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Abstract: Aba’s topography, weather, and climate make it prone to landslides, mudslides, and
other natural disasters, which limit economic and social growth. Assessing and improving regional
resilience is important to mitigate natural disasters and achieve sustainable development. In this
paper, the entropy weight method is used to calculate the resilience of Aba under multi-hazard
stress from 2010 to 2018 by combining the existing framework with the disaster resilience of the
place (DROP) model. Then spatial-temporal characteristics are analyzed based on the coefficient of
variation and exploratory spatial data analysis (ESDA). Finally, partial least squares (PLS) regression
is used to identify the key influences on disaster resilience. The results show that (1) the disaster
resilience in Aba increased from 2010 to 2018 but dropped in 2013 and 2017 due to large-scale disasters.
(2) There are temporal and spatial differences in the level of development in each of the Aba counties.
From 2010 to 2016, disaster resilience shows a significant positive spatial association and high-high
(HH) aggregation in the east and low-low (LL) aggregation in the west. Then the spatial aggregation
weakened after 2017. This paper proposes integrating regional development, strengthening the
development level building, and emphasizing disaster management for Aba.
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1. Introduction

In recent years, humans are being increasingly exposed to natural disasters with
the effects of urbanization, global climate change, and population growth [1]. In 2021,
Chinese Ministry of Emergency Management released that 107 million people were af-
fected by various natural disasters, with an economic loss of approximately 334.02 billion
CNY, resulting in 867 deaths. Disasters seldom happen alone. Multiple recurrent natural
catastrophes may cause greater economic damage than one-time calamities [2]. Multiple
disasters bring more severe economic and social repercussions on developing countries
than on developed ones, potentially causing negative economic development [3]. In this
situation, resilience became a global guiding principle for natural hazards. In 2015 the
United Nations Office for Disaster Risk Reduction (UNDRR) proposed to monitor, assess,
and comprehend disaster risks, strengthen resilience, and make disaster risk reduction
actions multi-hazardous [4]. Resilience is a conceptual tool for understanding how people
groups respond to disasters that affect their livelihoods. It is also a protective factor, and
better resilience often responds to better coping, absorption, and adaptation to the impacts
of natural hazards [5]. As a result, one of the main objectives of current disaster prevention
and mitigation research is to investigate how to improve resilience. Research on it can
provide substantive support for the decision making of disaster resilience and mitigation,
society, and the environment. It can serve as inspiration for those involved in develop-
ment and disaster management. Resilience research also has important implications for
regional sustainable development [6–8]. Resilience emerged as a top priority for policy and
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planning initiatives to mitigate disaster risk and was a dominating concept in the disaster
management research and policy community for the past several years [9].

China is one of the countries that suffer most from natural disasters. According
to the Chinese Ministry of Emergency Management, various natural disasters affected
a total of 107 million people and caused direct economic losses of 334.02 billion CNY
in 2021. Specifically, Sichuan Province, located southwest of China, is more prone to
natural disasters. Aba is a mountainous area located in the western Sichuan Province of
China. It is situated in an abrupt topographic zone between the Qinghai–Tibet Plateau
and the Sichuan Basin. Strong neotectonic movements and high altitudes frequently
cause mountain disasters, such as landslides, debris flows, and ground collapse [10].
In addition, the region’s fragile foundation for agriculture and animal husbandry, as
well as inadequate infrastructure, obstructed the region’s ability to withstand natural
calamities and limited regional development. Therefore, Aba faces more threats from
natural disasters. According to data provided by the Natural Resources Bureau of the
Aba Tibetan and Qiang Autonomous Prefecture, there are 5155 geological catastrophe risk
areas, endangering more than 17 billion properties and 267,898 persons in 2021. Frequent
natural disasters and the potential domino effect of disaster hazards increase the risk [11].
It is a challenge to residents‘ daily life, economic development, and even the sustainable
development of the entire Aba social-ecological system. Furthermore, across the areas of
Aba, there are apparent disparities in economic development, ecology, social resources, and
transportation infrastructure. Faced with various natural disaster incursions, the region’s
resilience building is relatively insufficient. Therefore, this paper is to investigate the
situation of Aba to improve its resilience under the influence of multi-hazards and provide
recommendations for disaster prevention and mitigation in Aba.

