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Abstract: Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a global and evolving
pandemic associated with heavy health and financial burdens. Considering the oral cavity as the
major reservoir for SARS-CoV-2, a systematic review and meta-analysis were conducted to assess
the efficacy of mouth rinses and nasal sprays in reducing the salivary viral load of SARS-CoV-2.
All in vivo and in vitro studies that assessed the virucidal efficacy of mouth rinses and nasal sprays
against SARS-CoV-2 and were published in the English language from December 2019 to April 2022
were considered for analyses. Special Medical Subject Headings terms were used to search Pubmed,
Scopus, Embase Ovid, and Web of Science databases. The toxicological data reliability assessment
tool (ToxRToool) was used to assess the quality of the included studies. Thirty-three studies (11 in vivo
and 22 in vitro) were deemed eligible for inclusion in this analysis. Results of the pooled data showed
that povidone-iodine is the most efficacious intervention in vivo in terms of reducing the SARS-CoV-2
salivary viral load, followed by chlorhexidine. The mean difference in the viral load was 86% and
72%, respectively. Similarly, povidone-iodine was associated with the highest log10 reduction value
(LRV) in vitro, followed by cetylpyridinium chloride, (LRV = 2.938 (p < 0.0005) and LRV = 2.907
(p = 0.009), respectively). Povidone-iodine-based oral and nasal preparations showed favourable
results in terms of reducing SARS-CoV-2 viral loads both in vivo and in vitro. Considering the limited
number of patients in vivo, further studies among larger cohorts are recommended.

Keywords: SARS-CoV-2; mouth rinse; nasal spray; viral load; meta-analysis

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2), instigated a global health emergency since
its discovery in Wuhan, Hubei Provence, China, in 2019 [1]. This virus is a betacoronavirus
associated with symptoms ranging from mild respiratory symptoms to severe pneumonia
in the lungs, requiring supplementary oxygen or ventilation [1].

The main modes of transmission include human-to-human transmission through
droplets, contact with an infected individual, or direct or indirect contact with contami-
nated surfaces [2]. SARS-CoV-2 can also be transmitted via aerosols, which are defined as
air-borne suspended particles with the potential to contain salivary components and mi-
croorganisms [3]. Studies have demonstrated a high viral load in the saliva and oropharynx
of symptomatic and asymptomatic patients with COVID-19 [4].

Considering that the oral cavity represents the major reservoir for SARS-CoV-2 [4],
dental professionals are at high risk of exposure to pathogens through exposure to secre-
tions, inhalation during aerosol-generating procedures, and mucosal contact with infected
particles [5]. SARS-CoV-2 has demonstrated the potential for aerosolization for up to 3–16 h
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in vitro studies [6,7]. Thus, many dental regulatory authorities released recommendations
to support using pre-procedural mouth rinse in dental settings to reduce SARS-CoV-2
transmission [8,9]. The premise for this is based on the principle of reducing oral microbial
loads and mitigating the potential transmission of microbes via aerosol.

In this respect, several active compounds against bacteria and viruses in the oral
cavity are currently being assessed for their potential virucidal efficacy against SARS-CoV-2.
Studies have been conducted predominately in vitro and increasingly in vivo on the efficacy
and efficiency of various active compounds in mouthwashes to reduce viral loads and,
thus, the transmission of COVID-19. Several previous reviews attempted to address this
topic; however, due to incomplete ongoing studies, the results were inconclusive [10–13].

This study aims to assess the evidence from studies that utilized mouth rinses or
nasal sprays to reduce the salivary viral load of SARS-CoV-2 and provide evidence-based
recommendations that can be employed by decision makers and regulatory authorities to
aid in limiting the spread of this infection in the community.

2. Materials and Methods
2.1. Protocol and Registration

The proposed systematic review and meta-analysis were registered on the International
Prospective Register of Systematic Reviews (PROSPERO) platform (CRD42022323586) and
performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) [14]. PRISMA checklists are shown in Supplementary Tables S1 and S2.

2.2. Focused Questions

This review was designed to address the following questions: (a) What is the efficacy
of various mouth rinse ingredients in reducing the viral load of SARS-CoV-2 in vitro?
(b) Are mouth rinses and nasal sprays clinically efficacious in reducing the viral load of
SARS-CoV-2? (c) What is the most efficacious mouth rinse for reducing the viral load of
SARS-CoV-2 in the community?

