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Abstract: Straw return can improve soil quality and change the mobility and bioavailability of
pollutants in soil. Elevated cadmium (Cd) contents in farmland soils were often reported. However,
the impacts of straw-derived dissolved organic matter (DOM) on Cd speciation in soil remain poorly
understood. In this study, the effects of straw return and moisture condition on temporal changes of
DOM composition and Cd speciation in farmland soils were explored through a laboratory incubation
experiment. The humified components of DOM were negatively correlated with exchangeable,
carbonate-bound, and Fe-Mn oxide-bound Cd (p < 0.01), while its protein-like component was
negatively correlated with residual Cd (p < 0.01). It was found that selected fluorescence parameters
could be used to predict temporal changes of Cd geochemical fractions. Straw addition led to
increases in soil DOM content during the first three days of the incubation. Flooding should be
avoided in the first three days following the straw application to reduce the risk of DOM-facilitated
Cd mobilization.
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1. Introduction

Cadmium (Cd) is a highly toxic heavy metal. Cd pollution in farmland soils has been
often reported and attracted much attention in many countries around the world [1–4].
Straw return is a common agricultural practice for improving soil quality [5]. In 2015, 1.04
billion tons of straw was produced in China, which accounted for about one-third of the
global production [6]. The national straw utilization rate in China was approximately 80%,
with the incorporation of straw into farmland being its main utilization [7]. The straws
returned to the field are mainly rice, wheat, and maize straw [6]. It should be noted that the
mobility and bioavailability of Cd in soils may be affected by straw return, but inconsistent
findings have been reported [8–12]. For instance, decreases in dissolved Cd in soils were
observed upon rice straw amendment [8] while increases in dissolved Cd in soils by wheat
straw amendment were found [10]. Such inconsistencies were largely unexplained [12],
and the underlying mechanisms of straw return on Cd speciation remain unclear.

Crop straw contains not only various nutrient elements (e.g., nitrogen, phosphorus,
and potassium) but also organic compounds (e.g., cellulose, hemicellulose, lignin, protein,
and carbohydrates) [13,14]. Mature organic matter of soil matrix and freshly introduced ma-
terials (e.g., materials produced from rhizoexduation, biomass/cell lysis, or decomposition
of straws or litter) are the two major sources of dissolved organic matter (DOM) in soils [15].
Crop straw-derived DOM comprises various organic compounds, including non-humic
biomolecules (e.g., carbohydrates, amino acids, proteins, lignin, organic acids, and fatty
acids) and humic substances (e.g., humic and fulvic acids, which are formed after straw
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decomposition and transformation) [16]. Compared to soil DOM, straw DOM contains a
great deal of lower molecular weight compounds (e.g., amino acids, proteins, monosaccha-
rides, polysaccharides, and carbohydrates), which can be leached and degraded after straw
application [17,18]. At a later stage of straw decomposition, the DOM released is mainly
aromatic compounds [19,20].

DOM contains abundant functional groups (e.g., carboxyl, phenol, and hydroxyl),
which can form complexes with Cd [21–23]. In a sandy sulfuric soil, the addition of straw
DOM was found to rapidly induce redox processes and pH increase [24]. It has been
well known that redox potential (Eh) and pH are key environmental factors in controlling
the solubility and bioavailability of Cd in soils [25]. Soil Eh can be changed by water
management. Flooding leads to decreases in dissolved Cd, as a result of the transformation
to CdS or Fe-Mn (oxyhydro) oxide-bound Cd showing low solubility [26,27]. However,
the potential role of DOM in meditating the shift of Cd distribution among different
geochemical fractions has not been considered or recognized. Few studies have been
conducted to reveal the dynamics of DOM and Cd in soils and their interactions during
the course of straw decomposition. In this study, it is hypothesized that, following straw
application, the quantity and composition of straw DOM vary with time and can be affected
by soil moisture conditions, and temporal changes of Cd speciation in soil may be facilitated
by DOM.

The objective of this study was to reveal the effects of straw return and moisture
conditions on the dynamics of Cd speciation in farmland soils. A laboratory incuba-
tion experiment was carried out for Cd polluted soils of paddy-upland farmland, which
experienced both saturated and unsaturated conditions and receive the amendment of
different types of crop straw. Correlation analysis on time series data across different
treatments was conducted to elucidate the relationships of Cd geochemical fractions with
DOM components.

