research was the original data provided by the Aruba CASAS
dataset (detailed above), made up of the events recorded both by binary sensors (motion
and contact) and by temperature sensors. In addition, it includes the start and end date and
time of each activity. Initially, a pre-processing phase was carried out, which consisted in
generating features from the representation of the activity duration time frames, extracted
from the original data instances. This procedure gave rise to the processed dataset, whose
structure is detailed below. The processed dataset is made up of a total of 69 features,
divided into four (4) categories: count features, average features, aggregation features,
and original features. The count features are built from the contact sensors in the doors.
In total, there are four (4) contact sensors, and a count was made for both opening and
closing (OPEN/CLOSE), within the duration frames of the activities. Therefore, eight (8)
door contact sensor features were generated. Count features were also generated from the
motion sensors. However, since motion sensors have nearly simultaneous ON and OFF
states (i.e., an OFF state is executed immediately after the ON state), an event count was
made from the pair of states (ON and OFF) for each sensor. Therefore, 31 motion sensor
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features were generated. Other count features are the number of events corresponding to a
certain activity carried out in the time frame. The duration features represent the difference
in seconds between the start date and time and the end date and time of the activity.

Regarding average features, these have been calculated from the temperature sensors,
since the values they take are continuous data, adding a total of five (5) features to the
dataset. Additionally, other aggregation features were generated from these sensors and,
since four (4) statistical formulas were used (range, standard deviation, skew, and kurtosis)
for each of the sensors, a total of 20 features were generated for this category. The three
(3) remaining features are part of the category of original features and correspond to the
class label, the start date and time, and the end date and time of the activity. For greater
precision, Table 3 contains the structure of the processed dataset.

Table 3. Processed dataset structure.

Count Features Average
Features

Aggregation
Features Original Features

TotalDoor
Contact
Sensors

Motion
Sensors

Number
of Events

Duration
of Activity Thermometers Thermometers Start of

Activity
End of

Activity Class

Features

D001-open,
D001-close,
D002-open,
D002-close,
D003-open,
D003-close,

D004-open y
D004-close
(Total: 8)

M001, M002,
M003, M004,
M005, M006,
M007, M008,
M009, M010,
M011, M012,
M013, M014,
M015, M016,
M017, M018,
M019, M020,
M021, M022,
M023, M024,
M025, M026,
M027, M028,
M029, M030

y M031
(Total: 31)

Events
(Total: 1)

Duration
(Total: 1)

T001, T002,
T003, T004 Y

T005
(Total: 5)

T001-RANGE,
T001-DESV,
T001-BIAS,
T001-KURT,

T002-RANGE,
T002-DESV,
T002-BIAS,
T002-KURT,

T003-RANGE,
T003-DESV,
T003-BIAS,
T003-KURT,

T004-RANGO,
T004-DESV,
T004-BIAS,
T004-KURT,

T005-RANGE,
T005-DESV,
T005-BIAS y
T005-KURT
(Total: 20)

Start date
and time
(Total: 1)

Start date
and time
(Total: 1)

Activity
(Total: 1) 69 Features

From the processed dataset, three data subsets were generated that will be called:
Aruba CASAS–raw, Aruba CASAS–duration, and Aruba CASAS–sensor-based, which
differ in the number of features and have the following configuration:

− The Aruba CASAS–raw dataset has a total of 47 features, of which 39 correspond to
the category of count features, five (5) to the category of average features, and the
remaining three (3) to the category of original features.

− The Aruba CASAS–duration dataset has a total of 49 features, of which 41 correspond
to the category of count features, five (5) to the category of average features, and the
remaining three (3) to the category of original features.

− The Aruba CASAS–sensor-based dataset is made up of a total of 67 features, of which
39 correspond to the category of count features, five (5) to the category of average
features, 20 to the category of aggregation features, and the remaining three (3) to the
category of original features.

These datasets were generated to carry out subsequent tests and identify which
dataset produces the best results in terms of the classification capacity of machine learning
techniques. These techniques were proposed to evaluate the incidence of one or another
category of features in the classification capacity of the technique. Table 4 identifies the
number of features of these three datasets based on the categories of features that make
them up.
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Table 4. Dataset configuration Aruba CASAS–raw, Aruba CASAS–duration, and Aruba CASAS–
sensor-based.

Dataset
Count Features Average

Features
Aggregation

Features Original Features
Number of

FeaturesDoor Contact
Sensors

Motion
Sensors

Number
of Events

Duration
of Activity Thermometers Thermometers Start of

Activity
End of

Activity Class

Aruba
CASAS–raw 8 31 0 0 5 0 1 1 1 47

Aruba CASAS–
duration 8 31 1 1 5 0 1 1 1 49

Aruba CASAS–
sensor-based 8 31 0 0 5 20 1 1 1 67

Moreover, the data subsets used in the model construction process for training (train)
and testing (test) follow the distribution of data instances presented in Table 5. The
proportions correspond to 69.90% for the training subset and 30.10% for the testing subset,
in each of the three datasets (Aruba CASAS–raw, Aruba CASAS–duration, and Aruba
CASAS–sensor-based).

Table 5. Distribution of instances for training and testing data subsets of the Aruba CASAS–raw,
Aruba CASAS–duration, and Aruba CASAS–sensor-based datasets.

Dataset
Training Subset Testing Subset Total

InstancesInstances Percentage Instances Percentage

Aruba CASAS–raw 4460 69.9% 1916 30.1% 6376

Aruba CASAS–duration 4460 69.9% 1916 30.1% 6376

Aruba CASAS–sensor-based 4460 69.9% 1916 30.1% 6376

For the construction of each subset (training and testing), the instances were selected
randomly, approximately the same proportion of instances for each class label. That is,
approximately 70% for training and 30% for testing (see Table 6).

