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Abstract: Owing to the surge in greenhouse gas emissions, climate change is attracting increasing
attention worldwide. As the world’s largest carbon emitter, the achievement of emission peak and
carbon neutrality by China is seen as a milestone in the global response to the threat. By setting
different “emission peak” and “carbon neutrality” paths, this study compares the different pathways
taken by China towards regional emission reduction to illustrate China’s possible contribution to
global emission reduction, and analyzes the role that China’s economy, population, and technology
need to play in this process through the Stochastic Impacts by Regression on Population, Affluence,
and Technology model. In terms of path setting, based on actual carbon emissions in various regions
from 2000 to 2019 and grid data on land use from 2000 to 2020, the model simulates three emission
peak paths to 2030 and two carbon neutrality paths to 2060, thus setting six possible carbon emission
trends from 2000 to 2060 in different regions. It is found that the higher the unity of policy objectives
at the emission peak stage, the lower the heterogeneity of the inter-regional carbon emission trends.
In the carbon neutrality stage, the carbon emissions in the unconstrained symmetrical extension
decline state scenario causes the greatest environmental harm. Certain regions must shoulder heavier
responsibilities in the realization of carbon neutrality. The economic development level can lead to
a rise in carbon emissions at the emission peak stage and inhibit it at the carbon neutrality stage.
Furthermore, the dual effects of population scale and its quality level will increase carbon emissions
at the emission peak stage and decrease it at the carbon neutrality stage. There will be a time lag
between the output of science and technology innovation and its industrialization, while green
innovation is a key factor in carbon neutrality. Based on the results, this study puts forward policy
suggestions from a macro perspective to better realize China’s carbon emission goals.

Keywords: emission peak; carbon neutrality; forecasting; influencing mechanisms; China

1. Introduction

Global climate change is currently the most important environmental concern in the
world [1]. In particular, anthropogenic greenhouse gases can cause major harmful changes
in climate in the 21st century [2]. They also have an unprecedented short- and long-term
impact on the environment, society, and economy. Carbon dioxide (CO2) is the most
important component of anthropogenic greenhouse gases [3]. Adopting active emission
reduction and carbon removal policies has received international political consensus to
deal with climate change [4]. Limiting global warming below 2 ◦C and striving to reach the
global temperature control target of 1.5 ◦C are expected to avoid the irreversible negative
impact of climate change on human society and natural ecosystems. However, this process
requires joint efforts from all countries in terms of controlling carbon emissions. On
16 September 2020, Ursula von der Leyen, the President of the European Union, delivered
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the “State of the Union”, and announced that by 2050, Europe will become the world’s
first carbon-neutral continent. By the end of 2020, a total of 44 countries and economies
announced their carbon neutrality goals. On his first day in office, Joseph Robinette
Biden, the new US President, signed an executive order to return the country to the Paris
Agreement and reach carbon neutrality by 2050.

Compared with developed countries, the energy demand of developing countries,
such as China, has increased sharply with economic growth [5]. In the past decade, China’s
carbon emissions from fuel combustion have always ranked first [6]. Therefore, in the
process of carbon removal, China will face complex challenges such as large total carbon
emissions, short time of carbon emission reduction, difficult economic transformation, and
cumbersome transformation of energy systems. To slow down global warming, China is
duty bound to undertake emission reduction and commit itself to reaching the peak of
carbon emissions in 2030 and carbon neutrality in 2060 [7].

Recently, China has been shifting from the traditional economic development model
of “high investment, high consumption, and high pollution” to a sustainable develop-
ment model to build an ecological civilization and achieve high-quality economic growth,
through a low-carbon development path with innovative development modes [8]. How-
ever, as the world’s largest developing country, China needs to take broader and stronger
emission reduction actions over a shorter period to achieve carbon neutrality by 2060, which
necessitates the cooperation of the populace and each region. The Chinese government
has made it clear that emission peaking and carbon neutrality are not only macro-national
objectives but also specific, local ones. All regions should achieve emission peak and carbon
neutrality at the established time points.

China has a vast territory and there are great differences in natural endowment, eco-
nomic development level, social development, and science and technology (S&T) innova-
tion capacity among regions. Therefore, determining an effective low-carbon development
path based on the actual development of the various regions to achieve emission peak
and carbon neutrality in all regions within the expected time demands serious attention
and thought.

This study makes regional-level projections and identifies the influencing mechanisms
of China’s carbon emissions. Specifically, we focus on building divergent carbon emission
change modes at the regional level, composed of two carbon emission thresholds and their
intermediate levels, and combined with two carbon neutrality paths of the symmetrical
extension decline state and the uniform decline state. The impact paths of the six different
carbon emission scenarios differ. Since a total carbon emission control mechanism based
on the regional objectives of emission peak and carbon neutrality has not been fully
established, this study simulates the threshold and possible trend of carbon emissions
from 2020 to 2060 at the regional level to determine the peak value of carbon emission
in each region and the total carbon emission over the entire period. Thus, it explores
China’s overall contribution to carbon emissions. Based on the path analysis results
under the different scenarios, this study also puts forward phasic and regional policy
suggestions for the Chinese central government and local governments in multifarious
aspects, including carbon emission control, economic development level, population scale,
and S&T innovation. These measures can help local governments formulate reasonable
tailored emission reduction plans.

This study focuses on three parts: regional emission peak scenario with projection;
regional carbon neutrality wish scenario with projection; and carbon emission influencing
factor analysis. The remainder of the paper is organized as follows. First, it reviews the
literature on three key aspects: carbon emission; emission peak with carbon neutrality;
and factors affecting carbon emissions to clarify the research contents and research meth-
ods of extant studies. Second, it measures the carbon emissions of various regions in
China and simulates their emission peak scenarios according to three preset scenarios (the
unconstrained state, ideal state, and average state scenarios) based on the “2006 IPCC
Guidelines for National Greenhouse Gas Inventories”. Third, it measures and predicts
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the carbon sink of each region in China based on land use and simulates six scenarios of
carbon neutrality in each region according to the preset carbon removal scenario from 2020
to 2060—unconstrained symmetrical extension decline state, ideal symmetrical extension
decline state, average symmetrical extension decline state, unconstrained uniform decline
state, ideal uniform decline state, average uniform decline state. Next, it constructs a model
of Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) to
explore the influence and effects of the economic development level, population scale, and
S&T innovation on environmental impact during the measurement (2000–2019), emission
peak (2020–2030), and carbon neutrality periods (2031–2060). Finally, based on the empirical
results, this study puts forward policy planning for China’s central government and its
local governments to help achieve emission peak and carbon neutrality and proposes a
path of low-carbon development based on three impact dimensions.

2. Literature Review
2.1. Research on Carbon Emission

Climate change has been identified by scientists, policymakers, and even the public as
one of the two most important problems to be solved worldwide (the other is the shortage
of water resources) and has a considerable impact on economic and social development [9].
As the world’s largest coal consumer and coal-derived power generation country during
its economic and industrial development, China’s uncontrolled consumption of fossil
fuels has led to large greenhouse gas emissions [10]. Climate problems not only worsen
air quality and endanger human health [11] but also affect macroeconomic growth [12].
Greenhouse gases include water vapors (H2O), carbon dioxide (CO2), nitrous oxide (N2O),
freon, and methane (CH4). Among them, CH4 accounts for approximately 35% of mixed
greenhouse gases and is the second largest contributor to global warming [13]. Over the
past three decades, scholars have realized the importance of the qualitative assessment of
CH4 emission inventory and have conducted studies on CH4 emissions worldwide [14].
This research comprised the exploration of CH4 emissions of different land use types, such
as paddy fields and wetlands, and the exploration of specific conditions in different regions,
such as the Makran continental margin [15], Latin America [16], and China [17]. However,
the short-term climate forces of greenhouse gases, such as CH4, have a shorter lifetime in
the atmosphere compared to CO2 and are generally considered to only have a temporary
impact on the climate system [18]. Among these anthropogenic greenhouse gases, CO2
accounts for nearly three-quarters of all greenhouse gas emissions, and is regarded as the
most important component that mitigates global warming [19].