Resilience is typically studied from a quantitative or qualitative perspective [12].
Research focused on the following areas:

Definition of the concept of resilience. Currently, there is no academic consensus
on the definition of resilience [12,13]. Resilience originated in the field of ecology [14].
Then, the concept was gradually applied to psychology, economics, engineering, urban
development, and natural disasters. Due to the emergence of various definitions, such as
engineering resilience, economic resilience, ecological resilience, social resilience, livelihood
resilience, and disaster resilience [7,15,16], the definition of the concept of resilience became
a hot topic. Resilience usually refers to the ability of a system to reorganize and return to
its normal working state after a shock [13]. Nonetheless, other researchers consider that
resilience prioritizes system stability or is primarily concerned with the speed of recovery
once a system is exposed to risk. Resilience is a result, while others view it as a process [17].

Evaluation system and method. Using appropriate evaluation methods and establish-
ing a reasonable indicator evaluation system is a deepening of the concept of resilience [18].
Resilience is measured by the amount of disturbance a system can absorb while main-
taining its original function [19]. However, it is difficult to directly obtain the amount of
disturbance, and it is frequently expressed through indicators and various dimensions and
scales. As for dimensions, some researchers incorporated structural dynamics theory [20],
community baseline models [21], projection pursuit clustering (PPC) models [1], and dis-
aster resilience of place (DROP) models [22] to develop indicator systems from multiple
dimensions, including infrastructure, environment, economy, society, and institutions.
Some researchers also established indicator systems for single dimensions of disasters,
such as earthquakes [23], floods [24], and landslides [25]. As for scales, resilience exists at
multiple levels; so numerous researchers conducted separate studies for communities [26],
urban [27], and regions [28].

The improvement strategies and paths. To apply resilience assessment research to prac-
tice, it is required to suggest focused improvement approaches and techniques. Increasing
resilience strategy research indicates the progressive use of resilience theory in practice [29].
Some geographical or econometric instruments are frequently used to process measure-
ment results to formulate targeted recommendations. Exploratory spatial data analysis
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(ESDA) is utilized to analyze the spatial and temporal characteristics of the distribution
of resilience indices [18,28]. Using Gini coefficients [30] and coefficients of variation [31],
cities’ and regions’ levels of development and differences in their resilience are analyzed.
There are statistical relationships between the independent and dependent variables, such
as covariance, factorial interactions among variables, etc. Therefore, researchers used many
methods to identify key influences based on the statistical relationships between indicator
variables. For example, the geographical detectors (no linearity assumption), ordinary
linear regression (no multiple covariances of indicators), partial least squares regression
(multiple covariances between indicators), and ridge regression (multiple covariances
between indicators) [28,32,33].

In summary, researchers conducted various studies on resilience and achieved many
results, but some issues still need to be explored in depth.

(1) Currently, studies mainly focus on specific dimensions of urban resilience, such as
economic, social, ecological, or infrastructural resilience [29]. Urban areas and communities
are frequently exposed to multiple hazards, increasing their vulnerability [11]. However,
most studies only address single-dimensional natural hazards, such as earthquakes, floods,
and landslides, and few examine the effects of multi-hazards [34].

(2) Different evaluation systems and models apply to different areas, so there are
different evaluation methods for coastal cities, inland areas, and highland mountainous
areas [35]. Meanwhile, the indicators chosen for resilience may vary for different disas-
ters [12]. Therefore, a variety of factors, including the capability approach based on copying,
adaptive, and transformative capacity [36], as well as the selection of social, economic,
community, neighborhood, infrastructure, environmental, spatial, and management dimen-
sions [37,38], are all used by researchers to measure resilience. Consequently, the existing
framework models must be adapted to different circumstances to measure the resilience of
multiple hazards.

