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Abstract: Built environment neighborhood characteristics are difficult to measure and assess on a
large scale. Consequently, there is a lack of sufficient data that can help us investigate neighborhood
characteristics as structural determinants of health on a national level. The objective of this study
is to utilize publicly available Google Street View images as a data source for characterizing built
environments and to examine the influence of built environments on chronic diseases and health
behaviors in the United States. Data were collected by processing 164 million Google Street View
images from November 2019 across the United States. Convolutional Neural Networks, a class of
multi-layer deep neural networks, were used to extract features of the built environment. Validation
analyses found accuracies of 82% or higher across neighborhood characteristics. In regression analyses
controlling for census tract sociodemographics, we find that single-lane roads (an indicator of lower
urban development) were linked with chronic conditions and worse mental health. Walkability and
urbanicity indicators such as crosswalks, sidewalks, and two or more cars were associated with better
health, including reduction in depression, obesity, high blood pressure, and high cholesterol. Street
signs and streetlights were also found to be associated with decreased chronic conditions. Chain link
fence (physical disorder indicator) was generally associated with poorer mental health. Living in
neighborhoods with a built environment that supports social interaction and physical activity can
lead to positive health outcomes. Computer vision models using manually annotated Google Street
View images as a training dataset were able to accurately identify neighborhood built environment
characteristics. These methods increases the feasibility, scale, and efficiency of neighborhood studies
on health.

Keywords: built environment; big data; GIS; computer vision; structural determinants of health;
machine learning

1. Introduction

The built environment plays a crucial role in determining community health. Neigh-
borhood characteristics have been found to influence the development of asthma and other
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respiratory diseases [1], cardiovascular disease [2], diabetes [3], and overall mortality [4].
In addition to physical diseases and concerns, neighborhood characteristics can influence
behavioral and psychological health. Neighborhood structures can impact the accessibility
of physical activity [5] and social interaction [6], both of which are vital determinants of a
plethora of behavioral and psychological health concerns, namely obesity, depression, and
other isolation-based mental illnesses [6]. While an unsupportive environment can be a
barrier to physical activities, a supportive built environment can promote an active lifestyle
by providing more safe and walkable spaces that can encourage community members
to walk, bike, jog, or run in the neighborhood [7,8]. Physically active communities have
better health outcomes compared to those that lack such resources [9]. A neighborhood
with the presence of shared spaces and walkable streets also supports increased social
connection, while a neighborhood with dilapidated buildings and traffic noise has been
shown to hinder social interaction [10]. Indeed, the promotion of social integration holds
conspicuous importance for all individuals, but children and older adults are affected more
drastically; children who grow up in neighborhoods with such socially limiting factors
have been found to have higher rates of depression, psychological distress, and diminished
social and motor skills [10], while older adults were observed to have lower perceived
social support and higher rates of psychological distress [6].

Previously, neighborhood audits were typically carried out with in-person site visits
to identify neighborhood characteristics [11]. While this provided extremely valuable
and detailed information, it limited the scale at which neighborhood research can be
conducted given the expense of staff time and travel time. Other studies utilized interviews
or surveys to ask city planners, community leaders or residents to report on neighborhood
characteristics but these studies were often limited to certain areas or cities. Examples
include the Boston Neighborhood Survey [12] and the Project on Human Development in
Chicago Neighborhoods [13]. However, neighborhood surveys that included rural areas
were less common. Additionally, other neighborhood studies utilized geolocalized data
such as census sociodemographics, population density, and recreational opportunities
available at the neighborhood level. However, little data exist on the neighborhood built
environment. Our study uses a massive publicly available data resource, Google Street
View images, to address the dearth of data on national built environment characteristics.
Previous research groups used this data source to conduct virtual audits through manual
annotation of images. In particular, researchers from the Computer Assisted Neighborhood
Visual Assessment System (CANVAS) have developed a reliable and valid methodology for
virtual neighborhood audits [14]. In our study, we further advance the field by leveraging
computer vision to automate the process of detecting neighborhood features of interest,
which allows our study to be conducted at a much larger size than previous studies,
including neighborhoods across the United States.

Rather than exploring the built environment and gathering neighborhood character-
istic information on site which is expensive and time consuming, we used Google Street
View imagery, an innovative and publicly available geographic data source for conducting
large scale studies [8]. The possibility of utilizing national data from the real world intro-
duces new opportunities in examining built environment characteristics [15]. Google Street
View (GSV) offers international coverage of street panoramas that exhibit detectable built
environment characteristics. The use of GSV removes the invasiveness and infeasibility
inherent to other forms of surveying by removing the need for travel to neighborhoods,
instead compiling a centralized digital data collection that can be analyzed remotely and
yields a massive increase in productivity [16]. In addition, GSV’s Application Programming
Interface (API) offers static views that align with parameterized Hypertext Transfer Proto-
col (HTTP) requests. API-acquired photos can be utilized to create indicators of specific
characteristics, acting as a standardized data set capable of revealing correlations between
said characteristics and chronic health risks.

Neighborhood characteristics are difficult to assess on a large scale. As a result, there
is a lack of sufficient data that can help us investigate neighborhood characteristics as
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structural determinants of health on a national level. This lack of data hinders the ability to
direct policy to mitigate harm to public health. In some instances, such as the Centers for
Disease Control and Prevention’s (CDC) Healthy Communities Program, there is a focus
around environmental changes to improve people’s health [17]. However, this program
is no longer funded on a national level, and there is a staggering lack of programs of the
same caliber that are based on socio-ecological research. In order to stimulate further
public policy and action around neighborhood conditions, an increased understanding of
the built environment forces that alter health must be developed. Additionally, mapping
technologies have supplied new sources of data that can inform public health research. In
this study, we leveraged Google Street View data and computer vision to add to the nascent
field of built environment research examining neighborhood conditions as a promising,
fundamental contributing factor to community health.