2. Materials and Methods
2.1. Material Collection and Sample Preparation

Surface soils (0–20 cm) were collected from paddy-upland rotation farmland sites A
and B in Shifang (104◦16′ E, 31◦10′ N) city, Sichuan Province, China. The soil of both sites
belongs to paddy soil, which is the main soil type accounting for 89.7% of farmland in
Shifang and was derived from alluvial deposit. Site A was close (20 m) to the boundary
wall of a phosphorus chemical industrial zone while site B was 2 km away from the
industrial zone (Figure 1). At each site, a 10 × 10 m square sampling plot was established.
Five soil samples were taken randomly within the plot and combined into one composite
sample [28]. After air drying, gravels and crop residue (diameter > 1 cm) were manually
removed from the two composite soil samples. A total of 1000 g of soil sample was ground,
passed through a 2 mm nylon sieve, and then stored in a wide-mouth glass bottle before use.
Fresh maize straw and rice straw were collected locally from newly harvested unpolluted
farmland and found to be Cd-free. The soil pH of the samples from sites A and B was 6.2
and 6.5, respectively. Cd contents of the soil samples from sites A and B were measured
to be 6 mg kg–1 and 1 mg kg–1, respectively. Specifically, the Cd content of the soil sample
from site A exceeded the risk intervention value (2.0 mg kg–1 for soils with pH greater than
5.5 but not higher than 6.5) for agricultural land in China, according to GB 15618-2018 [29].
These two soil samples were defined as heavily and slightly polluted soil, respectively.
After being cut into 1–2 cm sections, the straw samples were washed with ultrapure water
and dried at 60 ◦C for 48 h. Afterwards, the straw samples were ground, passed through a
0.25 mm sieve, and then stored in sealed plastic bags prior to use.
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Figure 1. Locations of sampling sites in the downwind area of a phosphorus chemical industrial zone
in Shifang, Sichuan, China.

2.2. Laboratory Incubation Experiment

A laboratory incubation experiment was conducted at 25 ◦C to simulate the dynamics
of straw decomposition in the soils. A total of 100 g of soil was put into the plastic cup
(12 cm in height, 7 cm in diameter; without drainage holes at the bottom). Maize or rice
straw was applied at a rate of 2% of the soil weight (oven-dry basis), and a control (without
straw addition) was set for each soil. The shredded straw was added in two ways: by
placing in a mesh bag buried in soil and by thorough mixing with soil (without mesh bags),
in order to reveal the differences between the temporal changes of straw DOM alone in
the soil and overall DOM of the soil-straw mixture. Two moisture conditions of incubation
were employed in comparison: continuous flooding (with 1 cm overlying water) and 75%
of the field capacity. In particular, for the latter treatment, the soil water content was
maintained by adding deionized water every 3 days. All the treatments were performed in
duplicate. On days 0, 3, 7, 15, 30, 60, and 90, soil and straw samples were taken from the
cups, freeze-dried, and then kept in sealed plastic bags before analysis.

Data of the DOC (i.e., water extractable organic carbon using the method described
in 2.3) content were fitted using the following first-order non-linear kinetic model
(Equation (1)) [30].

Ct = C0 + ae−kt (1)

where Ct is the soil DOC content at time t (day) after the commencement of laboratory
incubation experiment (g kg–1), C0 is the final stable level of soil DOC content at the end of
incubation experiment (g kg–1), a is the overall reduction in soil DOC content during the
whole incubation period (g kg–1), and k is an empirical constant of DOM decomposition.

2.3. Characterization of DOM

The DOM of shredded straw was extracted using the method described by Hu [31].
In brief, 2 g of soil sample or 0.5 g of shredded straw sample was placed in a 50 mL
polypropylene centrifuge tube and extracted with ultrapure Milli-Q water at a solid/liquid
ratio of 1/10 (soil) of 1/20 (straw) (w/v) on a shaker for 24 h at 220 rpm and 25 ◦C.
Subsequently, the sample was centrifuged at 4000 rpm for 10 min, and then the supernatant
was filtered through a 0.45 µm membrane filter to obtain the filtrate, which was stored at
4 ◦C prior to analysis.