Table 6. Distribution of data instances by class for training and testing data subsets for the Aruba
CASAS–raw, Aruba CASAS–duration, and Aruba CASAS–sensor-based datasets.

Dataset/Class Sleeping Bed to
Toilet

Meal
Preparation Relax House

Keeping Eating Leave
Home

Enter
Home Work

Aruba
CASAS–raw

Train 265 112 1105 2036 23 181 298 319 121

Test 136 45 482 878 9 71 133 112 50

Aruba
CASAS–duration

Train 265 112 1105 2036 23 181 298 319 121

Test 136 45 482 878 9 71 133 112 50

Aruba CASAS–
sensor-based

Train 265 112 1105 2036 23 181 298 319 121

Test 136 45 482 878 9 71 133 112 50

3.2. Aggregation Functions

To verify the Aruba CASAS–sensor-based dataset, it was necessary to calculate several
features from aggregation functions. In this process, the instances were grouped by class
criteria. That is, by activity, specifically from the temperature features, the functions used
were: range, standard deviation, skewness, and kurtosis, using the functions defined in [21].
Each of these is detailed below:

- Range: is the difference between the largest value and the smallest value in a data set.

orange=omax−omin (1)
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- Standard deviation: defined as the square root of the variance. The variance is the sum
of all the squared differences of each occurrence value to the mean, divided by the
number of sensors S minus 1.

σ=

√
1

s−1

s

∑
i=1

(oi−µ2) (2)

- Skewness: defined as the quotient of the third central moment m3 of a data set and the
standard deviation cubed.

γ=
m3

σ3 =
1
s ∑s

i=1(oi−µ)3√
1
s ∑s

i=1(oi−µ2)
3 (3)

- Kurtosis: defined as the quotient of the fourth central moment of a data set m4, and the
standard deviation σ to the fourth power.

κ=
m4

σ4 =
1
s ∑s

i=1(oi−µ)4√
1
s ∑s

i=1 (oi−µ2)
4 (4)

3.3. Model Construction

Different models were built from the three datasets, implementing classification tech-
niques, integrated with feature selection techniques. As a result of the evaluation of the
quality metrics, the best results were identified for each dataset. That is, each evaluation
made it possible to identify the best combinations of classification techniques with feature
selection techniques, which generated the highest quality metrics for each evaluated dataset
(Aruba CASAS–raw, Aruba CASAS–duration, and Aruba CASAS–sensor based).

A comprehensive comparative analysis of the results obtained by these evaluations
made it possible to identify the dataset that generated the best classification results and
the respective classification techniques and feature selection which led to those best results
(see Figure 2).

3.4. Experimentation

We wanted to build a model that yields the best results in terms of quality metrics.
In addition to evaluating different configurations of feature categories for the dataset,
which have a major impact on the classification process, three experimentation scenarios
were proposed. In our first experimental scenario, different classification techniques were
applied to each of the three data subsets (Aruba CASAS–raw, Aruba CASAS–duration, and
Aruba CASAS–sensor-based). Then, we wanted to identify the techniques that generate the
best quality metrics in each of the experiments. For this evaluation, a random sampling
of instances of each dataset was carried out to divide them into training and testing, of
which each training data set (train) is 70% of the samples, and each testing data set (test) is
approximately 30%.

In our second experimental scenario, different feature selection techniques were ap-
plied to the training and testing datasets of each data subset, and the optimal number of
features was identified with the classification technique that best affects the evaluation
process for each one of the data subsets. In our third experimental scenario, for each dataset,
the performance of the best hybridization of classification technique with feature selection
technique using 10-fold cross-validation was comprehensively evaluated. Each one of the
proposed experimentation scenarios carried out for each data subset (Aruba CASAS–raw,
Aruba CASAS–duration, and Aruba CASAS–sensor-based) is detailed below.
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4. Experimentation Scenarios

Here we describe different experimentation scenarios for the creation of a predictive
HAR (human activity recognition) model, applying different configurations of classification
and feature selection techniques to the Aruba CASAS–raw, Aruba CASAS–duration, and
Aruba CASAS–sensor-based data subsets generated from the original Aruba CASAS dataset.
Subsequently, to compare the performance of different machine learning approaches, a
comparative analysis of the quality metrics was performed on each of the three recreated
scenarios: (1) with classification techniques, (2) through hybridization of classification and
selection techniques, and (3) evaluating the best results through cross-validation. In the
three scenarios, the three pre-processed data subsets were used to identify which data
subset, when processed using the respective techniques, generates better quality metrics in
the predictive process.

4.1. Experimental Scenario No. 1: Comparative Analysis of Classification Techniques on Data Subsets

In this first scenario, three experiments were carried out, each evaluating 31 classifi-
cation techniques in the three datasets (Aruba CASAS–raw, Aruba CASAS–duration, and
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Aruba CASAS–sensor-based). For each experiment, subsets of data were used, from each
dataset, for the training process (train) and the testing process (test). The classification
techniques evaluated in the different experiments of this scenario are presented in Table 7,
indicating the subcategory to which they correspond.

Table 7. Techniques evaluated in the different experiments by subcategories.

Subcategories Technique Function

Decision Tree

Logistic Model Trees—LMT [22] Build logistic model trees.

J48 (C4.5 decision tree) [23] Decision tree based on algorithm C4.5.

Reduced-Error Pruning Tree—REPTree [24] Fast tree learning using pruning in error reduction.

RandomForest [25] Construction of random trees

Random Tree [24] Build a tree that considers a random number of given
features at each node.