(3) Most studies focus on enhancing urban areas’ resilience while ignoring rural
areas’ resilience. Due to their inaccessibility and marginalization, mountainous regions are
vulnerable [39,40]. In mountainous areas with low population density, weak institutional
capacity, and a limited economy, how to effectively mitigate the harmful effects of multiple
natural hazards and strengthen regional resilience became a vital issue for sustainable
development [41].

Considering that there are few studies on mountainous areas under the influence
of multi-hazards, this paper studies Aba, a highland mountainous region with frequent
geological hazards, as the research object. An indicator evaluation system is constructed
by the three parts of disaster prevention, resistance and rescue, and the indicator weights
are determined using the entropy weighting method to calculate the multi-hazard disaster
resilience of landslide, debris flow, and collapse from 2010 to 2018. The study combines
exploratory spatial data analysis (ESDA) and multiple linear regression to explore the
spatial-temporal differences and influencing factors of disaster resilience. It should be
noted that in our study, resilience defines as the ability of a system to use environmental,
economic, and social capital to mitigate or resist shocks [13]. Meanwhile, this paper
divides Aba into regions according to counties and considers each region as a system
to study the resilience of each region. As a result, this paper uses indicators from four
dimensions: environmental, economic, infrastructural, and social, in each region to analyze
regional resilience.

The contributions of this study to the existing research are as follows: (1) Most of the
existing studies focus on urban areas, but in our study, highland mountainous areas are
selected as the study unit with counties. (2) A multi-dimensional study of disaster resilience
is considered under the influence of multiple disasters, such as debris flows, landslides,
and collapses. (3) This paper studies the factors influencing multi-hazard disaster resilience
with multiple linear regression, which can provide a reference for formulating disaster
management and regional development strategies to achieve sustainable and synergistic
regional development.
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The remainder of this paper is arranged as follows: Section 2 details the study area and
the methods employed to compute disaster resilience. In Section 3, the resiliency calculation
results are shown, together with the spatial-temporal analysis of disaster resilience and
the identification of key influencing factors. Section 4. We discuss the reasons for the
phenomenon of Section 3 and put forward corresponding policy suggestions. The last part
of the article is the conclusion.

2. Materials and Methods
2.1. Research Area

Aba Tibetan and Qiang Autonomous Prefecture in Sichuan Province is located on
the southeastern edge of the Qinghai–Tibetan Plateau, between 100◦0′~104◦7′ E and
30◦5′~34◦9′ N. It is about 414 km long from north to south, 360 km wide from east to
west, covering 84,242 square kilometers, with an average altitude of over 3000 m. The
prefecture is a typical plateau with high terrain and comprises 13 districts in Maerkang City
and 12 counties, including Jinchuan, Xiaojin, Aba, Ruoergai, Hongyuan, Zaand ngtang,
Wenchuan, Lixian, Maoxian, Songpan, Jiuzhaigou, and Heishui. As a mountainous area
in western Sichuan, most of the Aba Prefecture belongs to alpine and canyon areas, with
high mountains and steep slopes, complex geological structures, broken rock formations,
unstable slopes, loose accumulations, high-risk and high-level dangerous rock bodies, de-
bris formed by earthquakes, and weighty rainfall makes it vulnerable to multiple disasters,
becoming a high-incidence area for earthquakes, collapses, landslides and debris flow
disaster [1]. The location map of Aba is shown in Figure 1.
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Figure 1. Aba Location Map.

2.2. Data Sources

The socioeconomic data collected in this paper are mainly from Sichuan Statistical Year-
book and Aba Statistical Yearbook (2010–2018). The County Statistical Yearbook for 13 counties,
including Maerkang, Jinchuan, Xiaojin, Aba, Ruoergai, Hongyuan, Rangtang, Wenchuan,
Li, Mao, Songpan, Jiuzhaigou, and Heishui (2010–2018) were used. The data used to
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calculate the disaster pressure mainly comes from the Natural Resources Department of
Sichuan Province and the people’s governments of various counties.

2.3. Measurement Methods
2.3.1. Resilience Calculation

This paper adopts and improves the computational model of Tian (2019), and quanti-
fies the resilience by studying the gap between the ideal and actual functions of the area [41]
because disaster resilience refers to a system’s capacity to withstand and lessen shocks in
response to disaster disturbances.