2.3. Eligibility Criteria

Inclusion criteria: Observational studies, both in vivo and in vitro and published in the
English language from December 2019 to April 2022 to assess the virucidal efficacy of
mouth rinses and/or nasal sprays against SARS-CoV-2, were assessed for inclusion.

In vivo studies were included if they (1) recruited subjects with confirmed positive
SARS-CoV-2 as per the standard quantitative polymerase chain reaction (qPCR) assays;
(2) reported individual subject-level reports of SARS-CoV-2 viral load at two time frames:
basal level (viral load just before using a mouth rinse or nasal spray) and experimental
level (viral load after 1 to 3 h post using a mouth rinse or nasal spray); and (3) reported
values of viral load as either copies/mL or cycle threshold values of PCR assay.

In vitro studies were included if they: (1) assessed the virucidal efficacy of preparations
against a strain of SARS-CoV-2; (2) are studies that reported the Log10 reduction value
(LRV) between control and experimental groups; (3) are studies that followed the European
standards for chemical disinfectants and antiseptics (EN 14476:2013+A2:2019) [15].

Exclusion criteria: Letters to the editor, author comments, systematic reviews, and
books or book chapters were excluded. In vivo studies that used assays other than qPCR to
confirm SARS-CoV-2 positivity were excluded. In vitro studies that used virus surrogates
instead of SARS-CoV-2 or did not provide detailed methodological designs were excluded.

2.4. Search Strategy and Data Extraction

Eligible studies were identified by using a developed search strategy for the following
databases: MEDLINE by PubMed, Scopus, Embase Ovid, and Web of Science (Supplementary
Table S3). Titles, abstracts, and keywords of retrieved studies were first screened blindly
by two reviewers (MI and OK) to assess their relevance. Subsequently, studies that were
considered potentially eligible were assessed by the reviewers by reading the entire text
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against the pre-defined inclusion and exclusion criteria. Only studies that were eligible for
inclusion as agreed by the two reviewers were included. Any discrepancy in the assessment
was resolved by discussion and consensus.

Two authors (MI and OK) extracted relevant data from the included studies. For
in vivo studies, the following details were collected: (1) authors, country of the experiments,
and year of publication; (2) active ingredients, concentrations, and route of administration;
(3) number of participants; and (4) viral loads vs. time plots in log10. Where possible,
numerical values were extracted from tables directly. Viral load values that were reported
in figures or plots were extracted using a special online tool, WebPlotDigitizer, accessed
from https://automeris.io/WebPlotDigitizer/ (accessed on 15 April 2022). Values that
were reported as copies/mL or copies/µL were converted to log10 copies/µL. Values that
were reported as cycle threshold of PCR assays were converted to log10 using the proposed
model of Gentilini et al. to convert cycle threshold values to log10 copies/µL values [16].

For the in vitro studies, the following details were extracted: (1) authors and year of
publication; (2) active ingredients and concentrations; (3) the strain of SARS-CoV-2 and
the used cell line for propagation; (4) number of replicates and p values; and (4) the log10
reduction value (LRV) between control and experimental groups.

2.5. Risk of Bias Assessment

The quality of the included studies was assessed using the toxicological data reliability
assessment tool (ToxRToool) [17]. ToxRTool includes a specific part for each in vivo and
in vitro study. Slight modifications were made to meet the nature of the included studies.
The included in vivo and in vitro studies were assessed against 15 and 17 items, respectively
(Supplementary Tables S7 and S8). Any study that scored 12 or more was considered
“reliable without restrictions” according to the systematic approach of Klimisch et al. for
evaluating the quality of experimental toxicological and ecotoxicological data [18].

2.6. Data Analysis

The pooled difference in the mean and the 95% confidence interval (CI) of viral load
for in vivo studies and the difference in the mean of LRV for in vitro studies were calculated
under the random-effects model of the DerSimonian and Laird method. The extent of
heterogeneity was measured according to the Higgins method and reported as I2. The value
of I2 was interpreted as low (0–40%), moderate (30% to 60%), substantial (50% to 90%),
and considerable (75% to 100%). A p-value of <0.05 was considered statistically significant.
Review Manager 5.3 (Copenhagen, Denmark) and Comprehensive Meta-Analysis 3.3.070
(Englewood, NJ, USA) were used for meta-analysis purposes.