In the natural sciences, scholars have focused on emerging technologies, such as car-
bon capture and storage (CCS) [20], while in the social sciences, they have emphasized
the measurement and estimation of carbon emissions [21] and the establishment of corre-
sponding social systems, such as carbon taxes [22] and carbon trading [23], and scientific
carbon forecasting [24]. Currently, there are no monitoring data that can be directly applied
to actual carbon emissions in China, which is why it needs to be measured through indi-
rect methods. Carbon emissions can be measured using various methods under diverse
circumstances. For instance, the Input–Output Analysis (IOA) model is used to explore
carbon emissions in some regions [25]; The Multi-Regional Input–Output (MRIO) model
based on interregional commodity flow data is an effective tool for cross-regional emis-
sion research [26]; The Life Cycle Assessment (LCA) model is used to analyze the carbon
emissions of a single product or process; and the Denitrification–Decomposition (DNDC)
model has been developed and applied to measure agricultural carbon emissions [27]. The
calculation of carbon emissions based on the “IPCC Guidelines for National Greenhouse
Gas Inventories” and the law of mass conservation is a more universal carbon measurement
method [28]. Based on these varied calculation methods, the measurement of regional
carbon emissions is also widely carried out, including in specific economic development
regions, such as BRICS (Brazil, Russia, India, China, South Africa) [29] and APEC [30], as
well as in countries [31], counties [32], cities [33] and enterprises [34]. For China, the mea-
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surement of carbon emissions also covers many provinces, such as Fujian [35], Henan [36],
Inner Mongolia [37], Anhui [38] and so on.

2.2. Research on Emission Peak and Carbon Neutrality

China is facing the dual pressure of air pollution and climate change mitigation [39].
Seeking harmonious development between humans and nature, and actively exploring
ecological civilization construction adapted to national conditions, have become the current
focus [40]. Under the Paris Agreement, China has committed to reach the peak of carbon
emissions by 2030 and achieve carbon neutrality by 2060. However, achieving these goals
with minimum economic and social costs is a problem worth analyzing [41]. Regarding the
goal of reaching the emission peak in 2030, several studies have investigated the peak of
China’s carbon emissions from different perspectives, including the conditions for reaching
the peak. For example, it was considered that in order to reach the emission peak, the
decline rate of carbon intensity should be higher than the economic growth rate [42].
It was found that the change in total factor productivity plays an important role in the
realization of the emission peak [43]. The exploration of emission peak time based on
different influencing factors, such as urbanization [44] and economic structure [45], was
also investigated. Moreover, based on divergent peaking scenarios, increased attention has
been paid to the analysis of emission peaking in construction [46], service [47], power and
heating [48], household [49], transportation [50], and other sectors.

Owing to the carbon sink problem, carbon neutrality is more complex than the emis-
sion peak, thus resulting in fewer studies in this area; however, research on carbon sinks
provides interesting findings for scholars. Global research focuses on the protection of
the ecological environment as terrestrial ecosystems are generally considered to provide a
powerful means to mitigate climate change [51]. Coastal ecosystems covered by mangroves,
seagrass meadows, and tidal swamps also have high carbon sequestration capacity; there-
fore, the role of blue carbon in mitigating climate change is considered very important [52].
Whether in terrestrial or coastal ecosystems, the carbon sink of the ecological environment
is key to achieving carbon neutrality. Research also focused on the measurement and
projection of carbon sinks for different land use types. When dealing with ecosystem
carbon sequestration, some studies examined the interconnection and integrity of each
ecosystem and the creation of complex dynamic models, such as the Yale Interactive terres-
trial Biosphere (YITBs) model [53] and Cellular Automata (CA) model [54]. Most studies
use static carbon sink coefficients for varying land types [55]. Although more than 60%
of ecosystems have been degraded by human activities, the change of soil organic carbon
(SOC) still takes a long time, even under the influence of human activities [56]. Therefore,
most studies assume that human activities have no short-term impact on ecological carbon
absorption capacity. Relevant research has obtained the land use data from the inversion
results of satellite monitoring [57]. The land cover area and static carbon sink coefficient
jointly determine the carbon sink scale of the ecosystem.

2.3. Research on Carbon Emissions Determinants

Recently, with the gradual increase in the study on the impact of climate change on
various human activities, scholars have also begun to pay attention to the factors influencing
climate change [58]. Although the factors affecting the growth of carbon emissions are
complex and diverse, the economy, population, and S&T innovation are the three factors
primarily considered by scholars [59]. The impact of economic growth on the environment
is regarded as one of the foundations of economic research, but the academic community
has different opinions on the relationship between the two [60]. The classic hypothesis on
this aspect is the Environmental Kuznets Curve (EKC) hypothesis proposed by Grossman
and Krueger, that is, the economic level and carbon emissions have a relationship in the
form of an inverted U-shape [61]. Some studies verify this hypothesis by setting different
research areas, such as Malaysia [62], Brazil, China, India and Indonesia [63], 15 countries in
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the Middle East and North Africa and Pakistan [64], or by incorporating various influencing
factors, such as ecological footprint [65], and foreign direct investment (FDI) [66].

Most of these studies believe that the environmental deterioration caused by economic
growth is short term, and environmental problems will be solved gradually with further
economic growth [67]. Others emphasize the decoupling of economic growth and carbon
emissions to control environmental degradation [68]. However, there is no evidence
that the decoupling is endogenous; hence, a strong emission reduction policy support
and adaptation to economic growth and sustainable development are required [69]. The
associated population attributes are also highly related to the changes in carbon emissions.
The extant research mainly focuses on the factors of population structure change, such as
population growth and population size [70]. Population growth is considered a key factor
to the change in the residents’ carbon emissions [71]. Its main forms are natural population
growth and population migration. The former directly leads to an increase in carbon
emissions, while the latter spatially reconstructs the scale of carbon emissions by causing
changes in production and consumption activities [72]. The impact of the two forms of
population growth on carbon emissions is the change in population structure and its related
parameters. These fluctuations are the key to the subsequent change in carbon emissions
growth rate. For example, population aging caused by natural population growth can offset
carbon emissions [73], while urbanization caused by population migration can promote
carbon emissions [74]. Environment and innovation are the two most important themes in
global development [75], while the innovation is the key factor of social change [76], but S&T
innovation is a double-edged sword for ecological protection. On the one hand, it may cause
problems to the environment and urban development, such as air pollution [77]. On the
other hand, the negative impact of innovation may only be short term and innovation can
inhibit carbon emissions in the long term [78]. Currently, several studies have begun to pay
attention to the innovation related to environmental protection, that is, green innovation. It
can help promote global energy conservation and carbon emissions reduction to a large
extent, and be the driving force to achieve both economic growth and green low-carbon
transformation [79].

While the scope of research on the influencing factors of carbon emissions continues
to expand, the methods used to explore its effects also increases. Some studies have used
the factor decomposition method to analyze the relationship between indicators and their
driving factors to determine the impact of the latter. Research has also analyzed agricultural
carbon emissions based on the exponential decomposition method [80], industrial carbon
emissions based on Structural Decomposition Analysis (SDA) model [81], and transportation
industry carbon emissions [82] and power sector carbon emissions [83] based on the Log-Mean
Divisia Index (LMDI) model. However, this type of research lacks a unified framework for the
influencing factors, and the STIRPAT model framework effectively solves this problem. The
STIRPAT framework is based on the IPAT (Impact = Population × Affluence × Technology)
model proposed by Ehrlich and Holdren [84], and proposed by Dietz and Rosa [85] through
the regression of population, wealth and technology, and the random estimation of envi-
ronmental pressure, which is used to quantitatively analyze the impact of human factors
on environmental pressure. Currently, it is widely used as the starting point to estimate
carbon emissions under different assumptions [86]. Moreover, some studies have carried out
inverse estimations, such as analyzing the elasticity coefficient of the influencing factors of
carbon emissions in a single region [87]. On account of the scalability of the STIRPAT model,
studies have also considered the urbanization level, urban employment level, industrialization
level [88], total nuclear energy, alternative energy and total fossil energy [89].

We can see that previous studies have mostly focused on the measurement of carbon
emissions in the past before carrying out relevant research on the carbon peak in sub-sectors
based on said measurements. However, these studies seldom consider the realization of
carbon neutrality goals and are lacking from a macro perspective. Although various
methods and models have been used in past research on the influencing factors of carbon
emissions, these studies are mostly a summary of past experiences. They rarely predict
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anything about the future role of influencing factors. Compared to the existing studies, the
novelty of this paper is as follows: (1) taking China’s provincial administrative regions as
the research objects, this paper analyzes the vision of China’s regional carbon peak and
carbon neutrality from a macro perspective; (2) By setting different scenarios, the high
(low) threshold of regional carbon peak is simulated, and the possible range of carbon
emissions is given; (3) Based on the simulation of different carbon peaks, the situation
of regional carbon neutralization is simulated, which comprehensively reflects the total
carbon emissions under the vision of carbon peak and carbon neutrality; (4) The future
development of China’s regional economy, population, and S&T are simulated to analyze
the role of various influencing factors in different periods.