Disaster resilience can be expressed as the reciprocal of system losses, which is calcu-
lated as follows:

R = 1/(I − Q) (1)

Q = f r× f p (2)

In Equations (1) and (2), R represents the disaster resilience, I represents the ideal
function of the system, Q represents the actual function of the system under the influence
of natural disasters, fr represents the function of each dimension of the system, and fp
represents the disaster pressure.

This paper assumes that the ideal function of the system I is the maximum value of
each dimension in the study area from 2010 to 2018 to calculate the composite score. The
direct disaster losses reflect the most direct impact of disasters on the region. However,
due to our definition of resilience, the direct disaster loss is indirectly reflected in each
dimension of the system, and we only used the disaster hazard points to calculate the
disaster pressure.

2.3.2. Global Entropy Weight

The principle of the entropy weight method is to use the discrete degree of the in-
dicators to determine the weight of different indicators. If a class of indicators is more
important in the evaluation system, the information entropy is smaller, and the disorder is
smaller, so the weight is higher, and vice versa [42].

Since the data in this study are panel data of 13 regions, the global entropy weighting
method is used to determine the indicator weights to evaluate disaster resilience in Aba
under the influence of multi-hazards. In other words, a three-dimensional time-series data
table involving regions, indicators, and time is established for evaluation by introducing
time series in the cross-sectional data.

(1) Setting indicators.
Assuming there are n evaluation areas, h evaluation indicators, and T years, the overall

evaluation matrix is as follows:
X =

{
xt

ij

}
nT×h

(3)

In Equation (3), xt
ij represents the jth evaluation index of the ith area in the tth year.

(2) Standardize the original value of indicators.
Since the original dimensions of the indicators are different, it needs to be normalized

to a dimensionless value between 0 and 1 to become a comprehensive indicator. At the
same time, since there are positive and negative indicators, they need to be dealt with
separately. Therefore, the paper adopts the range method to standardize the indicators,
and the equation is as follows:

Zt
ij =

Xt
ij − Xij min

Xij max − Xij min
(4)

Zt
ij =

Xij max − Xt
ij

Xij max − Xij min
(5)
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In Equations (4) and (5), Xt
ij is the index value of item j in year t in the ith study area.

Xij max and Xij min are the maximum and minimum values of the screening indicators,
respectively. Zt

ij is the standardized value of each indicator. Equations (4) and (5) are used
for positive and negative indicators.

The higher the average altitude, the more backward socio-economic conditions and
the greater the vulnerability to disasters within the study area. Moreover, the number
of hidden danger points involved in debris flow, landslide, and collapse in the disaster
pressure index represents the degree of disaster impact on the region. The higher the value,
the more significant the impact of the disaster on the region. In this paper, except for the
indicators involved in the average altitude and the disaster pressure dimension, the other
indicators are all positively processed.

(3) Calculate the proportion of indicators

Pt
ij =

Zt
ij

∑T
t=1 ∑n

i=1 Zt
ij

(6)

in Equation (6), Pt
ij is the proportion of the ith evaluation object on the jth indicator in the

tth year.
(4) Calculate the entropy value of the index

Hj= −K
T

∑
t=1

n

∑
i=1

Pij×lnPij (7)

in Equation (7), K is the normalization coefficient, K = 1/ln(nT), H j is the entropy of the

tth index, K > 0, H j ≥ 0.
(5) Calculate the entropy value redundancy

Dj= 1− H j. (8)

In Equation (8), Dj represents the entropy value redundancy of the evaluation index.
(6) Weights and indicator weighted score

Wj =
Dj

∑n
j=1 Dj

(9)

fk = ∑ Zt
ijWj. (10)

In Equation (9), Wj represents the weight of the evaluation index, and in Equation (10),
fk shows the disaster resilience score of the kth area, where k is the selected evaluation area.