3. Results
3.1. Results of Database Searches

Three hundred and eighty-three studies were retrieved for abstract screening out of one
thousand two hundred and twenty-two studies that were initially identified via the search
platforms. Of these, 85 studies were assessed by full-text reading, whereby 52 studies were
deemed ineligible. Of the included 33 studies, there were 11 in vivo studies and 22 in vitro
studies (Figure 1). Descriptions of the included studies are shown in Supplementary
Table S4 for in vivo studies and Supplementary Table S5 for in vitro studies. The excluded
studies and reasons for exclusion are shown in Supplementary Table S6.

https://automeris.io/WebPlotDigitizer/
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Figure 1. PRISMA flow chart shows the number of screened, included, and excluded studies.

3.2. General Characteristics of the Included Studies
3.2.1. In Vivo Studies

Eleven in vivo studies assessed the virucidal efficacies of various preparations among
339 SARS-CoV-2 positive patients [19–29]. Five studies [21,22,24,26,29] conducted several
experiments using various preparations, which totaled up to 21 experiments. Only one
study assessed the efficacy of nasal sprays in reducing viral load [29] while others used
mouth rinses for this purpose.

Chlorhexidine mouth rinse was assessed in six experiments among 105 patients [20–22,24,26,28].
Two experiments assessed chlorhexidine combined with hydrogen peroxide in 23 patients [21,24],
while three experiments assessed hydrogen peroxide alone among 28 patients [23,24]. Povidone-
iodine was used in five experiments among 55 patients [21,22,25,26,29], and only two experi-
ments utilized cetylpyridinium-chloride mouth rinse in 11 patients [21,26]. Finally, three dif-
ferent preparations were assessed once in three different experiments. These preparations are
(1) b-cyclodextrinecitrox mouthwash (CDCM) (76 patients) [19], (2) Linola Sept, Dr August Wolff
mouthwash (Linola Sept) (29 patients) [27], and (3) sodium hypochlorite (NaCIO) (12 patients) [24].

Regarding the risk of bias assessment of the in vivo studies, all studies were considered
reliable without restrictions. However, none of them scored 15 out of 15 as the strain of
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SARS-CoV-2 was not mentioned in any study (Supplementary Table S7). Seven studies
were found to have an overall score of 13, while four studies had a score of 12.

3.2.2. In Vitro Studies

In total, the included in vitro studies (22 studies) conducted 79 experiments on different
test products at different timescales [30–51]. The contact time ranged from 15 s to 10 min.
Povidone-iodine was the most widely assessed preparation (32 experiments), followed
by chlorhexidine and sodium fluoride/chloride in 11 and 9 experiments, respectively
(Supplementary Table S5).

In terms of the risk of bias assessment, all studies were reliable for inclusion without
restrictions. Four studies had a score of 17 out of 17. Sixteen studies showed an overall
score of either 16 or 15. Only one study had a score of 14 (Supplementary Table S8).

The strain of the assessed virus has varied according to the country of origin. The
most widely assessed strain in 11 studies was USA-WA1/2020 [30–40]. The other as-
sessed strains were hCoV19/Singapore/2/2020 [41], England 2 strain [42], SARS-CoV-2
/MY/UM/6-3 [43], JPN/TY/WK-521 [44,45], FI-100 strain [46], hCoV-19/ Germany/BY-
Bochum-1/2020 [47], and isolate 026 V-03883 [48]. Oropharyngeal swabs from COVID-19-
infected patients were used to isolate the virus in two studies [49,50]. All studies propagated
the virus into Vero cells (lineages Vero 76 and Vero E6).

3.3. Meta-Analysis for the Virucidal Efficacy of Different Preparations against SARS-CoV-2
In Vivo

Pooled data revealed that using a mouth rinse or nasal spray in vivo significantly
reduced the salivary viral load for a period ranging from 5 min to 3 h by 67% (CI 95% −0.86,
−0.47) (p < 0.0001) (Figure 2). The level of heterogeneity among the experiments was low
(I2 = 30%); however, this was not statistically significant (p = 0.10) (Figure 2).

For sub-group analysis, pooled data showed that povidone-iodine was associated
with the highest virucidal efficacy in comparison to other preparations, with a significant
mean difference in the viral load (−0.86 [CI 95% −1.5, −0.23], p = 0.008). The second most
efficacious preparation in vivo was chlorhexidine, which showed a statistically significant
reduction in the viral load (−0.72 [CI 95% −1.09, −0.36], p = 0.0001) (Figure 2). However,
further subgroup analyses for povidone-iodine and chlorhexidine based on their concentra-
tions were not possible due to the limited number of patients in certain concentrations.

Using cetylpyridinium-chloride and hydrogen peroxide preparations was not associ-
ated with a significant reduction in viral load (p = 0.4 and p = 0.26, respectively) (Figure 2).