Fluorescence EEM was determined for the samples of DOM extract with an Aqualog
spectrofluorometer (Horiba JY, Edison, NJ, USA), with excitation and emission wavelength
ranges of 200–460 nm and 270–600 nm, respectively [32,33]. For each sample, background
noise was eliminated using the EEM spectrum of a MilliQ water blank. UV absorbance was
measured simultaneously to remove inner filter effects. Rayleigh and Raman scattering
lines in the EEM spectrum were also removed. For each sample, parallel factor analysis



Int. J. Environ. Res. Public Health 2022, 19, 12128 4 of 18

(PARAFAC) was performed with SOLO (Eigenvector Research Inc., Manson, WA, USA)
to identify the fluorescent components, which were quantified in terms of the maximum
fluorescence intensity (Fmax) [33]. DOC content of the water extract was analyzed with a
total organic carbon analyzer (Aurora 1030W, OI Analytical, College Station, TX, USA).

2.4. Geochemical Fractionation of Cd in Soil

Geochemical fractions of Cd in soils were analyzed using the method of Tessier
et al. [34]. Then, 1 g of soil was placed in a 50 mL polypropylene centrifuge tube and
weighed, then the sequential extractions were conducted for exchangeable (1 M of MgCl2,
pH = 7), carbonate-bound (1 M of NaOAc, pH = 5), Fe-Mn oxide-bound (0.04 M of
NH2OH·HCl in 25% (v/v) HOAc, pH = 2, and heated at 96 ◦C), organic matter-bound
(0.02 M HNO3 in 30% H2O2, pH = 2), and residual (digested with 3:1 concentrated
HCl/HNO3) fractions. The concentration of Cd in the extract was determined by an
inductively coupled plasma-mass spectrometer (NexIONTM300, PerkinElmer, Waltham,
MA, USA).

2.5. Fluorescent Indices

Three fluorescent indices, including fluorescent index (FI), humification index (HIX),
and biological index (BIX), were calculated based on the EEM spectra, according to the
common methods [15,35–37].

FI was the ratio of emission intensity (I) at 450 nm to that at 500 nm at an excitation
of 370 nm (Equation (2)) [38]. FI has been widely used to identify the source of dissolved
organic matter in ocean, coastal, fluvial, and lake ecosystems, and wastewater treatment
plant effluent [39,40].

FI = IEm450/IEm500(λEm370) (2)

HIX was calculated as the ratio of the integrated emission intensity at 435–480 nm
to the sum of the integrated emission intensities at 300–345 nm and 435–480 nm at an
excitation of 254 nm (Equation (3)) [36]. HIX was used to quantify the relative degree of soil
humification based on the theory that the decomposition and humification of soil organic
matter will lead to a lower H:C ratio and a red shift on EEM spectra.

HIX = ∑ IEm435−480/(∑ IEm300−345 + ∑ IEm435−480)(λEx254) (3)

BIX was used to decipher the presence of autochthonous biological organic matter
and was operationally calculated by dividing the emission intensity of β fluorophore (at
380 nm) by that of α fluorophore (at 430 nm) at an excitation of 310 nm (Equation (4)). The
BIX was also referred as β:α in some other studies [41].

BIX = IEm380/IEm430(λEx310) (4)

2.6. Other Physical and Chemical Analyses

Soil organic matter (SOM) was determined using a TOC analyzer (TOC-V-SSM5000A,
Shimadzu, Tokyo, Japan). Soil pH was measured in distilled water at a soil-to-water
ratio of 1:2.5 (w/v) with a pH meter (PHS-3C, INESA Instrument, Shanghai, China) [28].
The decomposition of straw was determined as mass loss of the straw in a mesh bag by
oven-drying and weighing.

2.7. Statistical Analysis

The data were statistically analyzed by one-way analysis of variance (ANOVA). The
significance of the difference between means of different treatments was tested using R
3.4.4 (R Foundation for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Dynamics of Total and Dissolved Organic Matter Content in Soil

The detected DOC contents in the experimental soils were the result of different pro-
cesses including leaching release of soluble organic compounds from straw, decomposition
of straw, sorption of DOM to soil particles, and decomposition and transformation of
DOM [17,42]. In all the soils, organic matter content decreased rapidly in the first two
weeks but slowly afterwards. The decreases in organic matter content with time during the
initial stage of incubation were greater in the straw amended soils than in the control soils,
irrespective of straw type (Figure S1). The temporal trends of soil organic matter content
were in accordance with the temporal changes of cumulative decomposition observed
for the straw in mesh bags buried in the soils (i.e., rapid increases in the first two weeks
followed by slow increases afterwards) (Figure S2). It was found that aerobic (unsaturated)
conditions could favor the decomposition of both maize and rice straw in the soils, which
is in agreement with the findings of many previous studies [43–45]. The decomposition of
crop straw is more dependent on soil moisture conditions than on soil properties [46]. In-
consistent effects of moisture changes on the decomposition of organic matter in soils have
been documented for different organic amendments. For instance, during the rewetting of
the more intensely dried soils, a lower decomposition rate of rice straw was observed [47],
but a higher decomposition rate of amended litter was reported [48]. In addition, most
DOM, once leached from straw or desorbed from the soil, could be mineralized shortly
(e.g., 7 days) in the aqueous phase [49,50].