Study Aims and Hypotheses

In this study, we constructed a variety of neighborhood indicators that have been
theoretically and empirically linked with health outcomes. These include markers of higher
urban development (two or more cars, street lights, street signs), walkability (crosswalks,
sidewalks, presence of apartment and commercial buildings), and physical disorder (chain-
link fence). Single lane roads were used as a marker of lower urban development. We
leverage a national database of 164 million Google Street View images and analyze the
images using computer vision to produce indicators of neighborhood walkability, physical
disorder, and urban development. We then utilized this data source, whose scale would not
be possible without computer automation, to examine national patterns associated with key
health outcomes including chronic conditions and health behaviors, which are drivers of
morbidity and mortality in the United States. We hypothesized that communities that are
more walkable and have higher urban development will have a lower prevalence of chronic
conditions and health risk behaviors. Additionally, we hypothesized that communities
with higher levels of physical disorder will have a higher prevalence of chronic conditions
and higher health risk behaviors.

2. Materials and Methods
2.1. Google Street View Image Collection
2.1.1. Data Collection

To arrive at a national sample of Google Street View images, we utilized U.S. road
networks. Google Street View cars drove across the country and captured images, such that
we can only sample points across road networks that can be traveled via car. We sampled
latitude and longitude coordinates every 100 m of road and downloaded images at four
angles covering 0, 90, 180 and 270 degrees from each sampled location. Using the set of
sampling coordinates and Google Street View’s Static Application Programming Interface
(API), we collected 164 million Google Street View images with 640 × 640 pixel resolution
in November of 2019.

2.1.2. Data Processing

Convolutional Neural Networks (ConvNets) are a class of multi-layer deep neural
networks that have been shown to be incredibly effective in identifying and extracting
features from data. They are commonly used for image classification, object recognition,
and analyzing structured arrays of data [18]. ConvNets offer an efficient, more scalable,
and reliable approach that transforms an input into an output through many layers that
learn to detect different features of a given image. In other words, ConvNets are machine
learning models that can take an input image, assign weights to various characteristics
in the image, learn those characteristics, and differentiate one from the other [19]. Some
of the key applications of ConvNets include facial recognition [20], and extreme weather
detection [21].
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To improve model performance and avoid overfitting, we tried to overcome the
shortcomings of using a small dataset of labeled images by pretraining models on imageNet.
ImageNet is a large database with over 14 million images that were hand-annotated with
more than 22,000 categories [22]. To optimize model architecture, an ImageNet pretrained
ConvNet model can be “fine-tuned” (known as applying model parameter adjustments)
using a smaller amount of training data from the targeted task [23]. Model performance
improvements can be delivered using this method even without requiring the extensive
training data and computational resources needed to train the original ConvNet.

2.1.3. Built Environment Indicators

Selection of the indicators was driven by the neighborhood literature and the desire to
expand upon this literature for some understudied neighborhood characteristics. Green
streets were utilized to indicate access to green space, which has been shown to be health
beneficial for mental and physical health [24,25]. Single lane roads are more common in
rural areas and in residential neighborhoods [26], and thus were utilized as an indicator
of lower urban development. Single lane roads can limit the number of cars and hence
the flow of people and thus also lower social interactions. The presence of non-single
family homes can indicate a mixture of residential and commercial buildings, and thus
was utilized as an indicator of mixed land use. Mixed land use has been connected
with health benefits because it can allow for greater access to resources [27]. Sidewalks
and crosswalks were utilized as indicators of walkability, and have been connected with
increased physical activity and better health outcomes [16,28–30]. Visible utility wires
overhead can influence residents’ view of the aesthetic appeal of their neighborhood and
hence were utilized in this study as an indicator of physical disorder. There is sparse
literature on this indicator, especially among U.S. studies. Abroad, visible utility wires
have been linked with electrocution risk [31]. Similarly, the use of chain-linked fences
is understudied in the neighborhood literature. Because chain-linked fences are more
temporary than other types of fencing and are commonly used in urban environments to
encompass abandoned lots [32], we utilized this as an indicator of physical disorder.

To create a training dataset for our computer vision models, we manually annotated
18,700 images (from Chicago, Illinois; Salt Lake City, UT; Charleston, West Virginia; and a
national sample) from December 2016 to February 2017. These locations were chosen to
capture heterogeneity in neighborhood environments across geographically and visually
distinct places with varying population densities, urban development, and demographics.
Labelers included the principal investigator and three graduate research assistants. Inter-
rater agreement was above 85% for all neighborhood indicators. Each image received labels
for these binary neighborhood characteristics: (1) street greenness (trees and landscaping
comprised at least 30% of the image), (2) presence of a crosswalk, (3) single lane road,
(4) building type (single-family detached house vs. other), and (5) visible utility wires.