3.4. Meta-Analysis for the Virucidal Efficacy of Different Preparations against SARS-CoV-2
In Vitro

Pooled data for the entire set of 79 in vitro experiments showed an LRV of 0.886
(p < 0.0005) (Figure 3). However, there was substantial heterogeneity among the experi-
ments (I2 = 69.192, p < 0.0005) (Supplementary Figure S1).

After applying subgroup analyses, the most efficacious intervention was povidone-
iodine, regardless of its concentration (LRV = 2.938, p < 0.0005) (Figure 4A). Additional
subgroup analysis among povidone-iodine experiments showed that the LRV increased
to 3.836 (p < 0.0005) when using povidone-iodine in concentrations of more than 1%
(Figure 4B).

The second most efficacious intervention in terms of in vitro virucidal activity was
cetylpyridinium-chloride with an LRV of 2.907 (p = 0.009) (Figure 5A). The third most
efficacious intervention was Listerine® and other essential oils (LRV = 2.244, p = 0.001)
(Figure 5B).

A statistically significant difference in LRV was reported for hydrogen peroxide
(LRV = 0.969, p = 0.033) (Figure 5C). Eleven experiments utilizing chlorhexidine and
their related pool data revealed an LRV of 0.695 (p < 0.0005) (Figure 5D). Finally, the least
efficacious intervention was related to preparations containing sodium fluoride or sodium
chloride (LRV = 0.539, p = 0.003) (Figure 5E).
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4. Discussion

Since the emergence of the pandemic, viral loads of SARS-CoV-2 have varied greatly
among patients and played a significant role in infectivity and fatality. Although many
occupational-related organizations recommended using mouth rinses to reduce the SARS-CoV-2
viral load to levels that could be non-infectious [8,9], these recommendations were anecdo-
tal, speculative, and not evidence-based. This systematic review presents an evaluation of
the available evidence about the efficacy of mouth rinses and nasal sprays in decreasing the
SARS-CoV-2 viral load to potentially prevent the spread of COVID-19 in the community.
To the best of our knowledge, this work represents the first meta-analysis for both in vivo
and in vitro studies in this area.

SARS-CoV-2 infection is usually diagnosed qualitatively as positive or negative, al-
though the gold standard for its diagnosis, the quantitative polymerase chain reaction,
was originally intended to be quantitative. This greatly hampered the understanding of
the viral load’s dynamics and may explain why some individuals are infectious without
symptoms, while similarly infectious individuals do not transmit the infection to their
intimate partner and household members.

In this review, the majority of in vivo studies reported their viral load outcomes as cy-
cle threshold values for qPCR. However, neither methods of cycle threshold conversion to
viral load nor measured errors were provided [16]. Such inconsistencies in reports com-
plicate comparisons between studies. To overcome this obstacle, this review used the pro-
posed model of Gentilini et al. in 2021 to convert cycle threshold values to SARS-CoV-2
viral load [16]. This model was validated on more than 6200 COVID-19-positive pa-
tients and showed a reliability of almost 92% [16]. The results of this review found that
in vitro studies followed the European standards for chemical disinfectants and antiseptics
(EN14476:2013+A2:2019) [15]. According to these standards, a substance can be consid-
ered virucidal efficacious if it reduces the virus titre by at least four decimal logarithms
(LRV ≥ 4 log10) [15]. However, the analysis of the pooled data showed that all preparations
were associated with LRV less than 4 log10. This may highlight the potential limitations of
in vitro studies. SARS-CoV-2 primarily targets the human lung epithelium; nonetheless, the
most widely used cell line in SARS-CoV-2-related projects is the Vero cell line (kidney of an
African green monkey). This is because Vero cells express high levels of ACE 2, which is
the cellular receptor for SARS-CoV-2 entry [52]. Noteworthily, the members of the World
Health Organization (WHO) working on the SARS-CoV-2 virus analysed genetic sequenc-
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ing data and found that the virus propagation in Vero cells causes genetic variants that may
impact the interpretation of results from animal and clinical trials [53]. This may, to some
extent, explain the differences between in vivo and in vitro results for some preparations.