3. Regional Emission Peak
3.1. Measurement of the Regional Emission Peak

Quantifying the emissions of a country or region is the first step towards reducing
greenhouse gas emissions [90]. This study selects regional final energy consumption data to
measure regional carbon emissions, with data from the “China Energy Statistics Yearbook”.
The Coronavirus Pandemic (COVID-19) has brought a huge impact to China after 2019 [91].
Considering the significant change in carbon emissions caused by COVID-19 [92] and its
impact on subsequent projections, the measurement period comprises the two decades
(2000–2019). The potential carbon emissions for each province were calculated according to
the carbon emission calculation guide methods and parameters in the “IPCC Guidelines for
National Greenhouse Gas Inventories” issued by the Intergovernmental Panel on Climate
Change (IPCC) in 2006. The specific calculation method is as follows:

CE = ∑n
j=1 Ej × NCVj × CEFj × COF × 44

12
(1)

where CE is the sum of the CO2 emissions from various energy sources. According to the
“China Energy Statistics Yearbook” energy is divided into 10 categories—coal, coke, crude
oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas, natural gas, and electricity.
Ej is the consumption of the j-th energy type, NCVj is the average low calorific value of
the j-th energy type, CEFj is the carbon content per unit of calorific value of the j-th energy
type, COF is the carbon oxidation factor (usually one, according to IPCC (2006)), and 44

12 is
the molecular weight ratio of CO2 to Carbon (C).

The regions selected in this paper are China’s provincial administrative units, and the
geographical location of each provincial administrative region is shown in Figure 1. For
the sake of data integrity and statistical quality, the research objects excluded Tibet, Hong
Kong, Macao, and Taiwan.

3.2. Estimation of the Regional Emission Peak
3.2.1. Scenario Setting of Emission Peak

Based on the measured regional actual carbon emissions from 2000 to 2019, and
without considering the upheavals in natural factors, such as major disasters, the impact
of human factors, including conflict and war, the basic constraints of revolutionary S&T
innovation, and the application of new energy, we set the unconstrained state, ideal state,
and average state scenarios. The carbon emission forecast assumptions for each scenario
are as follows.

Scenario 1: Unconstrained state
Without policy intervention, regional carbon emissions are considered to increase

naturally according to the historical data trend, and the government will not take measures
to limit the rate of carbon emissions (as shown by the red solid line in Figure 2). Although
this scenario is not in line with the reality, the predicted value of carbon emission here is
likely to be the maximum boundary of carbon emission in the actual setting, which means
it will be difficult to achieve carbon neutrality wish after 2030.
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Scenario 2: Ideal state
Ideally, the government’s emission reduction policy is fully effective and the regional

carbon emissions will gradually decrease at an annual growth rate, reaching zero in 2030.
In such a scenario, the projection is in line with the realization of the emission peak and
carbon neutrality goals, as it not only simulates the minimum carbon emission in each
region, but also avoids huge fluctuations in regional carbon emissions. Without considering
the governments’ use of coercive measures at the expense of the economy, the predicted
value of carbon emission in this scenario is likely to be the minimum boundary of carbon
emission in reality, which makes it the easiest emission peak scenario in achievingcarbon
neutrality wish after 2030.

Scenario 3: Average state
Based on scenarios 1 and 2, the possible maximum value (predicted value under the

unconstrained state) and possible minimum values (predicted value under the ideal state)
of carbon emission in each region are averaged. The average carbon emission is the average
of two extreme values, which may be closer to reality.
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3.2.2. Estimation Method of Emission Peak Scenarios

In scenario 1, given that the annual growth rate of regional carbon emissions generally
presents the distribution characteristics of “more in the middle while less on both sides”,
the kernel density estimation method based on the “normal” kernel function is applied to
the annual growth rate of regional carbon emissions from 2001 to 2019. The change step
is adjusted with the fit degree as standard with 106 times the simulation by the Monte
Carlo method, and the median of the sequence value represents the centralized data trend.
Considering the outliers in the growth rate for individual years, the data should be updated
annually; that is, the outlier values should be eliminated for each growth rate calculation
round, while the number of known data in each round is the same. Through the predicted
annual growth rate, the carbon emissions under unconstrained state were calculated on a
year-by-year basis.

In Scenario 2, in view of the fact that the historical data of the annual growth rate of
regional carbon emissions are converging on both sides with a specific year as the boundary,
and the annual growth rate fluctuates above a specific level before a specific year, while it is
opposite after a specific year. Based on these features, the growth rate in 2020 is predicted
using the corresponding annual growth rate of the specific year as the upper limit, while
the growth rate of the previous year becomes the upper limit to predict the subsequent
years (2021–2030), and the lower limits are all zero. According to the maximum entropy
principle, the growth rate for the next year falls in the middle of the upper and lower limits.

In scenario 3, the annual carbon emission forecast value of each region is the average
value of scenarios 1 and 2.

3.3. Analysis of the Regional Emission Peak

Based on the possible settings of carbon emissions under the different scenarios, we
predicted the carbon emissions for the different regions in China from 2020 to 2030, and
the results are shown in Figure 3. (Owing to the large difference in carbon emissions
among the regions, to describe the actual carbon emissions from 2000 to 2019 and the
emission peak projection from 2020 to 2030 more clearly, the value range of the vertical
coordinates for each region is different.) For instance, Beijing reached its emission peak in
2010. Since then, its carbon emissions have generally shown a fluctuating downward trend.
Under the unconstrained state, the growth rate of carbon emissions is very low (the annual
growth rate is below 1%) or even negative. At the same time, the maximum value over the
projection period has been significantly lower than the overall maximum value. It can thus
be considered that Beijing reached its emission peak in 2010, which is why other scenarios
were not simulated for the city. For the other provinces, the three scenarios were analyzed
as follows.

In the unconstrained state scenario, from the growth rate perspective, Inner Mongolia,
Fujian, Shaanxi, Qinghai, Ningxia, and Xinjiang showed poor control strength and effect
before 2019. If policy control is not applied in the future, these six provinces will have the
fastest growth in domestic carbon emissions (with an annual growth rate of around 10%).
The annual growth rate of nine provinces, including Jilin and Jiangsu, is below 4.5%. If these
regional governments respond actively to the emission peak policy and impose a certain
degree of control, it will be easier to achieve the peak of carbon emissions. In terms of
range, the range of growth rate between the maximum and minimum emissions is largest
(approximately 6%) in all three scenarios, which confirms that, with the development
of carbon emissions according to the general historical trend, the difference in carbon
emissions between regions will increase annually. In terms of peak value, the peak value
of carbon emissions in Shandong is the highest among all the regions, which also makes
it difficult to achieve carbon neutrality wish by 2060. Conversely, the peak value of
carbon emissions in Hainan is the lowest, at approximately 3.33% of the highest value.
The cumulative carbon emissions of all provinces also show heterogeneity, among which
Hainan and Qinghai have the lowest cumulative carbon emissions from 2000 to 2030 (below
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10 billion tons), while Shandong has the highest cumulative carbon emissions at this stage
(approximately 185.9 billion tons).
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In the ideal state scenario, from the growth rate perspective, the carbon emission of
each region shows saturated growth, and the annual growth rate of each province is below
0.1% from 2026 to 2030, which has led to the goal of reaching the peak under the premise of
extremely low carbon emission growth. In terms of range, the difference between regions
in the ideal state is smallest. Under the unified goal of reaching the emission peak by
2030, the development trend of carbon emissions in the various provinces will show a
convergence. In terms of peak value, the peak value of carbon emissions in Shandong under
a fully effective policy is still highest among all the regions. However, based on horizontal
comparison, its peak value under this scenario is reduced to 61% under the unconstrained
scenario, which reveals that, ideally, the effect of carbon removal is significant. Qinghai
is the lowest among all the regions, accounting for only 323 million tons. Similar to the
unconstrained scenario, under the ideal state scenario, Hainan and Qinghai have low
carbon emissions, and the cumulative carbon emissions of each region will be reduced by
249.8 billion tons compared with the unconstrained state (1807.1 billion tons).