The effects of straw type and moisture condition on soil DOM were revealed through
laboratory incubation experiments. Temporal changes in DOC content in the soils under
different treatments are presented in Figure 2. The content of DOC in both soils, irrespective
of moisture condition and straw addition, decreased quickly from day 0 to day 3, declined
slowly from day 3 to day 14, and remained at a nearly constant level after day 14. DOC
content was significantly higher (p < 0.05) in the straw amended soils than in the control
soils, and this difference gradually decreased with time during the incubation. Initial
DOC content was higher for the soil from site B than for the soil from site A, regardless
of experimental treatments. After day 14 of incubation, the difference in DOC content
between the soils from the two sites became insignificant for all four treatments with straw
addition (p > 0.05) but remained significant for the controls (p < 0.05). First-order kinetic
equations can be fitted satisfactorily (p < 0.05) to the time series data of DOC content in all
experimental soils (Table 1). The observed highest DOC contents at the beginning of the
incubation (i.e., day 0) for all soil samples reflect that air-drying treatment can increase the
amount of DOM in soil. This agrees with previous findings in other soils that DOC release
from air-dried soil was larger than that from moist soil [12,15,51,52]. Straw return to the
farmland resulted in higher DOC contents on day 0, when compared to the control. The
air-drying induced elevation of DOC content on day 0 was of a greater magnitude in the
soil with maize straw return (by 173 ± 7% relative to the control) than in the soil with rice
straw return (by 123 ± 5% relative to the control).

In the control soils without straw addition, the quick (a = 0.788–1.322, k = 0.371–1.417)
decrease in DOM level within the first three days of the incubation could be attributed
mainly to the increase in sorption of DOM to soil particles with time after rewetting
treatment. The more dramatic decline (a = 1.322–3.115, k = 0.794–14.505) in DOM level
in the straw amended soils at the initial stage of the incubation could be attributed to
the decomposition, sorption, and mineralization of the straw-derived DOM, which had
different compositions from that in the control soil (described later). In our incubation
system without drainage, the rapid decrease in DOC content within the first three days can
be attributed to the sorption of DOM to soil particles and biotic or abiotic decomposition of
DOM [31,49].
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Table 1. Fitted equations to the laboratory incubation experimental data of temporal changes of soil
DOM content.

Soil Sampling
Site

Straw Type Moisture
Condition

DOC Content 1

R2
Fitted Equation

A

Maize
Unsaturated Ct = 0.230 + 2.232e−1.031t 0.998 * 1

Flooded Ct = 0.232 + 2.070e−1.352t 0.995 *

Rice
Unsaturated Ct = 0.130 + 1.877e−0.942t 0.999 *

Flooded Ct = 0.234 + 1.322e−0.794t 0.980 *

Control
Unsaturated Ct = 0.114 + 0.788e−1.241t 0.994 *

Flooded Ct = 0.141 + 0.856e−1.417t 0.993 *

B

Maize
Unsaturated Ct = 0.218 + 2.422e−1.211t 0.995 *

Flooded Ct = 0.267 + 3.115e−0.952t 0.991 *

Rice
Unsaturated Ct = 0.287 + 2.093e−1.256t 0.994 *

Flooded Ct = 0.306 + 1.629e−14.505t 0.941 *

Control
Unsaturated Ct = 0.116 + 1.322e−0.371t 0.986 *

Flooded Ct = 0.175 + 1.319e−0.404t 0.986 *
1 * represents 0.05 probability level of significance (two-tailed).

