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Abstract: Chironomid larvae are among the dominant benthic macroinvertebrates in all types of
water systems in South Korea. They may pass through pipes in rivers (raw water) and occur in
drinking water, thus creating public health issues. However, little is known about the larval stages
of chironomids in large South Korean rivers. Therefore, we examined larval–adult associations in
chironomids inhabiting major rivers used as water sources. The larvae were collected in 2015 and
2016 from nine locations along the four largest rivers in South Korea using a Ponar grab. Cytochrome
oxidase subunit I (COI) sequences were generated from the larval specimens, and the species were
identified by comparing these sequences to those in a newly constructed DNA barcode library of
Chironomidae in South Korea. The samples from the four rivers yielded 61 mitochondrial COI
sequences belonging to 18 species, including Hydrobaenus kondoi Saether, 1989, which was reported
for the first time in the Korean Peninsula. Further, morphological identification of the larvae was
conducted, and a pictorial taxonomic key to Chironomidae species in large rivers in South Korea was
developed to facilitate freshwater biomonitoring research. Finally, an action flow chart was created for
the rapid identification of chironomid larvae in infested drinking water or water purification facilities.

Keywords: large river Chironomidae; DNA barcode library; larval-adult association; rapid identification
protocol; South Korean rivers

1. Introduction

Rivers are an important source of freshwater for humans. In South Korea, the main
sources of industrial and domestic water supply are the country’s four largest rivers: the
Han (HR), Geum (GR), Yeongsan (YR), and Nakdong Rivers (NR) [1]. However, as the coun-
try develops, anthropogenic activities (e.g., dam construction) have negatively impacted
South Korea’s river ecosystems through increased channelization, eutrophication, and the
increase in lentic areas [2]. These activities, in combination with rising water temperatures
due to climate change, have promoted the mass emergence of sporadic/nuisance insect
species inhabiting rivers and streams. Among these, chironomids (Diptera: Chironomidae)
have become one of the dominant invertebrate groups in South Korean large rivers, and
along with oligochaete worms, they account for over 90% of the benthic macroinvertebrate
fauna in terms of richness and abundance, particularly in the lentic areas of large river
systems [3–5]. Most cases of sporadic/nuisance insect emergence in South Korean rivers
can be attributed to riverine chironomids.

Owing to the massive occurrence and abundance of riverine chironomids in South
Korea, the invasion of tap water and drinking water purification facilities by their larvae
has recently become a key social issue [6]; numerous cases of larval infestation of tap water
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have been reported in many large and small cities, including Incheon, Seoul, Busan, and
Jeju [6,7], raising national concerns regarding water safety. However, in severe cases of
larval infestation in tap water and water purification facilities, most local governments have
not been able to appropriately respond due to lack of information on chironomid larvae.

Chironomid larvae are widely used in freshwater biomonitoring due to their high
abundance, rich species diversity, high pollution tolerance, overlapping life cycles, low
larval mobility, and ease of sampling [8,9]. Moreover, they are valuable models for toxicity
tests under specific environmental conditions, such as assays of toxic sediment stress
and microplastic concentrations in freshwater [10–13]; however, despite their rich species
diversity, chironomids are often neglected in aquatic biodiversity and biomonitoring studies
due to the lack of knowledge on larval identification.

As is the case with other dipteran groups, many chironomid species are difficult to
discriminate at the larval stage, and chironomid taxonomy is based primarily on adult male
morphology, such as the characteristics of the male genital hypopygium [14]. Furthermore,
conventional approaches to establish adult–larval associations in Diptera typically involve
rearing larvae or collecting pupal exuviae to associate with adults, but these methods also
have significant technical limitations: larval rearing can be inefficient in certain groups, and
generally requires specific conditions (e.g., temperature, food, and photoperiod), whereas
pupal sampling is limited by short emergence periods [15–17].

However, the identification of chironomid larvae is critical for rapidly responding to
public health issues such as larval infestation in drinking water as well as for supporting
freshwater biomonitoring research. In this context, recently developed DNA barcodes for
adult chironomids using mitochondrial COI genes [18] have rendered adult–larval associ-
ation practicable. Therefore, in this study, we aimed (i) to correctly identify chironomid
larvae inhabiting large rivers in South Korea using morphology and DNA barcodes, (ii) to
create a pictorial key to facilitate the identification of chironomid larvae by researchers and
the public, and (iii) to develop a protocol for public agencies and stakeholders, which will
allow the rapid and accurate examination of invertebrate species found in drinking water.