2.3.3. Exploratory Spatial Data Analysis (ESDA)

Exploratory spatial data analysis (ESDA) is a basic statistical method for exploring the
characteristics of the spatial distribution of a study object in a study area [43]. It takes spatial
association measures as the core and explores spatial aggregation and autocorrelation by
visualizing and analyzing the spatial distribution of a given object [44]. It usually includes
global spatial autocorrelation analysis and local spatial autocorrelation analysis.

The global spatial autocorrelation analysis evaluates the overall trend of spatial corre-
lation throughout the whole research region using the following equation:

Moran′s I =
∑n

i=1 ∑n
j=1 Wij(A i − A

)
(A j − A

)
S2 ∑n

i=1 ∑n
j=1 Wij

(11)

S =
1
n

n

∑
i=1

(A i − A
)2 (12)



Int. J. Environ. Res. Public Health 2022, 19, 12018 7 of 21

In Equations (11) and (12), n is the number of study regions, i and j denote region i and
region j, Ai is the disaster resilience value of region I, and wij is the spatial weight matrix.
If Moran’s I value is greater than 0, it means that there is a positive correlation between
disaster resilience and attributes between related counties; if it is less than 0, it is a negative
correlation; if it is equal to 0, it is a random distribution, and there is no correlation.

Local spatial autocorrelation analysis represents the aggregation characteristics local
to the analysis space. The calculated results are further characterized using local indicator
spatial association (LISA) plots. There are four types: high-high (HH), high-low (HL),
low-low (LL), and low-high (LH) [33].

2.3.4. Partial Least Squares (PLS) Regression

The partial least squares (PLS) method combines the features of principal component
analysis (PCA), typical correlation analysis (CCA), and linear regression analysis (LRA).
The method can avoid the problems of bias and low sample size caused by autocorrelation
among variables when applied to multiple linear regression models. It is one of the most
effective methods to deal with multiple cointegration problems [45].

Linear regression can be used in identifying the degree of influence of each indicator
on disaster resilience. This paper has 21 factors influencing disaster resilience, including
five dimensions: environmental, economic, social, infrastructure, and disaster stress (see
Table 1 and Section 2.3.6). However, there are certain correlations between the indicators of
each dimension, and traditional regression analysis leads to large standard errors between
the relevant independent variables.

Table 1. Multi-hazard disaster resilience evaluation indicators.

Dimension Variable Variable Description Category Weight

fr

Environment
Coverage Forest coverage (%) Prevention 5.41%
Elevation Average elevation (m) Prevention 7.01%
Land area Arable land area per capita (ha/person) Resistance 3.04%

Economy

GDP Local GDP per capita (CNY) Prevention 5.46%
Industry structure The proportion of tertiary industry in total GDP (%) Prevention 5.57%

Social consumer goods retail Total retail sales of consumer goods per capita (CNY) Prevention 5.98%
Finance revenue Local public finance revenue (ten thousand CNY) Prevention 8.17%

Savings Residents’ savings per capita (CNY) Prevention 5.28%

Society

Students Number of students on campus Prevention 4.02%

Bed space Number of beds in hospitals and health institutions
per 1000 population/unit Rescue 6.26%

The doctor Number of physicians per 1000 population Rescue 6.33%
Social labor Employ labor (%) Resistance, Rescue 2.31%

Social Security Population with health insurance (%) Resistance 2.23%

Infrastructure

Communication Equipment Number of fixed phone users Resistance, Rescue 6.74%
Public transport Road mileage (km/sq km) Resistance, Rescue 5.41%

Electricity Electricity consumption in society (ten thousand kwh) Resistance 7.43%

Social investment Amount of investment in fixed assets of the whole
society (ten thousand CNY) Prevention, Resistance 4.55%

Internet users Number of internet users Prevention,
Resistance, Rescue 8.79%

fp Disaster pressure

Debris flow Hazardous spots of debris flow disaster per
10,000 people 18.2%

Landslide Hazardous spots of landslide disaster per
10,000 people 28.5%

The collapse of the ground Hazardous spots of the collapse of the ground per
10,000 people 53.3%

Compared with traditional analysis, PLS can obtain acceptable bias estimates through
bias–variance trade-offs with smaller mean squared errors in the independent variables.
PLS can effectively address the problem of multicollinearity and support richer and deeper
data, providing better results [46]. The equation is as follows:

VIPj =

√
k

Rd(y; t 1, . . . tm)

m

∑
h=1

Rd(y; t h)W
2
hj (13)
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considering the independent variable X and the dependent variable Y, and extracting
latent variables t1 and u1 from X and Y, respectively. In Equation (13), VIPj represents the
VIP value of xj; k is the number of independent variables, VIP2

1+ . . . + VIP2
p= k, t1. . . tm

are principal components extracted from variable X, and Rd(y; t 1, . . . tm) =
m
∑

h=1
Rd(y; t h

)
means the cumulative explanatory power of the primary components to Y. W2

hj is the first j
component of wh-axis

2.3.5. DROP Model

The paper defines resilience as the capacity of a system to utilize environmental,
economic, social, and technological resources and other capital to resist and mitigate
shocks in response to internal and external perturbations and transform society into a
better state [13]. It has the characteristics of active adaptation and continuous change.
Disaster resilience is the system’s ability to mitigate, contain, and reduce the impact of
further disasters.

Researchers define disaster resilience as adaptive and inherent resilience (inherent
resilience works during non-crisis times, adaptive resilience works during disasters) [37].
Both concepts are applied to infrastructures, institutions, organizations, social and economic
systems, and organizational structures. In this paper, the disaster resilience of the place
(DROP) model proposed by Cutter (2008) is used to evaluate inherent resilience, which is
jointly determined by ecological, social, economic, and infrastructural variables [22]. In
contrast to adaptive resilience, inherent resilience exists in the whole process of disaster
and fluctuates with the changes in the structure and function of the system [47]. It is
important to note that the use of inherent resilience can more effectively portray the impact
of multi-hazards in Aba since the complete processes of disaster prevention, resistance, and
rescue and the resilience of longer time series are considered in this paper. As a result, only
the inherent resilience calculation is considered in this paper.

This paper collects publicly accessible online data to assess the resilience of the Aba in
western Sichuan Province, as it is designed to integrate data from the previous ten years.
In this process, available resilience research frameworks can be followed to obtain valid
indicators that contribute positively or negatively to the resilience of the study area [48].
However, due to the uniqueness of the selected study region, it is unrealistic to follow
a framework completely, and some adjustments should be made. It is reasonable to
exclude indicators for which data cannot be queried to avoid the unavailability of indicator
data affecting the study results. We used a portion of the DROP model, which initially
comprised six dimensions: environmental, social, economic, infrastructure, community,
and institutional, after combining the definition of resilience with the actual situation
in Aba. The selected resilience assessment dimension is the entire system rather than
the community level, making it challenging to define institutions and communities. In
addition, Aba is affected by natural disasters, such as mudslides and landslides year-round;
therefore, we added the disaster stress dimension to the evaluation model to account for
multi-hazard impacts.

2.3.6. Selection of Indicators

For the following reasons, this research establishes a framework of five dimensions:
environment, economy, infrastructure, society, and disaster pressure.

A healthy natural environment is essential for risk reduction and resilience, and it can
mitigate the damage caused by natural disasters. Economic characteristics represent the
economic factors of preparedness and resilience in the face of disaster events. Financial
capital can mitigate the damage caused by certain contingencies. Better social amenities
within the county can make the region more robust to natural disasters. Infrastructure,
which provides public services for social production and residential life, is the most crucial
and fundamental component of urban resilience. Therefore, the region’s environmental,
economic, social, and infrastructure conditions play a decisive role in natural disaster
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emergency preparedness and response capabilities [27]. It should be noted that the disaster
pressure dimension represents the disaster potential points caused by the multi-hazard
hazards faced by the study area selected in this paper. Establishing this dimensional index
system can obtain the intuitive impact of disasters on the region and contribute to the
improvement of the regional disaster preparedness and response capacity.

Based on the five dimensions of the framework, 21 indicators were selected for
this paper.