In the average scenario, the annual growth rate of carbon emissions is between the
unconstrained state and the ideal state scenarios, the carbon emissions being relatively
in line with the real emission range. From the peak value perspective, Shandong is still
the province with the highest carbon emissions in 2030 (carbon emissions are 9.923 billion
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tons) and Qinghai has the lowest emissions, with a significant difference of 9.361 billion
tons between them. Under China’s goals of emission peak and carbon neutrality wish,
the development of carbon emissions in provincial-level administrative regions may be
different in reality, which means that local governments need to respond flexibly. Compared
with the unconstrained state scenario, the cumulative value of regional carbon emissions
over the past 30 years is approximately 50% of the reduction scale in the ideal state scenario.

Looking at the emission peaks of different regions under different scenarios, we find
that the total emissions of China’s mainland (excluding Tibet due to missing data) in the
unconstrained, average, and ideal states will reach 117.5 billion tons, 92.8 billion tons,
and 68 billion tons, respectively. These figures indicate that the peak value in 2030 will
be within [68, 117.5] billion tons. Compared with the unconstrained scenario, optimal
control can reduce emissions by nearly half, lower carbon emissions by approximately
50 billion tons by 2030, and decrease carbon emissions by approximately 25 billion tons
even under the average state, which means that China’s control over carbon emissions is of
great significance globally. The proportions of the eastern, central, and western regions in
peak carbon under the unconstrained scenario are 41.32%, 23.28% and 35.40%, respectively,
while under optimal control, the proportions become 44.68%, 25.82%, and 29.50%. This
result indicates that optimal control greatly restricts the carbon emissions of the western
region, by as much as 21.5 billion tons. Additionally, the carbon emissions in the eastern
and central regions are also greatly constrained. Only when all regions pursue the local
optimization of carbon emissions under the same goal can they reach global optimization
for the entire country.

4. Regional Carbon Neutrality Wish
4.1. Measurement of the Regional Carbon Sink

Regional carbon sequestration was measured based on 1-km land use grid data gener-
ated by Landsat TM images, with manual visual interpretation. The data were obtained
from the Resources and Environmental Science and Data Center (https://www.resdc.cn,
accessed on 30 June 2022) from five different time periods of 2000, 2005, 2010, 2015 and 2020.
In this database, land use types are divided into six categories and 25 subcategories, of
which urban and rural, industrial and mining, and residential land hardly include carbon
sink; therefore, only cultivated land, woodland, grassland, waters, and unused land are
discussed. Compared with other carbon sink areas, permanent glacier and snow land in
the subcategory corresponding to the water areas has low carbon sink capacity due to the
lack of vegetation or microbial respiration in the barren surface moraine areas and the large
pores of the surface moraine in the glacier movement. Therefore, it is difficult to retain CO2,
hence, the carbon sink of permanent glacial and snow land are excluded. Using ArcGIS
Pro, the classified and encoded grid data were read and processed into the corresponding
number of pixels, and the area of the corresponding land use type were calculated [Area
of land use type = number of pixels × single pixel area (1 km2)]. The static carbon sink
coefficient on different land use types were determined by referring to the extant research
on carbon sink capacity for different land use types in high-impact journals. The ecosystem
carbon sink model can be estimated as follows:

C = ∑m
i=1 Si × αi (2)

where Si is the area of the i-th land use type, and αi is the carbon sink coefficient of the i-th
(i = 1, 2, . . . , m) land use type, while the corresponding carbon sink coefficient is shown in
Table 1. The regional carbon sink, C, is the sum of the different carbon sinks in the region,
that is, the sum of the product of Si and αi.

https://www.resdc.cn
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Table 1. The regression results of the Tobit model.

Land Use Status Classification Region Coefficient of
Carbon Sinks ReferencesCategory Type

Woodland

Closed forest land

Nationwide

0.87 t·hm−2·a−1

[93,94]Shrubbery 0.23 t·hm−2·a−1

Sparse wood land 0.58 t·hm−2·a−1

Other woodland 0.2327 t·hm−2·a−1

Grassland
High-coverage grassland

Nationwide
0.138 t·hm−2·a−1

[95,96]Medium-coverage grassland 0.046 t·hm−2·a−1

Low-coverage grassland 0.021 t·hm−2·a−1

Waters

Canals

Nationwide

0.671 t·hm−2·a−1

[97]
Lakes 0.303 t·hm−2·a−1

Reservoir and pond 0.303 t·hm−2·a−1

Beach land 0.567 t·hm−2·a−1

Shiedles 0.567 t·hm−2·a−1

Unused land Nationwide 0.0005 t·hm−2·a−1 [98]

Cultivated land

Northeast China 5.23 t·hm−2·a−1

[99]East China 7.04 t·hm−2·a−1

Central China 7.61 t·hm−2·a−1

West China 4.23 t·hm−2·a−1

4.2. Estimation of the Regional Carbon Neutrality Wish
4.2.1. Scenario Setting of Carbon Neutrality Wish

Based on the measured regional actual carbon emissions from 2000 to 2019 and the
predicted values under the divergent scenarios from 2020 to 2030, and without considering
the upheavals in natural factors, such as major disasters, the impact of human factors,
including conflict and war, the basic constraints of revolutionary S&T innovation, and the
application of new energy, we set the symmetrical extended decline state, and uniform
decline state scenario. Since carbon neutrality means that the carbon emissions and sinks
are the same in 2060, instead of setting the carbon emissions to zero, the goal is to reduce
the net carbon emissions (i.e., the difference between carbon emissions and carbon sinks) to
zero by 2060.

Scenario 1: Symmetrical extended decline state
The neutralization scenario of symmetrical extension decline state is to estimate the

downward trend of the net carbon emission levels from 2031 to 2060 by referring to the
historical changes from 2000 to 2030 and taking 2030 as the axis of symmetry, on the basis of
the assumption that all regions will reach their emission peak by 2030 under three different
scenarios (as shown by the solid line on the right-hand side of 2030 in Figure 4) and each emis-
sion peaking scenario has a corresponding carbon neutrality wish scenario—scenarios 11,
21, and 31 achieve carbon neutrality wish by developing in the unconstrained state, ideal
state, and average state scenarios to a symmetrical extended decline after the peak year, as
shown in Figure 5 and Table 2.

Scenario 2: Uniform decline state
The neutralization scenario of uniform decline assumes that all regions will achieve their

emission peak by 2030, the quantity level of net carbon emissions will decrease annually,
as shown by the dotted line on the right-hand side of 2030 in Figure 4, and all regions will
achieve carbon neutrality wish by 2060; that is, the net carbon emissions are zero. Each
emission peak scenario also has a corresponding uniform decline scenario—scenarios 12,
22, and 32 develop in the unconstrained state, ideal state, and average state scenarios to
achieve emission peaking after 2030, as shown in Figure 5 and Table 2.
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Table 2. Meaning of various scenario.

Scenario Meaning

Scenario 11 Symmetrical extended decline state of carbon neutrality wish,
after unconstrained state of emission peak

Scenario 12 Uniform decline state of carbon neutrality wish, after
unconstrained state of emission peak

Scenario 21 Symmetrical extended decline state of carbon neutrality wish,
after ideal state of emission peak

Scenario 22 Uniform decline state of carbon neutrality wish, after ideal state
of emission peak

Scenario 31 Symmetrical extended decline state of carbon neutrality wish,
after average state of emission peak

Scenario 32 Uniform decline state of carbon neutrality wish, after average
state of emission peak

4.2.2. Estimation Method of Emission Peak Scenarios

To estimate carbon neutrality wish, it is first necessary to estimate the carbon sink in
various periods for each region. Considering that historical data consist of five periods
within five-year intervals, it is not suitable to adopt time-series projection or similar meth-
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ods. Therefore, this study uses a curve fitting and grey model to compare and select the
optimal model to predict the carbon sink capacity of each region from 2021 to 2060. The
gray combination prediction model is a combination of three gray models, namely, the
traditional GM (1,1), the GM (1,1) based on the new information priority principle, and the
GM (1,1) based on the optimized background value. On the premise of using the exponen-
tial of smoothing ratio analysis data as a model, combined with an error square for optimal
model selection, the average relative residual and average pole ratio deviation are used
as criteria to judge the goodness of fit. Based on the estimated carbon sequestration, the
carbon emissions during the stage of carbon neutrality wish under the divergent scenarios
were estimated to render regional carbon emissions equal to carbon sequestration by 2060.