3.2. Composition of DOM Fluorescent Components

By PARAFAC analysis of the EEM spectra across water extracts of time series soil
samples for each straw addition treatment, a total of three fluorescent components, includ-
ing component 1 (C1) at 280/340 nm (Ex/Em), component 2 (C2) at 200 (300)/400 nm
(Ex/Em), and component 3 (C3) at 260 (360)/450 nm (Ex/Em), were identified. C1 rep-
resents a tryptophan-like/protein-like substance (i.e., peak T defined in Coble et al. [53])
and reflects the microbial activity and bioavailability of DOM [54,55]. C1 usually consti-
tutes the biodegradable part of DOM and has simple molecular structures. C2 represents
UV humic-like and visible marine humic-like substance (i.e., peaks A and M defined in
Coble et al. [53]). C3 represents UV humic-like and visible humic-like substance (i.e., peaks
A and C defined in Coble et al. [56]). C2 and C3 resemble microbial oxidized compo-
nents and have abundant aromatic structures and high molecular weight [57]. Similar
compositions of DOM in different farmland soils were reported by a number of previous
studies [17,58,59].
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C1 was found in all the straw amended soils but not in the control soils, indicating that
the addition of straw introduced a new tryptophan-like/protein-like component to the soils.
Differences in the composition of C2 were observed between the two straw treatments:
peak M was detected in the treatment with maize straw but not in the treatment with rice
straw (Figure 3). The primary and secondary fluorescence peaks of C3 were red-shifted
from 450 nm (Em) in the rice straw amended soils to 500 nm (Em) in the maize straw
amended soils (Figure 3). For a soil DOM component, a red shift in fluorescence maxima
indicates that it becomes has a more complex structure [53].

Int. J. Environ. Res. Public Health 2022, 19, x 7 of 17 
 

 

the soils. Differences in the composition of C2 were observed between the two straw 

treatments: peak M was detected in the treatment with maize straw but not in the treat-

ment with rice straw (Figure 3). The primary and secondary fluorescence peaks of C3 

were red-shifted from 450 nm (Em) in the rice straw amended soils to 500 nm (Em) in 

the maize straw amended soils (Figure 3). For a soil DOM component, a red shift in flu-

orescence maxima indicates that it becomes has a more complex structure [53]. 

  
(a) (b) 

  
(c) (d) 

Figure 3. EEM locations, representative EEMs, and spectral loadings of fluorescent components in 

straw-derived DOM identified by PARAFAC: (a) C2 in rice straw amended soils; (b) C2 in the 

maize straw amended soils; (c) C3 in the rice straw amended soils; (d) C3 in the maize straw 

amended soils. Values of each EEM spectrum represent all the samples collected across the whole 

incubation period for a specific straw addition treatment. 

Relative abundances of the three fluorescent components were calculated to evalu-

ate temporal changes in DOM composition as affected by straw addition (Figure 4). The 

relative abundance of C1, C2, and C3 varied in the range of 0–46%, 35–61%, and 19–46%, 

respectively. Generally, the relative abundance of C1 showed high values in the first one 

or two weeks and then decreased in the straw amended soils. The amendment of maize 

straw led to higher relative abundances of C1 when compared to the amendment of rice 

straw. Overall, relative abundances of C1 in the soils under flooded conditions were 

higher than those under unsaturated conditions. C2 and C3 exhibited gradual increasing 

trends with time in the straw amended soils. In the control soils, the relative abundance 

of these two components remained constant over time, with that of C2 being higher than 

that of C3. 

Figure 3. EEM locations, representative EEMs, and spectral loadings of fluorescent components in
straw-derived DOM identified by PARAFAC: (a) C2 in rice straw amended soils; (b) C2 in the maize
straw amended soils; (c) C3 in the rice straw amended soils; (d) C3 in the maize straw amended soils.
Values of each EEM spectrum represent all the samples collected across the whole incubation period
for a specific straw addition treatment.

Relative abundances of the three fluorescent components were calculated to evaluate
temporal changes in DOM composition as affected by straw addition (Figure 4). The
relative abundance of C1, C2, and C3 varied in the range of 0–46%, 35–61%, and 19–46%,
respectively. Generally, the relative abundance of C1 showed high values in the first one or
two weeks and then decreased in the straw amended soils. The amendment of maize straw
led to higher relative abundances of C1 when compared to the amendment of rice straw.
Overall, relative abundances of C1 in the soils under flooded conditions were higher than
those under unsaturated conditions. C2 and C3 exhibited gradual increasing trends with
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time in the straw amended soils. In the control soils, the relative abundance of these two
components remained constant over time, with that of C2 being higher than that of C3.
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Figure 4. Temporal changes of relative abundances of fluorescent DOM components in the soils
under different treatments during laboratory incubation: straw amended soil of site A (a); straw
amended soil of site B (b); control soil of site A (c); control soil of site B (d).
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Fluorescence indexes of DOM in the soils from both sites followed the same trend of
temporal changes (Tables S1 and S2). HIX was higher in the control soils than the straw
amended soils, and exhibited marked increases with time in the latter to values close to
those in the control soils; unsaturated condition led to higher HIX than flooded condition,
reflecting that aerobic condition favored the humification of DOM. Both FI and BIX showed
decreasing temporal changes in the straw amended soils, but such trends were not observed
in the control soils. The detected FI values across all experimental soils (1.10–1.34) are in the
reported range for terrestrial or allochthonous DOM sources [35]. FI in the straw amended
soils were slightly higher than those in the controls soils at the early stage of incubation,
whereas such effect of straw return disappeared at the later stage. The observed decrease
in BIX with time in the straw amended soils indicates that the albuminoid and biological
components dissipated during the course of straw decomposition [41].