DecisionStump [26] Build one-level decision trees

Rules

JRip [27] RIPPER (Reduced Incremental Pruning to Produce Error
Reduction) algorithm for fast, efficient rule induction.

Partial Decision Trees—PART [24] Obtains rules from decision trees built using J4.8.

Decision Table [28] Construct a simple decision table for the
majority classifier.

ZeroR, Stacking [29] Predict the majority class (if nominal) or the average value
(if numeric).

OneR [30] One rule classifier

Functions
Logistic [31] Build linear logistic regression models.

MultilayerPerceptron [32] Backpropagation Neural Network

Multiclassifiers
(Meta)

Random Committee [24] Build a set of random base classifiers

Stacking [29] Combine multiple classifiers using the stacking method.

LogitBoost [33] Perform additive logistic regression

Classification Via Regression [24] It performs classification using a regression method

MultiClass Classifier [34] Use a two-class classifier for multiclass data sets

Bagging [35] A bag classifier works by regression as well.

AdaBoostM1 [36] Use the AdaBoostM1 method.

Vote [37] Combine classifiers using average probability estimates or
numerical predictions

CVParameterSelection [38] Performs parameter selection through cross-validation

MultiScheme [39] Uses cross-validation to select a classifier from
multiple candidates

AttributeSelectedClassifier [24] Reduces the dimensionality of the data by
selecting attributes.

RandomSubSpace [40] Build a decision tree-based classifier that maintains the
highest accuracy on the training data.

Filtered Classifier [39] Run a classifier on filtered data

Lazy algorithms

IB1 Instance-based Learning Algorithms [41] Instance-based learning is a basic nearest neighbor

IB2 Instance-based Learning Algorithms [41] K nearest neighbor classifier.

IB3 Instance-based Learning Algorithms [41] K nearest neighbor classifier.

KStar [42] A nearest neighbor with a generalized distance function

LWL [43] A general algorithm for locally heavy learning.
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To define the features of the datasets, a series of feature selection algorithms were used
in this experiment, which yielded the following results (see Table 8):

Table 8. Feature Prioritization Algorithms approach.

Algorithm Feature Prioritization

GainRatio 12, 11, 9, 8, 35, 25, 18, 28, 13, 27, 26, 24, 36, 39, 16, 40, 14, 22, 23, 37, 29, 34, 30, 38, 19, 10, 15, 44, 43, 41,
42, 31, 2, 45, 17, 21, 5, 4, 20, 33, 32, 1, 0, 7, 3, 6, 46, 47

InfoGain 18, 27, 28, 24, 22, 26, 29, 9, 25, 8, 23, 39, 43, 16, 42, 12, 44, 45, 11, 41, 30, 19, 14, 13, 35, 38, 36, 37, 31, 21,
15, 17, 40, 34, 33, 1, 0, 32, 10, 5, 20, 4, 2, 6, 7, 3, 46, 47

OneR 27, 28, 24, 18, 26, 25, 22, 23, 30, 9, 8, 39, 16, 12, 11, 29, 43, 38, 31, 35, 13, 42, 14, 36, 37, 41, 17, 44, 45, 15,
32, 40, 5, 4, 34, 10, 2, 6, 19, 7, 21, 3, 20, 33, 0, 1, 46, 47

ReliefF 44, 43, 42, 18, 9, 28, 27, 8, 41, 24, 26, 12, 25, 39, 22, 23, 29, 38, 13, 35, 40, 31, 36, 16, 37, 19, 30, 11, 45, 14, 4,
5, 15, 33, 17, 32, 21, 34, 10, 3, 6, 1, 7, 0, 2, 20, 46, 47

For the experiments with the Aruba CASAS–raw and Aruba CASAS–sensor-based
datasets (see Table 8), the classifiers with the best results in terms of the recall metric were
LMT with 94.50% and LogitBoost with 94.20% when both were evaluated. Additionally, it
was possible to identify that in these cases the ROC area metric was 99.60% and 99.70%,
respectively. Regarding the test with the Aruba CASAS–duration dataset, the classification
techniques with the highest recall were J48 and JRIP at 95.60% for both classifiers, with
JRIP presenting the highest ROC area metric at 99.30%. It is important to specify the
implementation details of this classifier considering the feature selection process identified
in Table 9. Table 10 shows the results of the LMT classifier using the GainRatio and OneR
algorithms, respectively.

Table 9. LMT with GainRatio approach.

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Sleeping

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Bed_to_Toilet

0.983 0.012 0.963 0.983 0.973 0.964 0.996 0.981 Meal_Preparation

0.998 0.005 0.994 0.998 0.996 0.993 1.000 1.000 Relax

0.889 0.000 1.000 0.889 0.941 0.943 1.000 0.989 Housekeeping

0.986 0.003 0.933 0.986 0.959 0.958 1.000 0.987 Eating

0.000 0.001 0.000 0.000 0.000 −0.002 0.927 0.103 Wash_Dishes

0.541 0.015 0.727 0.541 0.621 0.604 0.981 0.698 Leave_Home

0.759 0.033 0.582 0.759 0.659 0.641 0.979 0.644 Enter_Home

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Work

0.939 0.008 0.934 0.939 0.935 0.929 0.996 0.945 Weighted Avg

Table 10. LMT with OneR approach.

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Sleeping

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Bed_to_Toilet

0.983 0.012 0.965 0.983 0.974 0.966 0.995 0.978 Meal_Preparation

0.999 0.005 0.994 0.999 0.997 0.994 1.000 0.999 Relax
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Table 10. Cont.