In scenario 1, based on the actual carbon emission level from 2000 to 2019 and the
three carbon neutrality wish scenarios from 2020 to 2030, the annual corresponding carbon
sink is removed, and the predicted net carbon emissions from 2031 to 2060 are changed
symmetrically, with 2030 as the axis. Considering that the carbon emission of each region
in 2000 is not zero, the carbon emissions predicted from 2031 to 2060 are first standardized
by 0–1, and then the extension treatment is carried out according to the value of peak
carbon emission to reflect the regional carbon neutrality wish development trend under
the symmetrical extension decline state from 2031 to 2060.

In scenario 2, based on the actual carbon emission level measured from 2000 to 2019
and the three carbon neutrality wish scenarios from 2020 to 2030, the annual corresponding
carbon sink is removed, and the predicted net carbon emissions from 2031 to 2060 are
reduced at a uniform speed to reflect the development trend of regional carbon neutrality
wish under the uniform decline state scenario from 2031 to 2060.

4.3. Analysis of Regional Carbon Neutrality Wish

Based on the possible settings of carbon emissions under multifarious scenarios, we
predict the carbon emissions of different regions in China from 2031 to 2060, and the results
are shown in Figure 6. Owing to the substantial difference in carbon emissions among
regions, the value range of vertical coordinates of each region is different in order to clearly
describe the change in the trend of carbon emissions to achieve carbon neutrality wish in
the regions from 2031 to 2060. In view of Beijing reaching its emission peak around 2010, its
peaking path was specially treated. Under the symmetrical extension path (scenario 1), the
growth rate of the symmetrical basic data is the preliminary growth rate from 2011 to 2020,
based on the historical net emission data from 2000 to 2010 and using 2010 as the symmetry
axis. Considering that the carbon neutrality wish year in the scenario is 2060, the horizontal
stretching combination is carried out according to the change in scale, and bearing in mind
the exact historical growth rate from 2010 to 2019, the change range is corrected according
to the actual growth rate in that year. In the uniform decline path (scenario 2), taking the
historical net carbon emission data from 2010 to 2019 and a net carbon emission value
of zero in 2060 as the basic projection data, linear regression is used to combine with the
fitting deviation in ordinary least squares, least absolute residuals (LAR), and Bisquare to
make the best choice in comparison with the overall goodness of fit. By focusing on the
2030–2060 carbon neutral target year range, under the symmetrical extension decline state,
we find that each region presents the following common characteristics. In the symmetrical
extended decline state, the volatility of the ideal state is relatively large, the carbon emission
level in the early stage is relatively low compared with the other two sub-scenarios, and
the highest level of the three is in the average state, with its decline being the most severe
in the later stage. In the uniform decline state, the carbon emissions of each region show a
slow increase in the decline rate among the various states, but the decline rate of carbon
emissions among regions in the same year shows few differences, while the decline rate
of Guangdong is lower than that of the other provinces. The specific analysis of the six
sub-scenarios is presented below.

Under the basic assumption of a symmetrical extension decline after the emission
peak, in the unconstrained symmetrical extension decline state (scenario 11), the change
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in the trend of each region corresponds to the left-hand side of 2030. Shandong’s carbon
emissions rank first from 2030 to 2056 and experience a significant decline in 2057, while
simultaneously, Guangdong’s carbon emissions will be the largest. Hubei will be the largest
emitting province from 2058 to 2060. In this scenario, the annual decline in China’s total
carbon emissions is within [1, 7.4] billion tons and carbon emissions decrease gradually
over time, with an average annual decline rate of approximately 11.82%; this rate lowers
over time. In the ideal symmetrical extension decline state (scenario 21), the annual decline
range of national total carbon emissions is within [0, 1.2] billion tons, but the volatility
of each region is relatively large. The carbon emission level in the early stage is lower
than that in the other two symmetrical extension decline state scenarios, but always at the
highest level of the three in the middle stage; the decline is most intense in the later stage.
The average annual decline rate is approximately 10.00%; this rate decreases with time. In
the average symmetrical extension decline state (scenario 31), the carbon emission scale
is always at the middle level. From 2030 to 2034, around 15 provinces will have carbon
emission values greater than the overall average, and then they decline. From 2044 to
2049, around 11 provinces have carbon emission levels higher than average but eventually,
only four provinces will have carbon emissions higher than the average. Overall, it can be
observed that the carbon emission level will gradually converge by 2060. Please replace
with the following text:

In this scenario, the annual decline in total carbon emissions in China is within [1,4]
a billion tons, and the annual carbon emissions reduce gradually over time, with an average
annual decline rate of approximately 11.08%. In the symmetrical extension decline state,
the cumulative carbon emissions of the different scenarios from 2031 to 2060 are 1417.4,
1345.2, and 1364.2 billion tons, respectively. The carbon neutrality wish after the optimal
regulated emission peak will be 53.2 billion tons less than that after the unconstrained
state of emission peak, which highlights the important role of control during the emission
peak period.
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5. Determinants of Regional Emission Peak and Carbon Neutrality Wish 
5.1. Measurement Model and Data 
5.1.1. Brief Description of the STIRPAT Model 
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Under the basic assumption that carbon emissions will decline at a uniform rate
after reaching the peak, the carbon emissions of each region in the unconstrained uniform
decline state (scenario 12) shows a downward trend, with its rate slowly rising for all states.
The total carbon emissions of the country will decline by approximately 3.85 billion tons
every year, with an average annual decline rate of approximately 11.43%, and there is
little difference in the decline rate of carbon emissions among the regions in the same year;
especially, the decline rate of Guangdong, which is lower than that of the other provinces. In
the ideal uniform decline state (scenario 22), the carbon emission of each region is similar to
scenario 21, but the decline rate is the lowest under the three sub-scenarios in the ideal state.
The total carbon emissions decline by approximately 2.12 billion tons per year, with an
average annual decline rate of 10.74%. In the uniform decline state (scenario 32), the carbon
emission of each region is similar to those in scenario 21. The total carbon emissions of the
whole country decrease by approximately three billion tons every year, with an average
annual decline rate of approximately 11.16%. Although the carbon emission gap under the
three scenarios gradually narrowed over time and finally converged to the same carbon
neutrality value, the sum of carbon emissions from 2031 to 2060 is very different due to the
dissimilarities in emission peak values in the various scenarios. The cumulative carbon
emissions of the three scenarios are 1729.8, 1011.5, and 1370.7 billion tons, respectively. The
difficulty of regional carbon neutrality wish under diverse emission peak scenarios is not
only different, but its impact on the ecological environment is not at the same level.

Based on the comprehensive analysis of carbon neutrality wish in various regions,
it is easier to complete carbon neutrality wish in Hubei than in other provinces, and the
carbon emission level needs to be controlled to decrease by approximately 68.22% from
2030. Nevertheless, Tianjin shows the sharpest contrast. Owing to its weak carbon sink
capacity, and with the extension of human activities and further economic development, the
capacity will decline. By 2060, carbon emissions need to be 0.04% of the carbon emissions
of the peak year, which also poses a significant challenge to these local governments.

Under the combination of different emission peaking and neutralization scenarios,
China’s overall carbon emission intensity varies greatly. The cumulative carbon emissions
in the unconstrained uniform decline state (scenario 12) are the largest from 2031 to 2060,
and the smallest in the ideal uniform decline state (scenario 22), with a difference of
718.3 billion tons, that is, more than six times that of the unconstrained emission peaking
and nearly 11 times the peak value of ideal state. Carbon neutrality wish under multiple
scenarios also proves the importance of implementing carbon emission control policies as
soon as possible; otherwise, large scale carbon emissions will affect the future development
of mankind.
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5. Determinants of Regional Emission Peak and Carbon Neutrality Wish
5.1. Measurement Model and Data
5.1.1. Brief Description of the STIRPAT Model

Using the STIRPAT model [100], this study explores the impact path of economic
development level, population scale, and scientific and technological innovation on the
carbon emission intensity of 30 provincial-level administrative regions of China, which is
expressed as follows:

lnIi = a + blnAi + clnPi + f lnTi + ei (3)

where I is the regional energy carbon emission intensity, A is the regional economic de-
velopment level, P is the regional population scale, and T is the regional S&T innovation
capacity, while a, b, c, f are the regression coefficients of these variables, and ei is the random
error term of regression.