3.3. Dynamics of Cd Speciation in Soil

The temporal changes of Cd speciation in the soils under different treatments are
shown in Figure 6. At the beginning of the laboratory incubation experiment, the percentage
of Cd geochemical fractions in the soil collected from site B (of low pollution level) followed
the order: exchangeable Cd > residual Cd > carbonate-bound Cd > Fe-Mn oxide bound Cd
> organic matter-bound Cd, with the exchangeable fraction accounting for 58% of total Cd
content (Figure S3). With increasing incubation time, the content of different Cd fractions in
the soil of site B showed different temporal change patterns: the exchangeable Cd decreased
rapidly in the first week and then slowly afterwards (Figure 6a); the carbonate and Fe-Mn
oxide-bound Cd first increased and then decreased, with the maxima occurring on days
30 and 14, respectively (Figure 6b,c); the organic matter-bound and residual Cd gradually
increased (Figure 6d,e). At the early stage of incubation, compared with the control soil
(without straw) of site B, the addition of straw led to increases in exchangeable and organic
matter-bound Cd but decreases in carbonate and Fe-Mn oxide-bound Cd (Figure 6).
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Figure 6. Temporal changes of the content of different Cd fractions (exchangeable Cd (a), carbonate-
bound Cd (b), Fe-Mn oxide-bound Cd (c), organic matter-bound Cd (d), and residual Cd (e)) in
the soil collected from site B of low pollution level during laboratory incubation under different
treatments.

Initial Cd speciation in the soil collected from site A (of high pollution level), which
was slightly different from that (in percentage) of site B, follows the order: exchangeable Cd
> carbonate-bound Cd > Fe-Mn oxide-bound Cd > residual Cd > organic matter-bound Cd,
with the exchangeable fraction accounting for a greater percentage (73%) of total Cd content
(Figure S3). The higher exchangeable Cd content in the soil at site A indicates that most Cd
came from exogenous input and was mainly sorbed on soil particles through electrostatic
attraction. With the passage of incubation time, the five Cd fractions of the soil from site
A exhibited the same temporal changes as those of the soil from site B. In the incubated
samples of the soil from site A, the exchangeable Cd decreased rapidly in the first two
weeks and then slowly afterwards (Figure 6a); the carbonate and Fe-Mn oxide-bound Cd
first increased and then decreased, with the peaks occurring on days 30 and 14, respectively
(Figure 6b,c); the organic matter-bound and residual Cd increased gradually (Figure 6d,e).
The effects of adding straw on Cd speciation, except for the residual Cd, in the soil from site
A were the same as those in the soil from site B. Notably, the residual Cd content in the soil
from site A was increased by straw return; in contrast, no significant effects of straw return
on residual Cd were observed for the soil from site B. After 90 days of incubation, the sum
(in percentage) of carbonate and Fe-Mn oxide Cd in the soil from site A was significantly
higher than that of the soil from site B (p < 0.01), while the sum of the two least available
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Cd forms (i.e., organic and residual Cd) was significantly lower than that of the soil from
site B (Figure S3).

Carbonate and Fe-Mn oxide-bound Cd are moderately active forms between an ex-
changeable and residual fraction; therefore, they both experienced an increase in response
to a sharp decrease in exchangeable Cd at the early stage of incubation (Figures 6a and 6a).
After 7 or 14 days, as the exchangeable Cd content tended to be stable, carbonate and
Fe-Mn oxide-bound Cd continued to undertake transformation into the two least labile
forms (i.e., organic matter-bound and residual Cd). The effects of straw addition on Cd
speciation eventually became weaker at the end of incubation, as also noted by previous
studies [12]. Apparently, flooding treatment promoted the transformation of exchangeable
and carbonate-bound Cd into organic matter-bound and residual Cd. After 90 days of
incubation, the sum (in percentage) of organic matter-bound and residual Cd in the soils
under flooded conditions was significantly higher than that under unsaturated conditions
(Figure S3). In addition, no significant differences in straw return effect on soil Cd speciation
were observed between maize and rice straw (p > 0.05).