2.1.4. Computer Vision Model Building and Validation Results

Figure 1 displays the network used for built environmental feature classification. The
network is composed of two main parts, a feature extractor network that extracts built
environment features from GSV images and a feature classifier network that assigns a
binary label of 0 or 1 to each single image for a specific indicator. The predicted label then
represents whether the corresponding indicator is presented in the image (e.g., crosswalk
present or absent). For each indicator mentioned above, we used a separate classifier
network, but the feature extractor part of the network was shared among all the feature
classifiers. We observed that sharing the feature extractor resulted in a slight performance
gain of the network as well as a reduction in training time. We used the VGG19 network
and ResNet18 as our feature extractor network and a single fully connected layer as our
feature classifier network. Below, we further describe the specific model building process
for each group of neighborhood built environment characteristics.
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Figure 1. Computer vision model. Each sample is a single image accompanied by labels correspond-
ing to each neighborhood feature (e.g., crosswalk). The feature extractor is VGG-19 or ResNet18
(depending on the feature analyzed) and is pretrained with ImageNet data. Each feature classifier is
a single fully connected layer and the losses are cross entropy. The final loss for optimization is a
summation of losses.

To build our computer vision model, we randomly split our manually annotated
dataset. The training and validation sets contained 80% of the total labeled images, and the
remaining 20% was used as a testing set to evaluate the model’s performance. Once the
hyper-parameters were chosen, each model architecture was trained multiple times. Note
that neural network training is stochastic even when starting from the same initialization
and using the same training set. Therefore, multiple training runs were used to assess
the mean and standard deviation of the error. The testing set remained unobserved until
the best models were selected using the training set, and we assessed the final quality of
the model using the testing set. For the training process, we first resized all the images
to the size of 224 × 224. We then trained a standard deep convolutional neural network
architecture, Visual Geometry Group VGG-19 [33], in TensorFlow [34] with sigmoid cross
entropy with logits as the loss function. The weights of the network were initialized from
ImageNet weights. Adam optimizer was used with a batch size of 20. Training took
20 epochs and started with a learning rate of 1 × 10−4. We considered the model saved in
the last epoch as our final model. The accuracy of the recognition tasks (agreement between
manually labeled images and computer vision predictions) was as follows: street greenness
(88.70%), presence of crosswalks (97.20%), non-single family homes (82.35%), single lane
roads (88.41%), and visible utility wires (83.00%). Below, we describe the model building
process for two additional neighborhood indicators that utilize different training datasets.

To construct our sidewalks indicator, we utilized a training dataset consisting of
about 24,316 images captured by Google Street View in New Jersey that had been manu-
ally labeled. We randomly split this dataset in the ratio of 80:20 for validation to obtain
19,452 images for training and 4864 for validation. The minority label images were over-
sampled so that the dataset has an equal number of sidewalk present and absent cases. We
then trained a standard deep convolutional neural network architecture, ResNet-18 [35] in
PyTorch [36], with NLL loss as the loss function. For the sidewalk indicator, the ResNet-18
model produced an accuracy of 84.5% and an F1 score of 81.0%.

To construct other urban landscape indicators, we randomly sampled 18,000 images
from our national collection of GSV images. We divided this dataset into a training (80%)
and testing set (20%). Quality control statistics are as follows: street lights (accuracy was
88% and F1-score was 60%); two or more cars (accuracy was 88% and F1-score was 79%);
street signs (accuracy was 82% and F1-score was 68%); chain-link fence (accuracy was 95%
and F1-score was 45%).

To create neighborhood summaries for each GSV-derived built environment character-
istic, we utilized the latitude and longitudinal coordinates associated with each image to
assign them to a census tract. Then, for each census tract, we calculated the percentage of
the total number of images that contained a given built environment indicator (e.g., number
of images with a sidewalk/total number of images)*100 = percent with sidewalk. From
there, we created tertiles and classified each census tract based on their percentage, with
the lowest tertile as the reference group.
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2.2. Geoportal

We constructed a publicly available geoportal to allow users to dynamically interact
with the derived GSV neighborhood data (Figure 2). Users can navigate to the geoportal
here: https://arcg.is/88nK40 (accessed on 2 September 2022). Users are able to:

• Select the GSV variable to display (e.g., sidewalk);
• Type a location or address in the search bar and the map will zoom to that area
• Darker colors signal higher prevalence of neighborhood feature
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2.3. Demographic and Socioeconomic Data

Our analyses accounted for census tract population density, household size, median
age, household income, poverty rate, unemployment, percent with less than a high school
education, percent Asian, percent Black, and percent Hispanic. Covariate information was
obtained from the American Community Survey 2018 5-year estimates, with the exception
of population density and household size, which were obtained from the 2010 US Census.

2.4. Health Outcome Data

Census tract level health data came from the PLACES 2021 Release. PLACES, funded
by the Robert Wood Johnson Foundation and the CDC Foundation, has extended the
original 500 Cities project. The dataset includes measures of chronic disease risk, health
outcomes, health status, and preventive services for local areas across the United States.