2. Materials and Methods
2.1. Larval Sampling and Morphological Identification

In 2015 and 2016, chironomid larvae were collected from nine locations distributed
across South Korea’s four largest rivers (HR, three sites; GR, three sites; NR, two sites; and
YR, one site; Figure 1). The larvae were collected from lentic areas (2–10 m deep; 20 samples
in total per site) approximately 0.3–1 km upstream of weirs using a Ponar grab (15 × 15 cm)
on a boat. River substrates were relatively homogenous mixtures of sand (20–40%) and
silt (60–80%) at all sites, except those along the HR, where the proportion of sand was
higher (50–70%). Each sample was passed through a 0.5 mm sieve, and the recovered
larvae were preserved in 80% ethanol. The preserved larval specimens were separated
into morpho-species, photographed (Zeiss Stereo Discovery V12 microscope; Carl Zeiss
Microscope GmbH, Jena, Germany) to examine thoracic and abdominal setae and tubules,
and then identified to the genus or subfamily level using available identification keys and
references [19–22]. For each specimen, the head and abdominal segments VII–IX were
carefully dissected under a stereomicroscope (SZX7; Olympus, Tokyo, Japan) and placed
in Hoyer’s medium for slide preparation [23]. Additionally, the larvae’s mouthparts were
drawn using a drawing tube attached to an optical microscope (BX53; Olympus, Tokyo,
Japan), and larval images were digitized using Adobe Illustra-tor CS6 (Adobe Systems
Inc., San Jose, CA, USA). The remaining body parts were preserved in absolute ethanol at
−20 ◦C for subsequent DNA extraction.
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Figure 1. Sampling sites along the four largest rivers in South Korea. Sampling was conducted at
0.3–1 km upstream of weirs (pink marks) at each site.

2.2. Molecular Analysis

To reduce the risk of contamination, the specimens were placed in Petri dishes con-
taining 1 mL of 80% ethanol. We dissected, from the thorax I–III to the abdomen, using a
needle to reveal the gut, which was carefully removed from the specimen using forceps
under a stereomicroscope (SZX7; Olympus, Tokyo, Japan). Total DNA was extracted from
thorax segments I–III or abdominal tissue using the DNeasy Blood and Tissue Kit (Qiagen,
Hilden, Germany) following the manufacturer’s instructions. Moreover, a 658-bp fragment
of the mitochondrial cytochrome oxidase I (COI) gene was amplified by polymerase chain
reaction (PCR) using the AccuPower PCR premix (Bioneer, Daejeon, South Korea) and
previously published universal primers (LCO1490 and HCO2198) [24]. Amplification was
performed in 20 µL reactions under the following conditions: 94 ◦C for 5 min, 35 cycles
at 94 ◦C for 30 s, 48 ◦C for 1 min, and 72 ◦C for 1 min 30 s, and 72 ◦C for 10 min [25].
The resulting PCR products were purified and sequenced according to the methodology
described by Kang et al. [18], and the sequences were deposited in GenBank (accession
numbers OP381663–OP381723).

To identify the chironomids at the species level, the COI sequences obtained from
larval specimens were compared against the adult reference sequences from NCBI and our
previous studies [18], and the sequences were then aligned using the CLC Main Workbench
(version 7.8.1; CLC bio, Aarhus, Denmark). The results were crosschecked using the
ClustalW algorithm in MEGA 7.0., and a neighbor-joining (NJ) analysis was conducted
using MEGA 7.0 to examine the relationships among specimens [26,27].
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3. Results
3.1. Specimen Identification

A total of 61 COI sequences were successfully generated from the larval specimens
(Figure 2), and in the NJ analysis, most of the gene’s conspecific sequences were grouped
with 100% bootstrap support. Of the 61 sequences, 56 were assigned to 14 species, and one
(H20L) was identified at a presumed genus level (Stenochironomus Kieffer, 1919). The re-
maining four sequences (H01L, N28L, N29L, and N31L) were assigned to three undescribed
species. Of the 14 identified species, 11 belonged to nine genera in the Chironominae
subfamily, two belonged to two genera in the Orthocladiinae subfamily, and one belonged
to a genus in the Tanypodinae subfamily (Table 1). Furthermore, the COI sequences of spec-
imens identified as Benthalia carbonaria (Meigen, 1804) formed two clades which differed
by a maximum of 4.2% (K2P-distances) or 77 nucleotide sites. These diverging specimens
were collected from the GR and NR populations (Figure 2).
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Table 1. List of larval Chironomidae taxa collected from four large rivers in South Korea and identified
using a DNA barcode library in this study.