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.889 0.001 0.889 0.889 0.889 0.888 1.000 0.967 Housekeeping

0.986 0.002 0.959 0.986 0.972 0.971 1.000 0.987 Eating

0.000 0.001 0.000 0.000 0.000 -0.003 0.923 0.098 Wash_Dishes

0.564 0.018 0.701 0.564 0.625 0.605 0.980 0.692 Leave_Home

0.714 0.032 0.580 0.714 0.640 0.619 0.978 0.639 Enter_Home

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 Work

0.939 0.008 0.933 0.939 0.935 0.929 0.995 0.944 Weighted Avg

LMT is the classification technique that yields the best results in terms of recall with
both the Aruba CASAS–raw and Aruba CASAS–sensor-based datasets. Regarding the
Aruba CASAS–duration dataset, even though LMT was not the technique with the best
classification results, it reached a Recall of 95.40%, as shown in Table 11 below.

Table 11. Techniques evaluated in the different experiments by subcategories.

Dataset
Quality Metrics

Classification Technique
FP Rate Precision Recall F-Measure ROC Area

Aruba CASAS—raw

0.50% 94.80% 94.50% 94.50% 99.60% LMT

0.60% 94.60% 94.20% 94.00% 99.70% LogitBoost

0.60% 94.30% 94.10% 94.10% 99.70% ClassificationViaRegression

0.50% 94.30% 94.00% 94.00% 99.00% J48

Aruba CASAS—duration

0.50% 95.70% 95.60% 95.60% 99.00% J48

0.60% 95.70% 95.60% 95.50% 99.30% JRIP

0.60% 95.40% 95.40% 95.40% 99.60% LMT

0.70% 95.20% 95.30% 95.10% 99.80% RandomSubSpace

Aruba CASAS—sensor based

0.70% 94.80% 94.50% 94.40% 99.70% LMT

0.60% 94.60% 94.20% 94.00% 99.70% LogitBoost

0.60% 94.30% 94.10% 94.10% 99.70% ClassificationViaRegression

0.60% 94.20% 93.90% 93.90% 99.00% J48

4.2. Experimental Scenario No. 2: Comparative Analysis of the Hybridization of Selection and
Classification Techniques on Data Subsets

In this scenario, three experiments were carried out, each with the respective datasets
mentioned above (Aruba CASAS–raw, Aruba CASAS–duration, and Aruba CASAS–sensor-
based). To minimize computation times, we sought to reduce the size of the three datasets,
identifying the set of features that best affect the classification. For this purpose, the Info
Gain [44], Gain Ratio [44], Symmetrical Uncert [44], OneR [30], and Relief feature selection
techniques [45] were combined with each of the four classification techniques. The results
were then analyzed for each scenario and each dataset to see which generated better results.

Once the quality metrics were evaluated, it was possible to determine that the hy-
bridization of the classification techniques with the feature selection techniques which
generated the best results were: (1) LMT with Gain Ratio using both 27 and 24 features for
the Aruba CASAS dataset–raw (see Table 12); (2) JRIP with One R using 47 features and
LMT with One R using 33 features for the Aruba CASAS–duration dataset (see Table 13);
and (3) LMT with Info Gain using 47 features and LMT with Gain Ratio using 31 features
for the Aruba CASAS–sensor-based dataset (see Table 14).
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Table 12. Comparison between the hybridization of LMT + Gain Ratio techniques with a different
number of features for the Aruba CASAS–raw training and testing datasets.

Class
LMT + Gain Ratio (27 Features) LMT + Gain Ratio (24 Features)

FP Rate Precision Recall F-Measure ROC Area FP Rate Precision Recall F-Measure ROC Area

Sleeping 0.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%

Bed_to_Toilet 0.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%

Meal_Preparation 0.10% 99.80% 98.50% 99.20% 99.90% 0.10% 99.60% 98.50% 99.10% 99.80%

Relax 0.60% 99.30% 99.80% 99.50% 100.00% 0.40% 99.50% 99.40% 99.50% 99.90%

Housekeeping 0.00% 100.00% 88.90% 94.10% 100.00% 0.10% 90.00% 100.00% 94.70% 100.00%

Eating 0.20% 94.70% 100.00% 97.30% 100.00% 0.30% 92.20% 100.00% 95.90% 100.00%

Leave_Home 1.50% 73.00% 54.90% 62.70% 98.10% 1.50% 73.30% 55.60% 63.20% 98.10%

Enter_Home 3.30% 59.00% 75.90% 66.40% 97.90% 3.20% 59.40% 75.90% 66.70% 97.90%

Work 0.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%

Average 0.60% 95.20% 94.90% 94.90% 99.70% 0.50% 95.10% 94.90% 94.90% 99.70%

Table 13. Comparison between the hybridization of JRIP + One R and LMT + One R techniques with
the Aruba CASAS–duration training and testing datasets.