Health outcomes data were derived from the 2018 and 2019 BRFSS self-reported
data on chronic health conditions in which the respondents reported that a healthcare
professional told them they had the following conditions: obesity (BMI ≥ 30), high blood
pressure, high cholesterol, diabetes (other than diabetes during pregnancy), cancer (other
than skin cancer), and depressive disorder. Poor mental health days were operationalized as
a respondent reporting ≥ 14 days in the past 30 days during which their mental health was not
good. Health behaviors examined included self-reported inadequate sleep (<7 h/night) and
current smoking (smoked ≥ 100 cigarettes in their lifetime and currently smoke every day
or some days). PLACES 2021 data are available at the county, place, zip code, and census
tract levels. We chose the census tract level to approximate neighborhood boundaries. More
information about the methodology can be found at www.cdc.gov/places (accessed on 2
September 2022).

https://arcg.is/88nK40
www.cdc.gov/places
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2.5. Statistical Analyses

Descriptive statistics were estimated for built environment characteristics, sociode-
mographics, and health outcomes. National maps display the geographical distribution
of built environment characteristics. We fit adjusted linear regression models to estimate
associations between GSV-derived built environment characteristics and health outcomes,
controlling for potential confounding variables such as racial/ethnic composition and eco-
nomic disadvantage. Separate regressions were run for each built environment indicator
given low to moderate associations between the built environment indicators that varied
from −0.17 for single lane roads and sidewalks to 0.82 for street signs and two or more cars.
Stata IC15 (StataCorp LP, College Station, TX, USA) was used for all statistical analyses.
This study was approved by the University of Maryland Institutional Review Board.

3. Results

Table 1 displays descriptive statistics of the built environment characteristics, demo-
graphics, and health characteristics summarized at the census tract level in the United
States. Single lane roads were very common in GSV images, with an average census tract
level prevalence estimate of 67%. Additionally, on average, about 44% of GSV images at
the census tract level had a sidewalk and 36% had two or more cars. About 30% had the
presence of a non-single family home (e.g., apartment, commercial building). Dilapidated
buildings had a prevalence of 24%, as did street signs. Street lights (16%) had a lower
prevalence, and crosswalks were the rarest built environment feature at 3.6% (Table 1).
Across census tracts in the United States, percent college educated was about 28% and
percent Black and Hispanic was 14% and 15%, respectively. Chronic conditions such as
obesity, high blood pressure and high cholesterol were very common with prevalence of
32–33% among adults. Diabetes occurred with a prevalence of 11% at the census tract level.
Depression was high with a prevalence of 37%. Current smoking was common with a
prevalence of 18%. About 18% of adults reported sleeping less than 7 h a night.

Table 1. Descriptive statistics of neighborhood characteristics and health outcomes, census tract.

N Mean (SD)

Built environment characteristics
Crosswalks 70,359 3.63 (4.37)
Sidewalks 70,359 43.96 (30.72)
Single lane road 70,359 67.11 (14.57)
Presence of apartment/commercial building 70,359 29.80 (23.69)
Streetlights 70,319 15.66 (14.96)
Street signs 70,344 24.28 (15.08)
2 or more cars 70,288 36.10 (20.53)
Chain Link fence 70,311 7.63 (13.79)
Census tract characteristics
Population size 72,864 4237.29 (1972.52)
Percent 65 years+ 72,578 13.63 (7.39)
Percent male 72,578 49.18 (4.05)
Percent Black 72,578 13.83 (22.29)
Percent Hispanic 72,578 15.27 (20.82)
Percent single female headed households 72,472 13.65 (8.17)
Percent owner-occupied housing 72,472 64.32 (22.50)
Percent college educated 72,436 27.67 (18.50)
Median household income 72,048 67,432.68 (32,960.44)
Percent unemployed 72,330 10.36 (6.34)
Child opportunity index, range 0 to 100 72,213 49.15 (28.61)
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Table 1. Cont.

N Mean (SD)

Adult health outcomes
Obesity 70,338 32.63 (6.82)
Diabetes 70,338 10.96 (3.73)
High Blood Pressure 70,338 32.49 (7.36)
High Cholesterol 70,338 31.83 (4.79)
Cancer 70,338 6.73 (1.94)
Poor mental health days 70,338 15.21 (3.57)
Depression 72,337 36.77 (5.23)
Sleep less than 7 h a night 70,338 17.61 (3.45)
Current Smoking 70,338 17.98 (5.76)

This table presents summary statistics, mean and standard deviation (SD) for variables included in the analysis.
Data were aggregated to the census tract level. N = number of census tracts. Built environment characteristics were
derived from Google Street View images. Sociodemographic characteristics came from the American Community
Survey 2018 5-year estimates and the 2010 US Census. Health outcomes data came from PLACES 2021.

Figures 3 and 4 displays national maps of our GSV-derived built environment indica-
tors geographical dispersion and variation which seem to follow different patterns for each
indicator. For example, single lane roads seem to be dispersed more commonly in the south
and northeast (Figure 3). Alternatively, neighborhoods composed of purely single-family
homes appear more prominent eastern half of the United States (Figure 4). Figure 5 zooms
into three metropolitan areas to show additional local variation that can get lost in national
maps. From Figure 5, we see that sidewalks are most prevalent in Washington DC followed
by San Diego and then Jacksonville Florida, which only has plentiful sidewalks in one area.
From the maps, we see that sidewalks for these areas tend to concentrate in the centroid
and become less prominent in outlying areas. Table 2 displays the regression results. The
estimates from the crude models were generally stronger in magnitude than those from the
adjusted models that accounted for differences across census tracts in sociodemographics.
Nonetheless, even in the adjusted models, consistent associations were observed between
built environments and a variety of important health outcomes. Single lane roads, an
indicator of lower urban development, were linked with a higher prevalence of chronic
conditions. For example, census tracts in the third tertile for single lane roads had an
obesity prevalence that was 1.34% (95% CI 1.26, 1.42) higher than areas in the first tertile.
The two or more cars indicator was used to characterize areas with more activity, and it
was found to be related to lower chronic conditions. Census tracts in the third tertile for
two or more cars had an obesity prevalence 3.39% (95% CI: −3.48, −3.30) lower than those
in the first tertile. Street signs and street lights can help people navigate neighborhoods,
and they were also found to be associated with a reduced burden of chronic conditions.
Indicators of walkability such as sidewalks, crosswalks, and non-single family homes were
related to lower chronic conditions. Living in a census tract in the third tertile for sidewalks
is associated with about a 3.1% reduction in obesity and high blood pressure and a 1.9%
reduction in high cholesterol.
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Table 2. Built environment predictors of adult health outcomes a.