Subfamily Species Accession Number

Tanypodinae Procladius choreus (Meigen, 1804) OM974448 †, OP381670,
OP381671, OP381677, OP381678

Orthocladiinae

Hydrobaenus kondoi Saether, 1989 * KP902814 †, OP381696

Propsilocerus akamusi (Tokunaga, 1938)

JN887116 †, OP381672, OP381685,
OP381686, OP381690, OP381691,
OP381692, OP381698, OP381700,
OP381718

Chironominae

Benthalia carbonaria (Meigen, 1804)

OM974371 †, JF412113 †,
OP381680, OP381681, OP381682,
OP381683, OP381684, OP381687,
OP381688, OP381693, OP381694,
OP381704, OP381706

Chironomus circumdatus (Kieffer, 1916) OM974383 †, OP381679

Chironomus nipponensis Tokunaga, 1940 OM974375 †, OP381719,
OP381722

Chironomus plumosus (Linnaeus, 1758)

OM974379 †, OP381668,
OP381669, OP381675, OP381676,
OP381689, OP381705, OP381713,
OP381714, OP381715, OP381716,
OP381717, OP381720, OP381721,
OP381723

Dicrotendipes nervosus (Staeger, 1839) OM974387 †, OP381695,
OP381697

Glyptotendipes tokunagai Sasa, 1979 OM974397 †, OP381673,
OP381674, OP381703,

Microchironomus tener (Kieffer, 1918) OM974400 †, OP381711,
OP381712

Lipiniella moderata Kalugina, 1970 OM974372 †, OP381707,
OP381708, OP381709, OP381710

Polypedilum nubeculosum (Meigen, 1804) OM974421 †, OP381699
Stenochironomus sp. OP381666
Tanytarsus ahyoni Ree & Jeong, 2010 KT613731 †, OP381702
Tanytarsus kiseogi Ree & Jeong, 2010 JF412169 †, OP381701
Chironominae sp. 1 OP381663
Chironominae sp. 2 OP381664, OP381665
Chironominae sp. 3 OP381667

Asterisks (*) indicate species recorded as new to the South Korean fauna. GenBank accession numbers with
daggers (†) indicate the specimens whose sequences were retrieved from GenBank.

3.2. Morphological Key and Action Protocol

The larvae were morphologically identified and a pictorial key was created based
on their diagnostic characteristics (Figure 3), including head capsule features such as eye
spots, antennae, and mouthparts; tubules on abdominal segments VII–VIII; and armature
of segment IX. Based on these key characteristics, taxa were identified at subfamily, tribe,
genus, and species levels. Furthermore, an action protocol was formulated for public use
in order to enable a rapid response to environmental issues, such as larval infestation of
drinking water (Figure 4). The mechanism underlying the protocol was as follows: when
small insects such as midges are detected in drinking water, public agencies are notified,
and stakeholders then collect samples that are sent to identification experts. Specimen
collection is important for quickly identifying species according to the provided protocol,
and therefore the flow chart of the protocol includes a simple morphological identification
process that uses the pictorial key (Figure 3) and a DNA barcode analysis should larval
material be damaged or incomplete.
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4. Discussion

The chironomid fauna of large rivers in South Korea, which are for the source of most
of the freshwater supply in the country, remains virtually unknown due to difficulties
in the sampling of deep river beds and identification of specimens because of limited
knowledge on larval morphology. Therefore, we used a previously developed chironomid
DNA barcode library [18] in this study to identify, for the first time, larval specimens of
18 chironomid species inhabiting four major rivers in South Korea, which account for
approximately 45% of all known adult chironomid species found in these rivers [18].