5.1.2. Estimation of Influencing Factors

According to the STIRPAT model, before exploring the impact mechanism of economic
development level, population scale, and S&T innovation on regional emission peak and
carbon neutrality wish, it is necessary to quantify and estimate the values of economic
development level, population scale, and S&T innovation in various regions and over
different periods. Since the government generally does not inhibit the progress of economic
development and S&T innovation, and China has begun to encourage fertility, the popula-
tion growth will not be strictly limited. Therefore, the estimation of the three influencing
factors is unconstrained. The estimation method for each determinant is as follows.

Economic development level. The GDP of each region was selected to represent the
regional economic development level. The actual data were obtained from the National
Bureau of Statistics for 2000–2020. The forecast data consider the greater volatility of the
economy. The forecast data are based on the GDP from 1992 to 2020 of the National Bureau
of Statistics, and excludes 2008 (financial crisis) and 2020 (COVID-19). With the help of
the “curve fitting method” in SPSS for rough projection and on the premise of passing the
significance test, we selected the curve cluster with a high fitting degree and relatively
close to the reality and performed arithmetic average processing. On this basis, according
to the projection of China’s economic growth over different periods by the Global Energy
Interconnection Development and Cooperation Organization, the predicted values of the
various regions over many periods were adjusted.

Population scale. The registered residence population in each district was character-
ized by population size. The actual data are from the “Fifth Population Census of China
(2000)” and the “Sixth Population Census of China (2010)”, which include data related
to the natural population change projection, such as registered residence population and
annual population growth rate. There are also data related to machinery population change
projection, such as registered residence migration. Considering the large error between the
1% sampling survey data (using samples to represent the population) and the real data in
each region, we filled the missing values in the middle year using the linear interpolation
method. The forecast of population size consists of two parts: natural and mechanical
population growth. In terms of natural population growth, considering the limited data
availability at the provincial-level administrative region, we used the trend extrapolation
method (at a constant growth rate) for projection. Since the population growth rate is
not constant in the long-term forecast, the predicted value of the total population of each
region over different periods was adjusted according to the medium plan [the total pop-
ulation estimated by the natural population growth rate in the plan is more in line with
the projection range of major institutions and scholars in China.] in the “World Population
Prospects of the 2019 Revision” issued by the United Nations. [The General Office of the
State Council of the People’s Republic of China issued opinions on the furtherance of the
registered residence system reform in 2014, and all provinces have generally abolished
policies that promote the division of (non)-farmers.] In terms of mechanical population
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growth, the Markov Chain (MC) model was used to describe the dynamic changes in
population growth caused by cross-provincial migration. First, the initial immigration prob-
ability vector matrix WPMI1×31, initial immigration probability vector matrix WPMO1×31,
inter-provincial immigration probability transfer matrix PMI31×31, and inter provincial
immigration probability transfer matrix PMO31×31 are constructed. Next, immigration
probability WIn and immigration probability WOn in the n-th year can be expressed as:

WIn = WPMI × PMIn−2000 (4)

WOn = WPMO × PMOn−2000 (5)

Pmig_n = Pmig × (WIn − WOn) (6)

where Pmig_n is the number of inter-provincial migrations in year n, Pmig is the total popula-
tion of inter-provincial migration, and the data are for reference. Considering the changing
characteristics of China’s urbanization and in combination with the National New-type
Urbanization Plan (2014–2020) issued by the State Council, China’s urbanization is ex-
pected to reach more than 70% by 2035. After the urbanization rate reaches 70%, with the
equalization of public services and the realization of urban–rural integration, the inter-
provincial population flow at the national level tends to become balanced. Therefore, in
the mechanical projection process, the total inter-provincial population migration will not
increase from 2035 to 2060.

Scientific and technological innovation. The number of patents is often used to measure
the innovation level of enterprises [101] and regions [102], so the patent authorization stock
of each region was selected to represent the regional S&T innovation levels. The original
data was obtained from the patent authorization equivalent of the National Bureau of
Statistics for 2000–2019 [103]. The perpetual inventory system was adopted to convert
patent authorization data at the current time point into patent authorization stock data.
Considering the rapid iteration of knowledge, the depreciation rate is 20%. Based on patent
authorization stock data from 2000 to 2019, a rough projection was made with the help
of the curve fitting method in SPSS. In combination with the background of encouraging
innovation by the state, on the premise of passing the significance test, the curve with a
growth rate greater than the average growth rate of historical data shall be preferentially
selected among the curves with a high fitting degree, and arithmetic average processing
shall be carried out.

The measurement and estimation results for the economic development level, popu-
lation scale, and S&T innovation in different regions of China are shown in Figure 7 (the
gap of the various indicators between regions are small and the value range of the vertical
axis of each region are the same for purposes of comparison). The economic development
level has a certain heterogeneity among regions. In 27 provinces, such as Beijing, Shanghai,
and Jiangsu, there is a constant growth trend, of which Tianjin, Hebei, and Inner Mongolia
show almost saturated growth, while the economic development levels of Shanxi, Liaoning,
and Jilin show a declining trend over the projection period. Overall, the population scale of
each region first increases and then decreases, and there are differences in the peak time
points among the provinces. At present (2021), the population scales of Liaoning, Jilin, and
Heilongjiang have reached their peaks. From 2021 to 2030, around 27% of provinces will
reach their peak population, while the population scale of all provinces will peak before
2060. The S&T innovation in all regions shows an overall growth trend, while the annual
growth rate reaches its peak from 2010 to 2021 and then decreases annually. However, the
growth momentum of the different provinces in the long term is different: around half of
the provinces have an average annual growth rate of 4.5–5% for S&T innovation, around
17% of the provinces are at 3.5–4.5%, and around 27% of the provinces are at 2.5–3.5%. Only
Liaoning’s annual growth rate of S&T innovation is close to saturation (below 2%).
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5.2. Empirical Analysis

A spatial panel data regression analysis was conducted with the carbon emission of
each region in different scenarios and periods as the response variable and the economic
development level, population scale, and S&T innovation as the explanatory variables. The
Hausman test results show that the random effect model is rejected in the regression of
each period, so the fixed effect model is selected for regression; the results are shown in
Table 3.

Regarding the impact of economic development level in measurement periods (2000–2019),
the economic development level affects carbon emissions at a significance level of 1% and
the coefficient is positive, thereby indicating that the improvement in economic develop-
ment level will promote the further growth of carbon emissions. For every 1 unit increase in
economic level, carbon emissions will correspondingly increase by about 0.7042 units, and
the three scenarios in the 2020–2030 emission peak periods differ. In scenarios 1 and 3, the
economy affects carbon emissions at a significance level of 5% and the effect of economic
development level on carbon emissions is weaker than in the historical periods. Each unit
of economic growth will drive 0.2613 units and 0.1796 units of carbon emissions in these



Int. J. Environ. Res. Public Health 2022, 19, 12126 22 of 31

two scenarios, respectively. In scenario 2, economic growth will have a restraining effect
of 0.0581 units on carbon emissions. This situation is due to the constraints of the ideal
state scenario being very strict, such that the carbon emissions fall within the declining
range of the EKC. It signifies that the improvement in the economic development level will
lead to a decline in carbon emissions. In the 2031–2060 carbon neutrality wish period, the
change in the carbon emissions and economic development levels extend to the end of the
EKC, and compared with the uniform decline state (scenarios 12, 22, and 32), the economic
development level in the symmetrical extension decline state (scenarios 11, 21, and 31) will
have a stronger inhibitory effect on carbon emissions. At the 1% significance level, the
inhibitory effect of economic development on carbon emission is greater than one time.

Table 3. Regression results of influencing factors of China’s regional carbon emissions in different periods.

2000–2019 2020–2030 2031–2060

Measure Scenario
1

Scenario
2

Scenario
3

Scenario
11

Scenario
12

Scenario
21

Scenario
22

Scenario
31

Scenario
32

GDP 0.7042 *** 0.2613 ** −0.0581 ** 0.1796 *** −1.1038
***

−0.9047
***

−1.0701
***

−0.8074
***

−1.0807
***

−0.8654
***

(0.000) (0.047) (0.007) (0.029) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Population 4.1285 *** 0.7004 0.1421 0.3449 11.8982
***

11.0882
***

13.2984
***

10.5214
***

12.4422
***

10.8326
***

(0.000) (0.219) (0.129) (0.336) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Technology −0.2977 *** 0.3780 *** 0.0649 *** 0.2296 *** −0.7022
***

−0.6337
***

−0.4274
**

−0.6161
***

−0.5875
***

−0.6279
***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.013) (0.000) (0.000) (0.000)

_cons −72.6320 *** −16.5380
*** 0.2083 −7.7037 −182.7072

***
−171.5302

***
−211.2435

***
−163.4547

***
−194.0237

***
−167.7973

***
(0.000) (0.000) (0.897) (0.214) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

rho 0.9946 0.9944 0.9997 0.9950 0.9916 0.9938 0.9930 0.9943 0.9922 0.9940
R2 0.7985 0.8500 0.5841 0.8501 0.6560 0.6925 0.5805 0.7123 0.6245 0.7016

Note: P statistics in brackets; *** and ** represent significant at the levels of 1% and 5%, respectively. The
_cons represents a constant term, which is the intercept term of the regression equation. The rho represents the
percentage of individual effects in the total error term and goodness of fit, while the larger the rho, the more
errors come from individuals and the more support for using fixed effects model. The R2 represents goodness of
fit, which is an important criterion to judge whether a model fits well or not. The larger the R2, the better the
model fits.