Obese High Blood Pressure High Cholesterol Diabetes Cancer

Built Environment
Characteristics

Crude Odds Ratio
(95% CI)

Crude Odds Ratio
(95% CI)

Crude Odds Ratio
(95% CI)

Crude Odds Ratio
(95% CI)

Crude Odds Ratio
(95% CI)

Single lane road
3rd tertile (highest) 2.19 (2.06, 2.31) 3.23 (3.09, 3.36) 2.18 (2.09, 2.26) 0.75 (0.69, 0.82) 0.69 (0.66, 0.73)
2nd tertile 1.11 (0.99, 1.24) 1.71 (1.58, 1.84) 1.41 (1.33, 1.50) 0.21 (0.14, 0.28) 0.50 (0.46, 0.53)

2 or more cars
3rd tertile (highest) −1.97 (−2.09, −1.84) −3.46 (−3.60, −3.33) −4.43 (−4.51, −4.34) 0.34 (0.27, 0.40) −1.80 (−1.84, −1.77)
2nd tertile −1.46 (−1.58, −1.33) −2.15 (−2.29, −2.02) −2.20 (−2.28, −2.12) −0.33 (−0.40, −0.26) −0.71 (−0.75, −0.68)

Street signs
3rd tertile (highest) −2.44 (−2.56, −2.31) −4.45 (−4.58, −4.32) −4.68 (−4.76, −4.60) −0.05 (−0.12, 0.02) −1.96 (−2.00, −1.93)
2nd tertile −1.02 (−1.14, −0.89) −2.04 (−2.17, −1.91) −2.55 (−2.63, −2.47) −0.27 (−0.34, −0.20) −0.81 (−0.84, −0.77)

Street lights
3rd tertile (highest) −1.49 (−1.62, −1.37) −3.04 (−3.17, −2.91) −3.89 (−3.97, −3.81) 0.35 (0.28, 0.42) −1.64 (−1.68, −1.61)
2nd tertile −0.86 (−0.99, −0.74) −2.74 (−2.87, −2.60) −2.82 (−2.91, −2.74) −0.54 (−0.61, −0.47) −0.89 (−0.92, −0.86)

Non-single family
home

3rd tertile (highest) −1.58 (−1.70, −1.45) −3.56 (−3.70, −3.43) −3.77 (−3.85, −3.69) 0.12 (0.05, 0.19) −1.60 (−1.63, −1.56)
2nd tertile −0.08 (−0.21, 0.04) −1.20 (−1.33, −1.07) −1.43 (−1.51, −1.34) 0.06 (−0.01, 0.13) −0.59 (−0.62, −0.55)

Sidewalks
3rd tertile (highest) −4.09 (−4.21, −3.96) −5.83 (−5.95, −5.70) −5.06 (−5.13, −4.98) −0.94 (−1.01, −0.87) −1.82 (−1.85, −1.79)
2nd tertile −2.33 (−2.45, −2.21) −3.23 (−3.36, −3.10) −2.85 (−2.92, −2.77) −0.78 (−0.85, −0.71) −0.77 (−0.81, −0.74)

Crosswalks
3rd tertile (highest) −4.49 (−4.61, −4.37) −5.99 (−6.12, −5.86) −4.86 (−4.94, −4.78) −1.25 (−1.32, −1.18) −1.57 (−1.61, −1.54)
2nd tertile −1.84 (−1.96, −1.72) −2.68 (−2.81, −2.55) −2.40 (−2.48, −2.32) −0.58 (−0.65, −0.51) −0.68 (−0.71, −0.65)

N 67,445 67,445 67,445 67,445 67,445
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Table 2. Cont.

Obese High Blood Pressure High Cholesterol Diabetes Cancer

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Single lane road
3rd tertile (highest) 1.34 (1.26, 1.42) 1.15 (1.08, 1.21) 0.65 (0.60, 0.70) 0.34 (0.31, 0.38) 0.11 (0.10, 0.12)
2nd tertile 0.76 (0.68, 0.83) 0.67 (0.60, 0.73) 0.35 (0.30, 0.40) 0.14 (0.11, 0.18) 0.08 (0.07, 0.09)

2 or more cars
3rd tertile (highest) −3.39 (−3.48, −3.30) −2.90 (−2.98, −2.82) −1.67 (−1.74, −1.61) −1.23 (−1.28, −1.19) −0.37 (−0.38, −0.36)
2nd tertile −0.98 (−1.06, −0.90) −1.55 (−1.61, −1.48) −1.05 (−1.10, −0.99) −0.72 (−0.76, −0.69) −0.18 (−0.19, −0.17)

Street signs
3rd tertile (highest) −2.71 (−2.81, −2.62) −2.34 (−2.42, −2.26) −1.32 (−1.39, −1.26) −0.92 (−0.97, −0.88) −0.31 (−0.32, −0.30)
2nd tertile −1.11 (−1.19, −1.03) −1.44 (−1.51, −1.38) −0.87 (−0.92, −0.81) −0.68 (−0.72, −0.65) −0.15 (−0.16, −0.14)