Currently, DNA barcoding is a well-established tool in taxonomy and ecology, which
has been widely applied for the identification of pests, invasive species, and foreign
insect materials in food, in addition to various other applications in the public health
sector [28–31]. Although the present study incorporated sequences from GenBank, we
used our own species identification data based on adult morphology, as well as DNA
sequences of adult and larval specimens from the same sampling sites, to improve the accu-
racy of species identification [18]. In this study, larval and adult specimens were correctly
differentiated by (1) identifying adult males based on morphological traits, specifically
features of their genital structures; (2) constructing phylogenetic trees based on COI se-
quences of adult male specimens to clearly delineate the species category; and (3) assigning
larval sequences to species categories, established according to the phylogenetic analysis.
Nonetheless, NCBI reference data should be used with caution as sequences may be derived
from different geographic regions or misidentified specimens [32,33].

In addition, as shown in the present study, the high-resolution identification of larval
specimens can be achieved using a combination of DNA barcoding and morphological
analyses. For instance, the approach we adopted allowed us to identify for the first time a
chironomid species complex that was previously unidentifiable from larval specimens and
lacked a clearly delineated species category, which was Hydrobaenus kondoi Saether, 1989.
Moreover, we noted morphological deviations from the data recorded in the Holarctic key
during genus identification using the general taxonomic key [19]; for instance, a record for
a larva belonging to the genus Dicrotendipes in the Holarctic key indicated that it possessed
a pair of ventral tubes, although two specimens collected from HR in this study did not
exhibit this feature. These differences may represent intraspecific or intrageneric variations
in larval morphology; therefore, further comprehensive evaluation of larval and adult
material, as well as DNA sequencing data, will most likely help define chironomid taxa.

Furthermore, in line with our observations, Kim et al. [34] reported that the genera
Chironomus, Dicrotendipes, Glyptotendipes, Michrochironomus, Polypedilum, Stictochironomus,
Tanytarsus, and Propsilocerus were most abundant in large South Korean rivers. Individuals
in these genera can thrive in large rivers because of their adaptive larval and pupal traits
such as hemoglobin production, and specific behaviors such as the construction of tubes
and burrows in fine sediments [35–37]. Moreover, most of the species identified in our
study are resistant to eutrophication, and some genera are highly resistant to hypoxia,
a frequent phenomenon occurring in polluted streams and benthic zones in lentic areas
of large rivers in Northeast Asia. Furthermore, our results suggest that larval species
inhabiting large South Korean rivers may be detected in tap water and water purification
facilities, because water resources are supplied from the impoundment areas of dams and
weirs of these rivers.

Infestation of tap water by chironomid larvae was first reported in Incheon, South
Korea in July 2020 [6], which escalated to a nationwide hot topic. Since then, local govern-
ments throughout the country have devoted close attention to drinking water purification
facilities and supply systems, with the inclusion of “larval infestation” as a new criterion
in the drinking water quality checklist. Indeed, larval infestation of tap water has been
reported recurrently since the 1940s in other countries, such as Germany, Great Britain, the
United States, and Israel [38–42].

The new pictorial key and protocol developed for the identification of chironomid
species found in large South Korean rivers presented herein (Figures 3 and 4) are expected
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to facilitate the identification of larvae associated with infestation problems and, along
with the attached taxonomic key (Table S1), they may enable the biomonitoring of large
rivers in East Asia [43] as practiced for larval chironomids in Europe, North America,
and Australia [19–22]. Furthermore, the action protocol formulated here facilitates rapid
identification of chironomid larvae in infested drinking water (Figure 4).

5. Conclusions

Through the comprehensive sampling of chironomid larvae from four large rivers in
South Korea and the use of a recently constructed DNA barcode library of Korean Chirono-
midae, this study identified 18 species within this family and successfully associated larval
morphotypes with known adult species for the first time. Moreover, our newly developed
pictorial key to chironomid species in large South Korean rivers may facilitate biomonitor-
ing of large rivers in Northeast Asia, and our action protocol for larval identification can
be used by the public to enable a rapid response to environmental issues such as larval
infestation of drinking water, helping alleviate a problem that has greatly affected countries
such as Korea in the past.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijerph191912035/s1, Table S1: Taxonomic key to species of Chironomidae
larvae in large South Korean rivers.
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