Regarding the impact of population scale over the different periods, public awareness
of environmental protection is low from 2000 to 2019. The population scale promotes the
rise of carbon emissions at the 1% significance level. For each unit of population scale
growth, carbon emissions will increase by 4.1285 units. During the emission peak period
from 2020 to 2030, the population scale will further expand and form a population scale
effect, that is, when the population scale reaches a certain value, the consumption of unit
resources will be reduced. Simultaneously, given the augmented environmental protection
awareness and the continuous improvement in population quality consequent to the higher
education level, there will be a decoupling of the population scale and carbon emissions at
this stage. In the carbon neutrality wish period from 2031 to 2060, the mechanical change in
population scale in various regions tends to be stable and the annual natural growth rate is
negative, which results in a greatly weakened population scale effect. In each scenario, the
population scale will promote the increase in carbon emissions at a significance level of 1%,
and one unit of population growth will bring 11.8982 (scenario 11), 11.0882 (scenario 12),
13.2984 (scenario 21) and 10.5214, respectively (scenario 22), 12.4422 (scenario 31) and
10.8326 (scenario 32) of carbon emission growth.

Considering the time lag between the output of S&T innovation and their industrial
application, the impact of S&T innovation on carbon emissions will show an obvious
heterogeneity over the three periods. From 2000 to 2019, the progress of S&T has made social
development more intelligent and reduced human participation in production activities to
a certain extent, which will inhibit the growth of carbon emissions at the 1% significance
level. Every unit of S&T innovation capacity will inhibit carbon emissions by 0.2977 units.
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The main technology application in the emission peak stage from 2020 to 2030 is the
non-green innovation output during the rapid economic development in the early stage,
which accelerates the growth of carbon emissions at the 1% significance level, and from
2031 to 2060, the main technology application in the carbon neutrality wish stage is the
green innovation output in the emission peak stage. Except under scenario 21, which
inhibits 0.4274 units of carbon emissions per unit of S&T innovation at the 5% significance
level, the other five scenarios inhibit the growth of carbon emissions at the 1% significance
level, and its effect is about twice that of the S&T innovation in curbing human activities.
Therefore, improving the output of green innovation is a relevant factor in helping China’s
emission reduction.

6. Discussion
6.1. Conclusions

Global climate change caused by CO2 and other greenhouse gas emissions has become
one of the biggest challenges of this century. China has gradually embarked on a new path
of high-quality development, guided by ecological priority and green development, and put
forward the major commitment of “striving to reach the peak of carbon emissions by 2030
and strive to achieve carbon neutrality by 2060”. However, as the largest carbon emitter,
the process of achieving its emission peak and carbon neutrality wish is worth delving into.
To explore the low-carbon development path in the current period and emission peak and
carbon neutrality wish periods from the land use perspective, this study considers emission
peak and carbon neutrality wish as its objectives, and constructs six carbon emission paths
from 2000 to 2060 by setting three emission peak scenarios—unconstrained state scenario,
ideal state scenario, and average state scenario—and two carbon neutrality wish scenarios
of symmetrical extension decline state scenario and uniform decline state scenario. To
predict the emission peak stage, based on the final energy consumption data of the different
provinces in China from 2000 to 2019, this study estimates future carbon emissions by
simulating and predicting its growth rate. For the projection of the carbon neutrality stage,
the projection of carbon sequestration is based on 1-km land use grid data with an interval
of five years from 2000 to 2020. Based on actual regional carbon emissions from 2000 to
2018 and the carbon emission projection value under three scenarios from 2019 to 2030, the
future carbon emission value is estimated by predicting the scale of net carbon emissions.
To explore the impact mechanism of carbon emissions in different periods, this study uses
the STIRPAT model, based on panel data of 30 provincial-level administrative regions
from 2000 to 2060, and takes carbon emissions as the response variable, and economic
development level, population scale, and S&T innovation as the explanatory variables, to
explore the impact of various factors that influence the emission peak and carbon neutrality
wish path.

In achieving the emission peak in an unconstrained state (scenario 1), the total
carbon emissions of all regions in China will increase from 645.74 billion tons (2020) to
1175.24 billion tons (2030), of which Shandong has the highest carbon emission intensity
among all regions, while Hainan and Qinghai have the lowest. At the same time, the
heterogeneity of carbon emissions among regions will increase year by year, and the
standard deviation in carbon emissions in all provinces will expand from 15.57 billion tons
(2020) to 30.89 billion tons (2030). Six provinces, including Inner Mongolia, will become the
six regions with the fastest carbon emissions growth if they do not exercise control. Under
this scenario, all regions in China will emit 9749.00 billion tons of carbon from 2020 to 2030.
In the ideal state scenario (scenario 2), the total carbon emissions of all regions in China will
increase from 636.90 billion tons (2020) to 675.15 billion tons (2030), and the development
trend of carbon emissions among regions will converge, resulting in the standard deviation
in carbon emissions in all provinces only expanding from 15.37 billion tons (2020) to
16.46 billion tons (2030). In this scenario, the total carbon emissions of all regions in China
from 2020 to 2030 will be 7349.31 billion tons, which is 2399.69 billion tons less compared
to the unconstrained state, indicating that the effect of decarbonization is significant.
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In the average state scenario (scenario 3), the total carbon emissions of all regions in
China will increase from 639.10 billion tons (2020) to 922.83 billion tons (2030), but the
difference between various regions and their maximum/minimum carbon emissions is
still large (94.34%). The standard deviation in carbon emissions of all provinces will only
expand from 15.43 billion tons (2020) to 23.30 billion tons (2030). In this scenario, China’s
regional carbon emissions from 2020 to 2030 will total 8523.97 billion tons, an increase of
1174.66 billion tons compared with the ideal state, and a decrease of 1225.03 billion tons
compared with the unconstrained state. The local government should make reasonable
decisions based on the specific development of the region since the total carbon emissions
will vary greatly under different carbon peak paths.

If realizing carbon neutrality in a state of unconstrained symmetrical extension decline
(scenario 11), the annual decline in China’s total carbon emissions will be around [1, 7.4]
billion tons with an average annual decline rate of about 11.82%, thus showing a gradual
decline over time. Under this scenario, the cumulative carbon emissions from 2031-2060
will be around 14208.54 billion tons. In the ideal symmetrical extension decline state
(scenario 21), the annual decline in China’s total carbon emissions will be around [0, 1.2]
billion tons, albeit each region will see significant volatility, with an average annual decline
rate of 10.00% and a gradual decline over time. Under this scenario, the cumulative carbon
emissions from 2031–2060 will total 13,486.68 billion tons. In the average symmetrical
extension decline state (scenario 22), the annual decline in China’s total carbon emissions
will be around [1,4] billion tons with an average annual decline rate of approximately
11.08%. The carbon emissions level will gradually converge by 2060. In this scenario,
the cumulative carbon emissions from 2031–2060 will total 13,675.87 billion tons. In the
unconstrained uniform decline state (scenario 12), China’s total carbon emissions will
decline by approximately 3.85 billion tons per year, with an average annual decline rate
of approximately 11.43%. The carbon emissions in the various regions will register a slow
increase in the decline rate. For the decline rate among regions in the same year, there is
little difference among provinces, except for Guangdong. In this scenario, the cumulative
carbon emissions from 2031–2060 are 17,343.76 billion tons. In the ideal uniform decline
state (scenario 22), China’s total carbon emissions will decline by approximately 2.12 billion
tons per year, with an average annual decline rate of 10.74%. Under this scenario, the
cumulative carbon emissions from 2031–2060 will total 10,160.80 billion tons. Under the
average uniform decline state (scenario 32), China’s total annual decline is around three
billion tons, with an average annual decline rate of approximately 11.16%. In this scenario,
the cumulative carbon emissions from 2031–2060 will total 13,752.28 billion tons. Although
the final carbon neutrality goal is the same in the six cases, there are obvious variations
in the degree of environmental pollution in the different situations, resulting in a huge
difference in the total carbon emissions in the carbon neutral phase: the carbon emissions
in the ideal uniform decline state (Scenario 22) can be reduced by up to 7182.96 billion tons
compared with the unconstrained uniform decline state (Scenario 12), and the minimum
difference in carbon emissions in different states is also 76.41 billion tons.