Street lights
3rd tertile (highest) −1.56 (−1.65, −1.48) −0.83 (−0.87, −0.80) −1.99 (−2.07, −1.92) −1.36 (−1.42, −1.30) −0.28 (−0.29, −0.27)
2nd tertile −0.69 (−0.77, −0.61) −0.62 (−0.65, −0.58) −1.37 (−1.44, −1.30) −1.00 (−1.05, −0.94) −0.15 (−0.16, −0.14)

Non-single family
home

3rd tertile (highest) −1.90 (−1.99, −1.81) −1.59 (−1.67, −1.52) −1.00 (−1.06, −0.94) −0.60 (−0.64, −0.56) −0.19 (−0.20, −0.18)
2nd tertile −0.38 (−0.46, −0.31) −0.67 (−0.74, −0.61) −0.45 (−0.50, −0.40) −0.27 (−0.30, −0.23) −0.09 (−0.10, −0.08)

Sidewalks
3rd tertile (highest) −3.07 (−3.16, −2.97) −3.12 (−3.20, −3.04) −1.85 (−1.91, −1.79) −1.13 (−1.17, −1.09) −0.34 (−0.35, −0.32)
2nd tertile −1.07 (−1.15, −0.98) −1.71 (−1.78, −1.64) −1.20 (−1.25, −1.14) −0.75 (−0.79, −0.71) −0.14 (−0.15, −0.13)

Crosswalks
3rd tertile (highest) −2.99 (−3.08, −2.90) −1.29 (−1.33, −1.25) −3.07 (−3.14, −2.99) −1.85 (−1.91, −1.79) −0.28 (−0.29, −0.27)
2nd tertile −0.80 (−0.88, −0.72) −0.63 (−0.67, −0.60) −1.46 (−1.52, −1.39) −0.96 (−1.01, −0.90) −0.10 (−0.11, −0.09)

N 67,167 67,167 67,167 67,167 67,167

a Data source for health outcome: CDC PLACES 2021. b Adjusted Linear regression models were run for each
outcome separately. Models controlled for census tract population size, percent of the population 65 years
and older, percent male, percent Hispanic, percent black, median household income, percent female headed
households, and percent owner occupied housing, percent with a college degree, percent employed, and child
opportunity index. Built environment characteristics were categorized into tertiles, with the lowest tertile serving
as the referent group. Standard errors adjusted for clustering of values within a census tract.

Table 3 displays associations between built environment characteristics and mental
health and health behaviors. Single lane roads (the indicator of lower urban development)
were associated with more poor mental health days, depression, current smoking, and
sleeping less than 7 h (only 3rd tertile). The chain-link fence (the indicator of physical
disorder) was associated with higher depression and poor mental health days (only 3rd
tertile). However, chain-link fences were unexpectedly associated with lower current
smoking and lower inadequate sleep. However, the other indicators of urbanicity and
walkability that were examined in this study were uniformly associated with better mental
health and health behaviors. In particular, the 3rd tertile of crosswalks, sidewalks, and two
or more cars were associated with a 1.7–2.0% reduction in current smoking. Additionally,
crosswalks, sidewalks, and non-single family homes were associated with a 1.3–1.5%
reduction in depression.

Table 3. Built environment predictors of adult mental health and risk behaviors a.

Poor Mental Health
Days Depression Inadequate Sleep

(<7 h a Night) Current Smoking

Built Environment
Characteristics

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Single lane road
3rd tertile (highest) 0.51 (0.48, 0.55) 0.82 (0.78, 0.87) 0.19 (0.13, 0.24) 0.82 (0.76, 0.87)
2nd tertile 0.32 (0.28, 0.35) 0.60 (0.55, 0.64) −0.19 (−0.25, −0.14) 0.35 (0.30, 0.41)

Chain-linked fence
3rd tertile (highest) 0.17 (0.12, 0.21) 0.43 (0.37, 0.48) −0.30 (−0.37, −0.24) −0.58 (−0.65, −0.52)
2nd tertile −0.14 (−0.17, −0.10) 0.10 (0.05, 0.14) −0.40 (−0.45, −0.35) −0.80 (−0.85, −0.75)

Crosswalks
3rd tertile (highest) −0.80 (−0.84, −0.76) −1.29 (−1.35, −1.23) −0.56 (−0.62, −0.49) −2.04 (−2.10, −1.97)
2nd tertile −0.16 (−0.19, −0.12) −0.35 (−0.40, −0.30) −0.15 (−0.21, −0.09) −0.68 (−0.74, −0.63)
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Table 3. Cont.

Poor Mental Health
Days Depression Inadequate Sleep

(<7 h a Night) Current Smoking

Built Environment
Characteristics

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Adjusted Odds Ratio
(95% CI) b

Sidewalks
3rd tertile (highest) −0.89 (−0.93, −0.85) −1.46 (−1.52, −1.40) 0.51 (0.44, 0.57) −1.68 (−1.74, −1.61)
2nd tertile −0.19 (−0.23, −0.16) −0.37 (−0.42, −0.32) 0.01 (−0.05, 0.07) −0.65 (−0.71, −0.60)

Non-single family
home

3rd tertile (highest) −0.68 (−0.72, −0.64) −1.37 (−1.43, −1.32) −0.67 (−0.73, −0.60) −1.11 (−1.17, −1.04)
2nd tertile −0.31 (−0.35, −0.28) −0.44 (−0.48, −0.39) −0.82 (−0.88, −0.77) −0.51 (−0.56, −0.45)