One of the most widely studied preparations is povidone-iodine. Povidone-iodine is a
broad-spectrum antimicrobial compound of a potent bactericidal agent, iodine, which is
within the carrier molecule, povidone [41]. The results of this meta-analysis revealed that
povidone-iodine is the most efficacious virucidal preparation against SARS-CoV-2 in both
in vivo and in vitro studies. The mean difference in viral load was found to be up to 86% for
up to 3 h post rinsing with povidone-iodine. While its efficacy increases with concentrations
of more than 1%, the time for oral rinses ranges between 1 and 2 min. Considering that
povidone-iodine can safely be used in the oral cavity at concentrations up to 2.5% for up to
5 months [22], this indicates the potential efficaciousness of povidone-iodine in controlling
the spread of SARS-CoV-2.

Chlorhexidine is a cationic surfactant and synthetic biguanide with broad-spectrum
antimicrobial activity [11]. Although it is well documented that chlorhexidine mouthwash
is effective against herpes, influenza, parainfluenza, and hepatitis B [11], the available
evidence about its efficacy against SARS-CoV-2 is limited. Our analysis of the in vivo
studies demonstrated that chlorhexidine is the second most efficacious intervention against
SARS-CoV-2 as it lowered the mean oral viral load by 72% (p = 0.0001). On the contrary,
in vitro experiments showed a very limited therapeutic utility for chlorhexidine in reducing
the viral load. This can be attributed to the fact that chlorhexidine provides a long-lasting
effect in vivo due to its ability to retain on oral cavity surfaces for several hours because of
its cationic feature, whereas it cannot possess the same antiseptic effect with a short contact
time in vitro [11].

Hydrogen peroxide is an antiseptic solution that exerts its microbicidal action by produc-
ing hydroxyl free radicals that can attack membrane lipids and other essential cell components
of pathogens. [24,30]. It has been suggested that using 1% hydrogen peroxide would be
more appropriate for reducing the salivary load of SARS-CoV-2 as the virus is vulnerable to
oxidation in the oral environment. However, the results of this review revealed that hydrogen
peroxide oral rinse is not superior to other preparations in reducing the salivary load of
SARS-CoV-2, both in vivo and in vitro (35% and LRV = 0.969, respectively).

Cetylpyridinium-chloride is a quaternary ammonium compound that exerts its an-
tiviral effect through a physiochemical disruption of the viral lipid envelope, which is the
same as the membrane surrounding SARS-CoV-2 [30]. Although our results revealed that
cetylpyridinium-chloride did not show promising results in vivo, it was the second most ef-
ficacious preparation after povidone-iodine in vitro (LRV = 2.907). However, as the number
of patients in vivo was limited (11 patients), a further validation of cetylpyridinium-chloride
in larger cohorts is required to provide reliable recommendations.

The major limitation of this study was the limited number of patients for in vivo studies.
This can be attributed to strict ethical requirements for in vivo studies in some countries.
The second major limitation is the difference in the number of studies and participants
among in vivo studies for some active ingredients, which may make comparisons between
the efficacy of these ingredients non-conclusive. However, after more than two years of
this pandemic, we anticipate the easing of mandatory restrictions, which will translate to
increased quality and quantity of clinical studies. Moreover, the absence of standardized
protocols for sample collection and result reporting among in vivo studies accounts for
heterogeneity among the relevant studies. Finally, all in vitro studies utilised Vero cells for
the virus propagation; however, based on the recent WHO report, there is sufficient reason
to question the reliability of Vero cells in these experiments [53].

5. Conclusions

In conclusion, povidone-iodine and chlorhexidine mouth rinses, regardless of con-
centration, were clinically the most efficacious interventions for reducing the SARS-CoV-2
oral viral load. Emerging evidence from in vivo studies using hydrogen peroxide, cetylpyridinium-
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chloride, and various other active ingredients remains inconclusive. Despite povidone-
iodine and chlorhexidine mouth rinses demonstrating favourable efficacy, their effective-
ness in terms of virucidal activity does not currently meet recommended standards of the
European Standards for chemical disinfectants and antiseptics (EN 14476). Given these
results, governing organisations should revisit their COVID-19 pandemic guidelines and
consider recommending specific preparations of mouth rinses (1–5% povidone-iodine or
0.12–0.2% chlorhexidine) for individuals infected by SARS-CoV-2 or at a high risk of being
infected. However, prescribers should be aware of the side effects of these mouthwashes
when they plan to use them routinely. Likewise, consideration for routine use of mouth
rinses by asymptomatic or uninfected individuals during high community transmission
may reduce the burden on strained health care systems. Nonetheless, new mouthwashes
with little to no side effects that can significantly reduce the SARS-CoV-2 oral viral load
with remarkable virucidal impact are warranted.
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