(1) Environment. The environment is an important aspect of resilience assessment.
This dimension includes forest coverage, average altitude, and per capita arable land.
When natural disasters occur, the ecological environment undergoes structural changes,
determining the speed of the city’s recovery from disasters. Better environmental conditions
will be less affected by disasters or, to some extent, weaken the effects of disasters.

(2) Economy. Regions with strong economic and financial resources often correspond
to faster recoveries and greater resilience [49]. The variables at the economic level include
regional GDP per capita, the proportion of GDP of the tertiary industry, the total retail sales
of social consumer goods per capita, local public finance revenue, and the balance of savings
deposits per capita. Higher GDP reflects the improvement of a country’s national economic
development, social security system, and infrastructure system, corresponding to higher
disaster resilience. Higher fiscal revenue can pressure local governments’ disaster-resilience
funds, better manage disaster risks, and thus improve resilience. The total retail sales of
social consumer goods per capita reflect residents’ overall purchasing power in various
regions. It reflects the basic living standards of residents to a certain extent. The higher the
total amount, the more people have a more robust ability to resist and adapt to disasters [1].
Tourism is the leading industry in the study area and a critical pillar in stimulating local
economic development. Tourism is an integral part of the tertiary industry, promoting the
primary and secondary industries, and is an essential indicator for industrial upgrading
and production optimization. A higher proportion of the tertiary industry represents a
more robust regional economy.

(3) Society. The variables at the social level include the number of students in ordinary
primary and secondary schools, the number of hospitals and social welfare beds per
thousand people, the number of doctors per thousand people, the medical insurance rate,
and the labor force ratio. According to existing research, obtaining higher medical insurance
coverage and a more comprehensive education system are important measures to improve
the overall resilience of the region, and medical security and social security reflect a more
muscular primary social function [49].

(4) Infrastructure. Infrastructure, such as water and electricity lifelines, can help
improve the well-being of regions after disasters, and upgrading critical facilities is essential
for regional disaster resilience [50]. Therefore, the infrastructure level includes the number
of fixed-line telephone users, the number of Internet users, the density of the road network,
social electricity consumption, and the investment in fixed assets of society. More phone
service and broader internet communications enable better responses during periods
and preparedness for disasters. Longer road miles mean better planning for emergency
evacuations [27].

In this paper, the indicator data were initially matriculated using Equation (3). The
indicators were then normalized using Equations (4) and (5). Afterward, the indicator
weights were computed using Equations (6)–(9). Finally, Equation (10) was utilized to
obtain the indicator’s composite score. In addition, considering the whole process of
disaster, the indicators of the four dimensions are organized according to the prevention,
resistance, and rescue of disasters, as shown in Table 1.

3. Results
3.1. The Changing Trend of Disaster Resilience in Aba

According to the results of the calculations (Equations (1) and (2)), the overall disaster
resilience change graph of Aba can be obtained, as shown in Figure 2. From Figure 2, it can
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be seen that the overall disaster resilience of Aba shows an upward trend, but the regional
disaster resilience shows a downward trend in 2013 and 2017.
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Figure 2. Changes in disaster resilience in Aba from 2010 to 2018.

As depicted in Figure 2, Aba’s disaster resilience decreased in 2013 and 2017, which
corresponds precisely to the years affected by severe natural disasters. In 2010, Wenchuan
and Li were hit by debris flow and landslides, resulting in the blockage of many national
highways, a disaster area of 10,000 square kilometers, more than 50,000 people affected, and
direct economic losses of more than 600 million CNY. In 2013, Wenchuan broke out the ‘7.10’
debris flow and triggered the ground collapse and other disasters. The combined impact of
multiple disasters caused 13 counties in Aba, 98 towns, and 175,000 people to be affected
to varying degrees, with severe damage to road traffic, electricity, and communications,
industry, agriculture, tourism, and water conservancy, resulting in direct economic losses
of 6.786 billion CNY. In 2017, a large landslide occurred in Li, causing economic losses
of 1.7 billion CNY. In the same year, a 7.0 magnitude earthquake occurred in Jiuzhaigou,
triggering various secondary disasters, such as landslides and ground collapses, resulting
in multiple new disaster potential sites in Ruoerge, Hongyuan, and Songpan. The direct
economic loss exceeded 20 billion CNY. These severe natural disasters weakened Aba’s
resilience and increased Aba’s vulnerability to natural disasters. Therefore, the curves in
Figure 2 indicate that the indicator system used in this study can more accurately assess the
trend of resilience in Aba under the influence of multi-hazards. Additionally, it indicates
that the resilience framework can be used in highland mountainous areas.