Street lights
3rd tertile (highest) −0.28 (−0.32, −0.25) −0.80 (−0.86, −0.75) −0.01 (−0.07, 0.05) −1.02 (−1.09, −0.96)
2nd tertile −0.18 (−0.21, −0.14) −0.25 (−0.30, −0.20) −0.11 (−0.16, −0.05) −0.57 (−0.63, −0.52)

Street signs
3rd tertile (highest) −0.42 (−0.46, −0.38) −0.81 (−0.87, −0.75) 0.57 (0.50, 0.64) −1.23 (−1.30, −1.16)
2nd tertile 0.18 (−0.22, −0.15) −0.30 (−0.35, −0.25) −0.02 (−0.07, 0.04) −0.72 (−0.77, −0.66)

2 or more cars
3rd tertile (highest) −0.67 (−0.72, −0.63) −1.18 (−1.24, −1.12) 0.17 (0.10, 0.24) −1.69 (−1.75, −1.62)
2nd tertile −0.17 (−0.20, −0.13) −0.34 (−0.39, −0.29) 0.04 (−0.02, 0.09) −0.64 (−0.69, −0.58)

N 67,167 67,167 67,167 67,167
a Data source for health outcome: CDC PLACES 2021. b Adjusted Linear regression models were run for each
outcome separately. Models controlled for census tract population size, percent of the population 65 years
and older, percent male, percent Hispanic, percent black, median household income, percent female headed
households, and percent owner occupied housing, percent with a college degree, percent employed, and child
opportunity index. Built environment characteristics were categorized into tertiles, with the lowest tertile serving
as the referent group. Standard errors adjusted for clustering of values within a census tract.

4. Discussion

Our analysis of 164 million GSV images examined the associations between built
environment characteristics and neighborhood health, contributing a unique methodology
to an expanding body of research exploring the potential impacts of place characteristics
on health. We identified three key markers of urban development: the presence of two
or more cars, street signs, and street lights. Our study found that these markers of urban
development were associated with lower obesity, high blood pressure, high cholesterol,
diabetes, as well as cancer. These markers were also linked with a lower prevalence of poor
mental health days, depression, and current smoking. Crosswalks, sidewalks, and non-
single family homes, which were used as measures of walkability, were associated with a
lower prevalence of chronic conditions, depression, and current smoking. Single lane roads,
which were utilized as an indication of lower levels of urban development, were linked with
a higher burden of chronic conditions. Chain-link fences (indicator of physical disorder)
were associated with higher depression and poor mental health days. However, chain-link
fences were unexpectedly associated with lower current smoking and lower inadequate
sleep. Moreover, although there are studies [37–40] that have established associations
between neighborhood indicators of physical disorders and health, we have not found any
that examine the influence of chain-link fences and health outcomes. Further investigation
is warranted on this particular neighborhood indicator and its complex relationship with
different domains of health.

Markers of urban development were robustly linked with lower chronic health con-
ditions. This association has been corroborated by our past projects that recognize built
characteristics of urbanization often increase physical activity, health care accessibility, and
additional resources within a community, thereby contributing to improved health [41,42].
While non-single family homes were linked with reductions in all measured adverse health
outcomes and risk behaviors, street signs and two or more cars were found to have positive
associations with inadequate sleep (3rd tertile only). This may be attributed to increased
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noise and traffic that are often symptoms of urban development, resulting in an increase
in measured risk behavior rather than a reduction consistent with other indicators of
health [43].

Our findings underscore the large health disparity that exists between people living in
rural and urban areas in the United States [44]. Residents of rural areas are at a higher risk of
geographic isolation which contributes to limited access to healthy food sources [45], have
fewer opportunities for physical activity [46], and are at a higher risk of smoking [47,48]
compared to their urban counterparts. Rural areas’ geographic isolation also extends to
inadequate access to health care and healthcare providers [49]. Although studies have
not been able to establish a direct link between urbanicity and sleep deprivation [50],
researchers argue that other negative health factors that disproportionately affect rural
areas such as older age [51], limited access to health care, inadequate physical activity,
longer commutes, and poor health, are consequential in sleep deficiency [52].

Our findings aligned with frequent associations between features that enhance walka-
bility and a lower prevalence of chronic health conditions. Sidewalks were correlated with
a profound reduction in levels of obesity and high blood pressure, with reductions in the
3rd tertile of −3.1% for both conditions. Previous studies using footprint-level data as a
measure of neighborhood walkability corroborated our findings, independently associating
increased walkability with reduced risks of hypertension [53]. In our models, neighbor-
hood walkability was also correlated with reduced depression and poor mental health
days, a relationship likely stemming from multiple factors. Built features of walkability
have been found to promote physical activity through overall increases in transportational
walking [54]; in addition, sidewalk availability has been independently associated with
an increased step count in a study that evaluated four other indicators of walkability:
population density, street connectivity, and access to transportation and destinations [55].
There is mounting evidence of the relationship between increased physical activity and
improved mental health, including decreased levels of suicidal ideation [56], and decreased
symptoms of depression and anxiety [57]. Moreover, previous literature has linked in-
creased walkability with decreased depressive symptoms in meneven when adjusted for
physical activity [58], which can partially be attributed to the fact that walkability can
reduce loneliness, especially in elderly populations [59].