4. Discussion
4.1. Effects of Straw Return and Soil Moisture on Soil DOM Content

The decomposition of straw in soils is affected by many factors, among which moisture
and aeration are the main ones [46]. During the early stage of straw decomposition, a large
amount of soluble organic compounds and inorganic mineral nutrients released into soils
may improve the growth of microbes, and thus, lead to enhanced biological decomposition
of straw. The easily decomposable components in the straw decrease with time while the
refractory components gradually accumulate, leading to decreases in biological activity and
the rate of microbe-meditated straw decomposition [43,60]. The aerobic conditions may
favor the decomposition of straw in soils. Under unsaturated conditions, soils contain suffi-
cient amounts of both oxygen and water, which is conducive to microbial respiration and
straw degradation, while saturated conditions may inhibit the activity of aerobic microbes
in soils, resulting in a low respiration intensity of microbes and a slow decomposition rate
of straw organic matter [47]. The vulnerable straw components, which can account for
50–90% of the straw mass and show distinct organic matter composition (higher contents
of proteinaceous, amino, and aliphatic compounds) from that in pristine soil [61], can be
released into soils, and thus, lead to substantial increases in soil DOM in 3 to 4 months
through leaching and decomposition [14].

Straw amendment and soil moisture conditions can affect the DOM content in soils.
The initial increases in soil DOC content observed in this study came mainly from the
decomposition of straw. At the later stage, the readily degraded DOM in the straw was
depleted rapidly, as indicated by the observed quick decline of soil DOC to a nearly con-
stant level. The stable DOC level in soils after day 14 of the incubation derived largely
from the decomposition of soil humus. In addition, the decrease in DOC with time may
be partly attributed to the sorption of DOM by the soil through electrostatic adsorption,
ligand exchange-surface complexation, hydrophobic interaction, entropy effect, hydrogen
bonding, cationic bond bridging, and/or the formation of insoluble organic matter through
complexation, chelation, flocculation, and precipitation [62]. The release of organic matter
upon wetting was dominated initially by microbial sources (e.g., dead microbes, extracellu-
lar polymeric substrates, and intracellular compounds) and later by non-microbial sources
(e.g., organic matter bound to clay minerals, plant debris, and root exudates) [63–66]. More-
over, wetting of dried soil is known to lead to a decrease in soil water repellency with
time [67], and thus, could increase the accessibility of heterogeneous soil on the micro-
scale (µm to mm) and consequently favor the redistribution of DOM between the solid
and aqueous phase of the soil. Sorption of DOM to soil is selective for hydrophobic and
aromatic compounds [35,51]. DOM enriched with aromatic or hydrophobic compounds,
probably derived from lignin, can be preferentially sorbed by soil and, thus, stabilized [49].
Decreases in degradation of simple organic compounds (e.g., glucose, citrate, oxalate, and
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malate) after sorption to soils were reported [68–70]. However, to date, there has been little
quantitative information about the decomposition and transformation of DOM sorbed on
soil particles.

4.2. Effects of Straw Return on Cd Speciation in Soil

Cd can react with DOM through the formation of soluble complexes and with soil
solids (mainly clay silicates, oxides, and humus) through specific and non-specific sorption.
DOM is a potential extractant for Cd. The extraction of Cd by DOM is dependent on the
concentration and composition of DOM, soil sorbing characteristics, and environmental
factors and conditions [71]. The introduction of additional DOM derived from straw can
cause distinctive changes in Cd speciation in soil.

Temporal changes of Cd observed in this study can be attributed to the decomposition
dynamics of organic matter in the experimental soils. Decomposition of products of straw at
the early stage of incubation could cause changes in soil properties, which in turn led to the
variations in the distribution of Cd geochemical fractions in the soils with time. Correlation
analysis between Cd fractions and DOC content throughout the incubation period and
across the experimental soils provides some useful information about the potential of
DOM in modulating Cd fraction distribution. A significant linear positive correlation was
observed between exchangeable Cd and DOC content (p < 0.05, R2 = 0.826). The markedly
higher contents of exchangeable Cd at the early stage of incubation than at the later stage
can be attributed to the higher DOM levels in all the treatments. The DOM derived
from straw is usually rich in functional groups with high degrees of unsaturation such as
carboxyl, aldehyde, and ketone groups [72]. These functional groups are more reactive in
DOM than in solid organic matter and can complex/chelate Cd to form organometallic
complexes. As a carrier of Cd, DOM can enhance the activity of Cd and promote the
dissolution of Cd in soil. Similarly, decreases in exchangeable forms of metals with time
were previously reported in other soils, which were attributed to transformation to stable
forms during aging [73].