Class
JRIP + One R (47 Features) LMT + One R (33 Features)

FP Rate Precision Recall F-Measure ROC Area FP Rate Precision Recall F-Measure ROC Area

Sleeping 0.00% 100.00% 98.50% 99.30% 99.60% 0.00% 100.00% 100.00% 100.00% 100.00%

Bed_to_Toilet 0.00% 100.00% 97.80% 98.90% 98.90% 0.00% 100.00% 97.80% 98.90% 100.00%

Meal_Preparation 0.30% 99.20% 98.60% 98.90% 99.20% 0.10% 99.80% 98.60% 99.20% 99.90%

Relax 0.50% 99.40% 99.50% 99.50% 99.60% 0.70% 99.20% 99.70% 99.40% 99.80%

Housekeeping 0.10% 87.50% 77.80% 82.40% 88.90% 0.00% 100.00% 77.80% 87.50% 100.00%

Eating 0.40% 90.90% 98.60% 94.60% 98.80% 0.30% 92.10% 98.60% 95.20% 98.80%

Leave_Home 2.20% 73.50% 81.20% 77.10% 98.30% 2.30% 72.50% 83.50% 77.60% 98.50%

Enter_Home 1.30% 75.30% 65.20% 69.90% 97.00% 1.30% 75.30% 62.50% 68.30% 98.20%

Work 0.10% 98.00% 100.00% 99.00% 100.00% 0.10% 98.00% 96.00% 97.00% 100.00%

Average 0.50% 95.80% 95.80% 95.80% 99.20% 0.60% 95.90% 95.90% 95.80% 99.70%

Table 14. Comparison between the hybridization of LMT + Info Gain and LMT + Gain Ratio
techniques with the Aruba CASAS–sensor-based testing and training datasets.

Class
LMT + Info Gain (47 Features) LMT + Gain Ratio (31 Features)

FP Rate Precision Recall F-Measure ROC Area FP Rate Precision Recall F-Measure ROC Area

Sleeping 0.10% 99.30% 100.00% 99.60% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%

Bed_to_Toilet 0.00% 100.00% 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%

Meal_Preparation 0.10% 99.80% 99.20% 99.50% 100.00% 0.20% 99.40% 98.30% 98.90% 100.00%

Relax 0.50% 99.40% 99.80% 99.60% 99.90% 0.60% 99.30% 99.80% 99.50% 100.00%

Housekeeping 0.00% 100.00% 44.40% 61.50% 91.00% 0.00% 100.00% 88.90% 94.10% 100.00%

Eating 0.20% 94.70% 100.00% 97.30% 100.00% 0.20% 94.60% 98.60% 96.60% 100.00%

Leave_Home 1.50% 73.00% 54.90% 62.70% 98.00% 1.50% 73.30% 55.60% 63.20% 98.10%

Enter_Home 3.30% 59.00% 75.90% 66.40% 97.80% 3.20% 59.40% 75.90% 66.70% 97.90%

Work 0.10% 98.00% 100.00% 99.00% 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%

Average 0.50% 95.10% 94.90% 94.80% 99.70% 0.60% 95.10% 94.90% 94.80% 99.70%

In this scenario, the application of different feature selection techniques was carried
out to select the features to be selected to be included in the experimentation (see Table 15):
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Table 15. Feature Prioritization Algorithms approach.

Algorithm Feature Prioritization

GainRatio 13, 14, 11, 10, 37, 27, 20, 30, 15, 29, 26, 28, 38, 41, 18, 42, 16, 24, 25, 39, 2, 31, 3, 36, 32, 40, 21, 12, 17, 46,
43, 44, 33, 45, 4, 47, 19, 23, 7, 6, 22, 35, 34, 1, 0, 8, 5, 9, 48, 49

InfoGain 2, 20, 29, 30, 26, 3, 24, 28, 31, 11, 27, 10, 25, 41, 45, 18, 44, 14, 46, 47, 13, 43, 32, 21, 16, 15, 37, 40, 38, 39,
33, 23, 17, 19, 42, 36, 35, 1, 0, 34, 12, 7, 22, 6, 4, 9, 5, 8, 48, 49

OneR 29, 30, 26, 20, 28, 2, 27, 24, 25, 32, 3, 11, 10, 41, 18, 14, 31, 13, 45, 40, 46, 44, 37, 15, 43, 33, 16, 38, 47, 39,
19, 17, 34, 42, 7, 36, 6, 12, 4, 23, 8, 21, 9, 35, 5, 22, 1, 0, 48, 49

ReliefF 46, 45, 44, 20, 11, 30, 3, 29, 10, 43, 26, 28, 27, 14, 41, 24, 2, 25, 31, 40, 15, 37, 42, 33, 38, 18, 39, 21, 32, 13,
47, 16, 6, 7, 35, 17, 19, 23, 34, 36, 12, 1, 9, 0, 8, 5, 4, 22, 48, 49

For the experiment with the Aruba CASAS–raw dataset, both proposals (27 and
24 features) managed to increase recall to 94.90% and ROC area to 99.70% (compared with
the initial scenario in which the datasets with all 47 features had a recall of 94.50% and a
ROC area of 99.60%). LMT with Gain Ratio (24 features) achieved a greater reduction in
the number of attributes used in the classification process (see Table 9).

In the experiment with the Aruba CASAS–duration dataset, even though the J48 clas-
sifier (in the first experimentation scenario) had generated very good results, reaching
95.60% recall (with 49 features, as can be seen in Table 3), the hybridization proposals JRIP
with One R using 47 features and LMT with One R using 33 features (and executed in this
second scenario), increased recall, reaching 95.80% and 95.90% respectively. In addition, a
significant reduction in the number of features was achieved for the classification process.
For a better overview of this (see Table 13). It is evident that of these two combinations of
techniques, it is better to use LMT with One R because it generates greater recall (95.90%)
and because it only requires 33 features for the classification process.

In the first scenario for the Aruba CASAS–sensor-based dataset with 67 features, a
recall of 94.50% and a ROC area of 99.70% was obtained using the LMT technique. In this
scenario, with the same dataset, both proposals (LMT + Info Gain with 47 features and
LMT + Gain ratio with 31 features) showed an increase in recall, which was 94.90%. LMT
with Gain Ratio was the combination that achieved a greater decrease in the number of
features (which affects the computation time required by the predictive model), as can be
seen in Table 14.