In addition, our study found that crosswalks exhibited the strongest associations with
diabetes and high cholesterol than any other measured characteristic, with reductions
of −1.9% and −3.1%, respectively. Recent studies leveraging GSV images have linked
crosswalks with reduced premature mortality and physical inactivity [60,61]. Sidewalks
had a positive association with inadequate sleep. We used sidewalks as an indicator for
walkability: more sidewalks allow more pedestrians. Therefore, some possible explana-
tions could be related to higher neighborhood noise level and lower safety, which both
have significant associations with negative sleep outcomes [62]. However, in our result,
crosswalks showed a negative association with inadequate sleep. This could be caused by
how crosswalks and sidewalks are used differently in city design. In general, crosswalks
appear in larger open areas, used at road intersections, whereas sidewalks seem to be closer
to residential buildings that any negative outcomes from sidewalks could affect residents
more distinctly. Another study also provides evidence on how crosswalks can improve
health outcomes [61]. Further research examining sidewalks’ and crosswalks’ different
functionalities could help clarify the mechanisms by which they influence health. Despite
these notable benefits to health, crosswalks were the rarest built environment feature,
with an average prevalence of only 3.6% at the census tract level. It is worth exploring
further the benefits that crosswalks have on adult health outcomes. Crosswalks may be an
underutilized lever for improving population health.

Study Strengths and Limitations

Using GSV images allows for national assessment of neighborhood conditions, which
would not be possible with other methods such as on-site neighborhood audits or even
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virtual audits with manual annotations. This study utilized over 164 million images across
the land mass of the United States. The national scale enables us to examine empirically
whether certain neighborhood features are associated with important drivers of morbidity
and mortality in the United States.

Although we were able to establish compelling associations between built environ-
ment indicators and health outcomes, our study has certain limitations. Data collection
for the study occurred in November 2019 when we downloaded the most recent image
available for each sampling point through the Google Street View API. However, areas
across the United States differ with regard to the frequency of their GSV image updates. As
such, images in our dataset have dates ranging from 2007 to 2019 with the median year
of 2015. The time band means that the image data might not accurately capture certain
neighborhood conditions for certain areas. This is particularly common in rural areas for
which GSV data are not as frequently updated as in urban areas, possibly resulting in
a differential measurement bias. Moreover, utilizing computer vision technology came
with certain limitations. For instance, the use of supervised learning models narrowed
the possible neighborhood characteristics to those that can be labeled with good reliability
between annotators, specifically neighborhood characteristics that are generally not too
small visually and not too subjective. Computer vision algorithms struggle with small
objects like litter, rare characteristics like graffiti, and features with variable appearance
such as dilapidated buildings. Subjective characteristics complicate prediction. Ratings
for road and building condition varied substantially across reviewers depending on their
viewpoints regarding what constitutes dilapidation. Crowdsourcing techniques that draw
on resident and visitor ratings might offer a means of overcoming the subjective classifi-
cation challenge by establishing area-level ratings that reveal the variability and stability
in subjective perceptions of neighborhoods. No single dataset can capture all relevant
features of a given community. Among the characteristics that image data cannot ascertain
are neighborhood residents’ perceptions including whether they feel safe walking in their
community. Moreover, unlike on-site visits, annotations of GSV images did not provide the
same depth of understanding of context. For example, on-site visits allow the annotator
to observe the noise of a place, variation or homogeneity of adjacent spaces, business
patterns, traffic and pedestrian flows, and residents’ interactions and perceptions. The use
of complementary datasets such neighborhood surveys and administrative data can further
enrich GSV annotations.

5. Conclusions

The difficulties of characterizing built environments at large geographical scales hinder
the possibilities of exploring connections between neighborhood characteristics and health
outcomes on a national level. To enrich studies in this field and help provide insights for
public health optimization, we utilized 164 million GSV images and leveraged computer
vision models. This study highlights the utility of virtual audits for characterizing neigh-
borhood features that have important implications for physical diseases, mental health
and behavioral issues. Our study results suggest that indicators such as neighborhood
walkability (crosswalks, sidewalks, and non-single-family homes) and urban develop-
ment (two or more cars, street signs, and streetlights) are connected with lower chronic
disease, better mental health, and reduced smoking. As an indicator of lower levels of
urban development, single-lane roads were associated with higher levels of chronic disease.
Moreover, as a physical disorder indicator, chain link fences were linked with poor mental
health. We see the importance of neighborhood walkability in building up our bodies and
decreasing the chance of getting depression and anxiety by increasing social contacts which
are consistent with our results. As such, altering the built environment might be an effective
lever for reducing adverse health outcomes and improving population health. Additionally,
leveraging computer vision technology and relatively new data sources are enabling larger
studies on the impacts of the built environment on health. Continuing to develop these
technologies can pave the way for additional advances and make neighborhood studies
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more cost-efficient, timely, and sustainable. The theoretical contributions of this study in-
clude its highlight of features of the neighborhood built environment with implications for
population health which may help to guide future research. Often, public health research
is driven by the search for individual-level factors such as behaviors or treatments such
as drug therapy. However, our study points to the contributions of environmental factors
for shaping health. The practical contribution of this study includes the identification of
other potential levers to change population health. For instance, health organizations can
team up with city planners to structure neighborhood environments that are conducive to
health by emphasizing features that would increase walkability and access to recreational
and other neighborhood resources. This study also calls for additional studies on built
environment indicators; limited studies are available explaining how certain built environ-
ment characteristics promote health or are detrimental to health, so continued explorations
are necessary.
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