The observed lower final percentage contents of organic matter-bound and residual Cd
in the straw amended soils from heavily polluted site A may be attributed to two reasons:
(1) the higher content of Cd in the soil from site A may more strongly inhibit the activity of
microbes to decompose the straw, and thus, limit to a greater extent the development of the
soil’s affinity to Cd with straw decomposition; (2) given the same straw addition rate, the
supply of additional binding sites induced by straw addition in the soil from site A could
be less sufficient.

4.3. Correlations among Soil Cd Speciation and DOM Fluorescence Parameters

Results of correlation analysis among the five Cd geochemical fractions, the intensities
of the three fluorescent components and the three fluorescence indices are presented in
Figure 7. The fluorescence intensity of C1 was negatively correlated with residual Cd,
while the fluorescence intensity of C2 and C3 was negatively correlated with exchangeable,
carbonate, and Fe-Mn oxide-bound Cd (p < 0.01). It can be inferred that the variations
of the three weakly bound Cd fractions (i.e., exchangeable, carbonate, and Fe-Mn oxide-
bound Cd), during laboratory incubation eventually lead to the increase in the most
strongly bound Cd fraction (i.e., residual Cd), which is a complex process facilitated by
Cd association with the two humified components (i.e., C2 and C3). A previous study
using fluorescence quenching showed that fulvic-like substance (at 340/470 nm (Ex/Em))
could have a stronger and more stable interaction with Cd than tyrosine-like substance (at
275/300 nm (Ex/Em)) [74]. Therefore, the observed transformation of Cd from labile forms
into residual forms during the incubation can be partly attributed to the increase in C2 and
C3 abundance with time.
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This mechanism proposed in this study is supported by the observed positive correla-
tion of HIX with residual Cd (p < 0.01). There was a very significant negative relationship
between HIX and BIX (p < 0.001) and accordingly a negative correlation of BIX with residual
Cd was observed (p < 0.01). In addition, FI was positively correlated with carbonate-bound
Cd (p < 0.01) (Figure 7). In a previous study, a negative correlation of HIX with BIX was
also observed; however, a positive correlation of HIX with FI was found [75], which is
contrary to our results (Figure 7). This inconsistency may result from differences in not
only incubation conditions but also soil and straw type. According to a recent soil survey
in the Zhangxi watershed, exchangeable Cd (extracted with CaCl2) exhibited a weakly
positive correlation with FI but a weakly negative correlation with HIX [76]. Therefore, we
propose that DOM fluorescence parameters can be considered and selected for predicting
Cd geochemical fractions in soil that are apparently meditated by DOM.

5. Conclusions

A 90-d laboratory incubation experiment was conducted to evaluate the effects of
straw return and moisture condition on temporal changes of DOM composition and Cd
speciation in paddy-upland rotation farmland soils. It was found that straw addition
substantially increased soil DOM content in the first three days. The application of straw
introduced a protein-like fluorescent component of DOM, and the relative abundance of
this unique component generally showed moderate declining trends over time in straw
amended soils except for slight increases in the first week under flooded conditions. The
sum of two strongly bound Cd forms (i.e., organic matter-bound and residual fraction)
increased with incubation time in straw amended soils, and such effect was more significant
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under flooded conditions. During straw decomposition, the humified components (C2 and
C3) of DOM were negatively correlated to the three weakly bound Cd (i.e., exchangeable,
carbonate-bound, and Fe-Mn oxide-bound Cd) (p < 0.01) while its protein-like component
(C1) was negatively correlated with the most strongly bound residual Cd (p < 0.01). Ap-
parently, the fluorescent components may have strong impacts on Cd speciation during
straw decomposition process in soil and selected fluorescence parameters have a potential
for predicting temporal changes of Cd geochemical fractions. In Cd-polluted farmland,
flooding in the first three days after straw return should be avoided to reduce the risk of
DOM-facilitated Cd release through leaching.
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collected from site A at different times during laboratory incubation under different treatments
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collected from site B at different times during laboratory incubation under different treatments (mean
± standard deviation).
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