Let us compare the two best hybridizations for each dataset:

- In the Aruba CASAS–raw dataset, the two combinations presented the same results
in terms of recall, F-Measure, and ROC area. LMT with Gain Ratio using 24 features
presented the lowest FP-Rate at 0.5%.

- In the evaluation of the Aruba CASAS–duration dataset, the combination with the
best recall (95.90%) and ROC area (99.70%) was LMT with One R, using 33 features.

- Regarding the evaluation of the Aruba CASAS–sensor-based dataset, the results for
the two hybridizations of classification and selection techniques used coincided with
the respective results of the precision, recall, F-Measure, and ROC area metrics.

Although LMT with Gain Ratio for 31 features is the combination that presented the
highest FP Rate of 0.6%, it is important to highlight that the other combination (LMT with
Info Gain) uses 16 more features (see Table 16). Until this point it can be deduced that the
dataset that generates the best predictive model is Aruba CASAS–duration, after applying
the hybridization of LMT techniques with One R, using only 33 features of the 49 original
features. In this order of ideas, these 33 features have the best effect on the classification
process to predict human activities. Table 17 indicates the priority of incidence in the
prediction identified from the One R selection technique.
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Table 16. Comparison between the best hybridizations of classification and feature selection tech-
niques with the training and testing datasets of each data subset.

Dataset
Quality Metrics Hybridization Classification

Technique + Feature SelectionFP Rate Precision Recall F-Measure ROC Area

Aruba CASAS–raw
0.60% 95.20% 94.90% 94.90% 99.70% LMT + Gain Ratio (27 Features)

0.50% 95.10% 94.90% 94.90% 99.70% LMT + Gain Ratio (24Features)

Aruba—duration
0.50% 95.80% 95.80% 95.80% 99.20% JRIP + One R (47 Features)

0.60% 95.90% 95.90% 95.80% 99.70% LMT + One R (33Features)

Aruba—sensor based
0.50% 95.10% 94.90% 94.80% 99.70% LMT + Info Gain (47 Features)

0.60% 95.10% 94.90% 94.80% 99.70% LMT + Gain Ratio (31Features)

Table 17. Attributes with the highest incidence in the classification of the LMT technique identified
with the One R feature selection technique for the Aruba CASAS–duration dataset.

ID Attribute Priority ID Attribute Priority ID Attribute Priority

1 M018 70.12 12 D004-close 51.97 23 M026 47.49

2 M019 69.94 13 D004-open 51.80 24 M004 47.43

3 M015 69.08 14 M030 51.49 25 T001 47.36

4 M009 68.30 15 M007 51.18 26 M022 47.34

5 M017 68.12 16 M003 50.89 27 M005 47.25

6 duration 66.02 17 M020 50.78 28 M027 47.03

7 M016 65.04 18 M002 50.58 29 T005 46.96

8 M013 64.17 19 T003 48.58 30 M028 46.85

9 M014 59.61 20 M029 47.98 31 M008 46.52

10 M021 55.99 21 T004 47.65 32 M006 45.94

11 events 52.15 22 T002 47.63 33 M023 45.87

4.3. Experimental Scenario No. 3: Comparative Analysis of the Best Results Obtained, Applying
Cross-Validation

In this scenario, a more exhaustive evaluation was carried out to assess whether there
is a better combination of classification techniques and feature selection, compared to the
previous scenario, for each dataset (Aruba CASAS–raw, Aruba CASAS–duration, and
Aruba CASAS-sensor-based). Each dataset was trained and tested using 10-fold cross-
validation, generating three experiments, the results of which are detailed in Tables 18–20.

Table 18. LMT classification results + Gain Ratio with cross-validation with 10 folds for Aruba
CASAS–raw dataset.

Class
LMT + Gain Ratio (24 Features)

FP Rate Precision Recall F-Measure ROC Area

Sleeping 0.00% 99.20% 99.60% 99.40% 100.00%

Bed_to_Toilet 0.00% 98.20% 100.00% 99.10% 100.00%

Meal_Preparation 0.30% 99.20% 99.00% 99.10% 99.50%

Relax 0.80% 99.10% 99.40% 99.20% 99.70%

Housekeeping 0.10% 86.40% 82.60% 84.40% 96.40%
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Table 18. Cont.

Class
LMT + Gain Ratio (24 Features)

FP Rate Precision Recall F-Measure ROC Area

Eating 0.10% 98.30% 96.10% 97.20% 99.80%

Leave_Home 2.00% 65.20% 53.40% 58.70% 97.20%

Enter_Home 3.30% 63.20% 73.40% 67.90% 97.50%

Work 0.10% 97.50% 97.50% 97.50% 100.00%

Average 0.80% 94.10% 94.10% 94.10% 99.30%

Table 19. LMT + One R classification results in cross-validation with 10-folds of the Aruba CASAS–
duration dataset.

Class
LMT + One R (33 Features)

FP Rate Precision Recall F-Measure ROC Area

Sleeping 0.00% 99.60% 99.60% 99.60% 99.80%

Bed_to_Toilet 0.00% 99.10% 100.00% 99.60% 100.00%

Meal_Preparation 0.40% 98.80% 98.60% 98.70% 99.60%

Relax 0.80% 99.10% 99.30% 99.20% 99.70%

Housekeeping 0.20% 66.70% 69.60% 68.10% 94.90%

Eating 0.10% 97.10% 93.40% 95.20% 97.70%

Leave_Home 2.80% 62.80% 66.80% 64.70% 97.10%

Enter_Home 2.30% 68.00% 63.30% 65.60% 97.20%

Work 0.20% 94.50% 99.20% 96.80% 100.00%

Average 0.80% 94.10% 94.10% 94.00% 99.20%

Table 20. LMT classification results + Gain Ratio with cross-validation with 10-folds of the Aruba
CASAS–sensor-based dataset.