In light of the research on the pathways affecting carbon emissions from 2000 to
2019, the impact of economic development level, population scale, and S&T innovation on
carbon emissions is consistent with the actual situation. This fact verifies that the STIRPAT
model is reasonable and can be used to further explore the impact of the three influencing
factors on carbon emissions in divergent scenarios. In the 2020–2030 carbon emission
peak period, the economic level and carbon emissions under the optimal policy effect
will fall within the declining range of the EKC, while the other two scenarios are in the
growth range. Population development will be influenced by both the population scale
effect and the popularization of environmental protection awareness, thus resulting in a
decoupling phenomenon. For S&T innovation, the industrial application of S&T innovation
is the non-green innovation produced in the period of rapid economic development in the
previous stage, which will lead to a further increase in carbon emissions. In the carbon
neutrality period from 2031 to 2060, with the development of China’s economy and the
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implementation of emission reduction projects, the economic development level and carbon
emissions will always fall within the declining range of the EKC, while the population
scale will also decline to a certain extent at this stage, thus leading to the increase in carbon
emissions. For S&T innovation, the industrial application of innovative technologies in
the pre carbon-neutrality period is mainly based on the green innovation output for the
emission peak period, which is essential to achieving carbon neutrality. In short, in the
emission peak phase, the role of the economy and S&T in emission reduction depends on
the choice of different emission peak paths, while population is decoupled from carbon
emissions. In the pre-carbon neutrality phase, no matter the pathway, the economy and
S&T will both play an active role in the emission reduction process.

6.2. Marginal Contributions

First, focusing on the development goal of reaching the emission peak by 2030, this
study considers three scenarios under the unconstrained, ideal, and average state scenarios,
which not only measures the possible range of the emission peak, but also estimates the
most likely peak. Looking at the development prospects for carbon neutrality wish by
2060, this study further simulates the symmetrical extension decline state and uniform
decline state, and constructs six combined scenarios of carbon emissions from 2000 to 2060
to predict the development path of emission peak and carbon neutrality wish in different
regions and diverse scenarios.

Second, there may be large errors in the projections based on China’s total carbon emis-
sions. In this study, carbon emissions were divided into three different periods according
to measurement and projection. By predicting the carbon emission scale of provincial-level
administrative regions and summing them up, we can obtain the overall carbon emissions
of each time node. The carbon emissions of each region are small, meaning absolute errors
are also small, which can reduce the overall error to a certain extent. Nevertheless, the
estimation error of carbon emissions among regions can offset and reduce the overall error
to a certain extent.

Third, this study estimates not only the emission peak in 2030 and carbon neutrality
wish in 2060 but also the economic development level, population scale, and scientific
and technological innovation of each region. It further examines their impact on carbon
emissions in different scenarios based on the STIRPAT model to explore the road of low-
carbon development in China.

Moreover, under the setting of various situations, the regional emission peak can
seemingly be achieved instantaneously in 2030 in this paper theoretically. Yet in reality,
such a change is difficult and improbable. Although many regions are striving to achieve
carbon peaking in 2030 based on the emission peak target set by China, this only provides
them with a clear deadline for reaching the emission peak. Based on this time point,
this paper tries to set various theoretical scenarios and analyze the possible timelines of
emission peaks in different regions based on the latest data of regional emission peaks.
Nevertheless, combined with the target of carbon neutrality from 2030 to 2060, the regional
emission peak in 2030 can still be divided into an ideal (emission peak with decreasing
growth rate of carbon emissions) and non-ideal situation (unconstrained emission peak). If
the emission peak is achieved in an ideal situation, the carbon neutrality pressure faced
by the region in the future will be reduced, and the accumulated carbon emissions in the
future will also be greatly reduced. In a non-ideal situation, the region will face the opposite
situation. This paper also estimates the role that the economy, population, and S&T will
play in different scenarios. Although these scenarios are theoretical, they can still provide
local governments with insights for policy making. In addition, if the region has achieved
emission peaking before 2030, by comparing the situation then to the various scenarios
laid out in this paper, we can further clarify the contribution of the region in reducing total
carbon emissions.
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6.3. Policy Suggestions

Based on the scenario simulation of emission peak and carbon neutrality wish, this
study puts forward the following policy suggestions as a reference for local governments
to prepare reasonable emission reduction plans. First, we formulate a systematic long-term
emission reduction strategic layout and implement regionally differentiated decarboniza-
tion policies. We should pay attention to not only short-term emission reduction targets,
but also long-term carbon emissions control performance, especially to strengthen the
implementation of emission reduction policies in Inner Mongolia, Fujian, Shaanxi, Qinghai,
Ningxia, and Xinjiang, and control the growth rate of carbon emissions and smoothly
complete the task of reaching the peak in 2030. Second, we should flexibly adjust emissions
reduction policies according to the temporal and spatial patterns of carbon emissions. We
should monitor the dynamic changes in carbon emissions in provincial-level administrative
regions, thus maintaining the overall balance of emission reduction policies, especially the
balance between the optimal-controlled area (Hainan, Qinghai) and the worst-controlled
area (Shandong), and realizing the optimal combination of overall policy and regional
policy. Third, we must avoid blindly pursuing the carbon neutrality target of 2060 and
ignoring the destructive effect of cumulative carbon emissions on the environment. On the
premise of taking 2060 as the carbon neutrality target year, all regions should explore their
optimal regional carbon neutrality wish paths based on the emission reduction principle of
scientific decarbonization and seeking stability reduction.

Based on the empirical analysis of the impact path of emission peak and carbon neu-
trality wish, this study holds that, first, the impact of economic development on carbon
emissions falls within the declining range of the EKC, which is key to realizing carbon
neutrality wish. According to the “Blue Book of China’s Society” issued by the Chinese
Academy of Social Sciences, China will become a high-income country in the 14th Five-
Year Plan period. China must thus improve energy efficiency, develop renewable energy
resources, optimize energy consumption structure, enhance industrial structure, and ac-
celerate the transformation from a high energy consumption development mode to a
low-carbon green development mode. Second, the population density of the control area
should be in an adequate range to prevent the reduction in the population scale effect
due to an extremely small population density or the enhancement of migration activities
following an extremely large population density, thus resulting in an increase in carbon
emissions. In addition, the relevant departments should promote clean energy, low-carbon
lifestyle, and quality education to the majority of residents to reduce household carbon
emissions. Third, environmentally friendly S&T innovation is the main driving force for
carbon emission reduction. To realize the gradual decline in carbon emissions, we should
strengthen the research and development and the industrial applications of low-carbon
technologies, such as carbon capture technology. Additionally, the Chinese Central Gov-
ernment should improve the corresponding system construction, such as establishing a
perfect carbon trading market to force high-energy-consuming enterprises to reduce energy
consumption and improve energy output efficiency.

6.4. Limitations and Scope for Future Research

First, this study assumes an ideal state in the scenario simulation. It does not consider
the upheavals in natural factors, such as major disasters, the impact of human factors,
including conflict and war, the basic constraints of revolutionary S&T innovation, and the
application of new energy. In reality, there are many uncontrollable external factors that
interfere with the operation of carbon emission systems, such as COVID-19. In future,
we will attempt to build a System Dynamic model of the emission reduction system by
taking into consideration a variety of external factors and provide more realistic conclusions
and suggestions.

Second, the scenario set in this study is based on a theoretical economic trend, meaning
the actual future carbon emission trend will have a certain random deviation from the
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scenarios contemplated in this study. In the future, we will consider a multi-dimensional
situation and introduce disturbance factors to build a more comprehensive simulation.

Third, the data to measure historical carbon emissions are based on the “China Energy
Statistics Yearbook”. There are practical problems such as omissions, which produce a
gap in information and will have a certain impact on follow-up research. We should thus
consider using more accurate and complete carbon emissions data in future.
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