Class
LMT + Gain Ratio (31 Features)

FP Rate Precision Recall F-Measure ROC Area

Sleeping 0.10% 98.90% 100.00% 99.40% 100.00%

Bed_to_Toilet 0.10% 97.40% 100.00% 98.70% 100.00%

Meal_Preparation 0.40% 98.80% 99.00% 98.90% 99.70%

Relax 0.70% 99.20% 99.20% 99.20% 99.40%

Housekeeping 0.10% 86.40% 82.60% 84.40% 90.70%

Eating 0.00% 99.40% 94.50% 96.90% 99.80%

Leave_Home 2.10% 64.90% 53.40% 58.60% 97.30%

Enter_Home 3.30% 63.10% 73.40% 67.80% 97.70%

Work 0.10% 95.90% 97.50% 96.70% 99.90%

Average 0.80% 94.00% 94.00% 93.90% 99.30%

In the cross-validation process, each complete dataset was divided into 10 folds of
equal size. Iterative tests were then performed in which the model was trained on 9 folds
and tested on the remaining fold. Finally, the quality metrics obtained in each of the
10 iterations were averaged to calculate the result. For the test with the Aruba CASAS–raw
dataset, with the LMT classification technique and Gain Ratio feature selection (24 features),
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the recall was 94.10% (see Table 18). This is not an improvement over the results of the
second scenario (same dataset and same combination of techniques), where recall was
94.90% (see Table 12).

In the test with the Aruba CASAS–duration dataset, with the LMT classification
technique and One R feature selection (33 features), the recall was 94.10% (see Table 15).
This is not an improvement over the evaluation carried out for this dataset with the same
combination of techniques in the second scenario, where recall was 95.90% (see Table 15).

Regarding the test with the Aruba CASAS–sensor-based dataset, with the LMT clas-
sification technique and One R feature selection (31 features), the recall was 94.00% (see
Table 18). This is also not an improvement over the evaluation carried out for this dataset
with the same combination of techniques in the second scenario, where recall was 94.90%
(see Table 18).

The results obtained in this third experimentation scenario, in terms of recall and
ROC area after applying cross-validation, did not show improvements compared to those
obtained in the second scenario. This behavior occurred in each of the experiments carried
out with the datasets (Aruba CASAS–raw, Aruba CASAS–duration, and Aruba CASAS–
sensor-based) due to overfitting (see Table 21). Overfitting is the result of over-training a
model with data adjusted to specific features of the dataset. That is, excessive learning of
certain class behaviors means that, in turn, the understanding of behaviors that are different
from the class label is impossible. According to [46], this is a result of an imbalance in the
training data set.

Table 21. LMT classification results + Gain Ratio with cross-validation with 10 folds for Aruba
CASAS–sensor-based dataset.

Dataset
Quality Metrics Hybridization Classification

Technique + Feature Selection
(10-Fold Cross Validation)FP Rate Precision Recall F-Measure ROC Area

Aruba CASAS–raw 0.80% 94.10% 94.10% 94.10% 99.30% LMT + Gain Ratio (24 Features)

Aruba CASAS–duration 0.80% 94.10% 94.10% 94.00% 99.20% LMT + One R (33 Features)

Aruba CASAS–sensor based 0.80% 94.00% 94.00% 93.90% 99.30% LMT + Gain Ratio (31 Features)

To check if there are significant differences between the proposed models, a statistical
analysis was carried out through the study of their variance. For this, the null hypothesis
Ho was proposed, which posits equality between the means of the models with an alpha
level of significance of 5%, and an alternative hypothesis H1 rejects said equality.

In Table 22, the probability values for the three models—M1 (LMT + Gain Ratio
24 features) vs. M2 (LMT + One R 33 features), M1 (LMT + Gain Ratio 24 features) vs.
M3 (LMT + Info Gain 47 features) and M2 (LMT + One R 33 features) vs. M3(LMT + Info
Gain 47 features)—are much higher than the 5% alpha level of significance. So, the null
hypothesis Ho was accepted, which poses the equality between the means of the models.
This indicates that there is no significant difference between the three models proposed, in
addition to the consistency of the data considered for the experimentation.

Table 22. Statistical analysis—ANOVA.

Models F Probability The Critical Value for F

M1 (LMT + Gain Ratio 24 Features) vs. M2 (LMT + One R 33 Features) 0.058300716 0.812269355 4.493998478

M1 (LMT + Gain Ratio 24 Features) vs. M3 (LMT + Info Gain 47 Features) 0.034326866 0.855341542 4.493998478

M2 (LMT + One R 33 Features) vs. M3 (LMT + Info Gain 47 Features) 0.00182054 0.966494302 4.493998478
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5. Conclusions

In this section, the results and conclusions reached with the development of this research
work are presented, after evaluating each experimentation scenario previously proposed.

In the first scenario, the recall quality metric of 95.60% represents the best result, when
the Aruba CASAS–duration dataset was evaluated using 49 features and the J48 and JRIP
classification techniques. This surpassed the results of the Aruba CASAS–raw and Aruba
CASAS–sensor-based datasets, in which a recall of 94.50% was obtained for both. This
shows that adding the two count features for the number of events and activity duration
improved recall by 1.1%. On the other hand, the Aruba CASAS–sensor-based dataset did
not show any improvements over the Aruba CASAS–duration dataset. On the contrary,
the results show an increase in computation times during the classification process. Aruba
CASAS–sensor-based dataset has 20 additional features calculated through the aggregation
functions applied to the features, generated from the temperature sensors, and which
have been calculated by grouping the instances of the original dataset, segmented by
classes—activities.

In the second scenario, again the experiment with the best result in terms of recall was
the Aruba CASAS–duration dataset. The hybridization of the LMT classification technique
with the One R feature selection technique, using 33 features, reached a recall of 95.90%
compared to 95.80% achieved by JRIP and One R using 47 features. Additionally, the
hybridization of LMT and One R achieved a significant reduction (of 32.65%) in the number
of features (16 fewer features) compared to just 4.08% (a reduction of two features) achieved
by the hybridization of JRIP and One R. Thus, using the combination of LMT and One R is
used will have a direct impact in terms of decreasing in the computation times required for
the construction and evaluation of the predictive model.

On the other hand, in the second scenario, regarding the experiments with the Aruba
CASAS–raw and Aruba CASAS–sensor-based datasets, there was also a significant reduc-
tion in the number of features. Specifically, with the hybridization of LMT and Gain Ratio,
using 24 features, for Aruba CASAS–raw and the hybridization of LMT and Gain Ratio,
using 31 features, for Aruba CASAS–sensor-based. Although the decrease in the number of
features is 48.94% and 53.73%, respectively, recall is 1.00% lower than the value obtained
in the Aruba CASAS–duration dataset experiment. It is important to highlight that the
classification technique that yielded the best results for each of the experiments with the
three datasets, in terms of quality metrics, was the LMT technique. Table 12 presents the
ranking of the 33 features that most affect the classification process, as determined by the
One R feature selection technique.

In the third scenario, a comprehensive evaluation was carried out to determine the
best hybridization for each dataset using 10-fold cross-validation. Here, a decrease in recall
was found in each of the experiments with the three datasets (Aruba CASAS–raw, Aruba
CASAS–duration, and Aruba CASAS–sensor-based) due to overfitting.

Regarding the recall quality metric corresponding to each class label (activity) in each
of the experiments, it should be noted that the winning hybridization for the Aruba CASAS–
duration dataset, despite having yielded a low 83.50% for the “Leave_Home” activity,
managed to surpass the 55.60% achieved in both cases by the winning hybridizations of
the Aruba CASAS–raw and Aruba CASAS–sensor-based dataset by 28.24%. This may be
due to the inclusion of the 2 additional features for the number of events and duration of
the activity, including for the Aruba CASAS–duration dataset, given that particularly for
said activity the number of events (readings of sensors) is very low (see Table 21).

The recall metric for the cleaning activity (Housekeeping) has yielded different values
in the experiments with each dataset. Despite having achieved 100.00% with the Aruba
CASAS–raw dataset, its result with the other two datasets was not the best: in Aruba
CASAS–duration it was 77.80% and in Aruba CASAS–sensor-based it was 88.90%. The
difference in the results obtained for recall in each dataset was due to the low number of
instances of this activity compared to the others, just 32 data instances (see Table 6). The
highest success rates in terms of quality metrics were obtained when training the model
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with the Aruba CASAS–duration dataset, obtaining 95.90% in the recall, which indicates
a high proportion of positive cases. This is a high detection rate for activities that were
correctly identified. The 99.70% reached in the ROC area indicates that the model has very
high predictive quality (see Table 18). In addition, there was a very low average detection
rate of false positives with an FP rate of 0.60%. The average accuracy of 95.90% was also
reached, which indicates that there is a high proportion of correct predictions, both positive
and negative, in the total number of predictions. An F-Measure of 95.80% was also reached
(see Table 23).

Table 23. Comparison between the best hybridization of classification techniques and feature selection
with training and testing for each dataset.

Class
Aruba CASAS–Raw

(LMT + Gain Ratio 24 Features)
Aruba CASAS–Duration

(LMT + One R 33 Features)
Aruba CASAS–Sensor-based

(LMT + Gain Ratio 31 Features)

Recall ROC Area Recall ROC Area Recall ROC Area

Sleeping 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Bed_to_Toilet 100.00% 100.00% 97.80% 100.00% 100.00% 100.00%

Meal_Preparation 98.50% 99.80% 98.60% 99.90% 98.30% 100.00%

Relax 99.40% 99.90% 99.70% 99.80% 99.80% 100.00%

Housekeeping 100.00% 100.00% 77.80% 100.00% 88.90% 100.00%

Eating 100.00% 100.00% 98.60% 98.80% 98.60% 100.00%

Leave_Home 55.60% 98.10% 83.50% 98.50% 55.60% 98.10%

Enter_Home 75.90% 97.90% 62.50% 98.20% 75.90% 97.90%

Work 100.00% 100.00% 96.00% 100.00% 100.00% 100.00%

Average 94.90% 99.70% 95.90% 99.70% 94.90% 99.70%

Consequently, the model proposed in this research integrates the LMT classification
technique with the One R feature selection technique, using only 33 of the 49 features
available in the Aruba CASAS—duration dataset for human activity recognition: prepar-
ing meals (Meal_Preparation), resting (Relax), eating (Eating), working (Work), sleeping
(Sleeping), going from bed to the bathroom (Bed_to_Toilet), getting home (Enter_Home),
leaving home (Leave_Home) and cleaning (Housekeeping). Said data was collected from
an indoor environment by the WSU (Washington State University) smart home project.

Finally, this research work makes two important contributions to the area of human
activity recognition (HAR): firstly, the pre-processing of the original Aruba CASAS dataset
provided by the WSU smart home project, which is available in an online repository with
all its raw records. Finally, the identification of the classification and feature selection
techniques that yield the best metrics by class criterion, is based on the construction of a
model that evaluates said dataset.
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