In general, during 2010–2018, although the disaster resilience of the study area fluc-
tuated to a certain extent, the threshold of the average disaster resilience continued to
rise, and the overall trend showed a continuous increase. This phenomenon is closely
related to the stable local ecological environment, the constant improvement of economic
development, the improvement of social functions, the continuous improvement of the
quality and quantity of infrastructure, and the continuous cleaning and investigation of
multi-disaster hidden danger points.

The changing trend of the four components that make up the disaster resilience of Aba
is shown in Figure 3.
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Figure 3. The quintuple structure of the disaster resilience in Aba.

It can be seen from Figure 3 that the environmental resilience of Aba is in a stable and
rising state, which is related to the long-term stability of forest cover, elevation, and land
use selected for assessing the environmental component. The resilience of the economy
and infrastructure exhibited a yearly trend of sharp increases, which is inextricably linked
to the Aba government’s increasing economic investment to achieve more rapid post-
disaster recovery and reconstruction. In addition, it implemented numerous regional
development strategies in pursuit of rapid economic growth. Over time, disaster stress rises
(disaster stress is negatively treated, and smaller stress values represent more significant
disaster stress), which is related to the vulnerability caused by the physical environment in
which Aba is located. Compared with other components, the social resilience component
also shows some increase during the study period, with the region’s social undertakings
growing and livelihood security increasing. However, it exhibits considerable fluctuation,
particularly around 2013 and 2017, when mega-disasters occurred. The combination of
social resilience and disaster pressure offset the growth in the economic and infrastructure
sectors, leading to a decrease in disaster resilience, as shown in Figure 2.

3.2. Temporal Variation of Disaster Resilience in 13 Counties

The resilience of 13 areas in Aba (2010–2018) under the influence of multi-hazards was
calculated, using the resilience evaluation indicators constructed above (see Table 1). In
this paper, the 13 regions of the Aba Prefecture are divided into three toughness grades:
high, medium, and low, for trend mapping. The changing trend is shown in Figure 4.

From Figure 4, the level of disaster resilience shows a fluctuating increase, except for
Li and Mao, thanks to the rising social, economic, and infrastructure levels, which offset
the regional disaster pressure potential. Compared to other counties, the resilience of Mao,
Maerkang, and Jiuzhaigou is at a high level (Figure 4a), and Wenchuan and Songpan are
at a medium level (Figure 4b). The disaster resilience of Jiuzhaigou declined significantly
after the multi-hazard impact in 2017, when its ability to withstand mitigation disasters
took a hit. It should be noted that nearly all major disasters impacted Li (Figure 1) due
to its geographic location. The potential pressure of disasters in the region exceeds the
rise in social, economic, and infrastructure levels. After suffering from multiple disasters,
resilience declines, making it more vulnerable and difficult to withstand and mitigate
disaster shocks (Aba County exists in the Aba Prefecture, and all Aba in Figure 4 refer to
Aba County).
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(c,d) low resilience regions.

The area experienced natural disasters, such as landslides, debris flows, and earth-
quakes, with significant effects on all dimensions in 2013 and 2017. To visualize each
county’s environmental, economic, social, and infrastructural changes. This paper shows a
change graph in four dimensions for the region in the crucial years of 2013 and 2017. The
trends of changes in 2012 and 2016 were also included for comparison purposes, as seen in
Figure 5.

Figure 5 shows apparent gaps in each county’s development levels of the four di-
mensions. Moreover, the 2017 earthquake of magnitude 7.0 affected the economy and
infrastructure of Songpan and Jiuzhaigou, causing them to decline relative to 2016 levels.
It is worth mentioning that after the 2013 Wenchuan ‘710’ debris flow, the level of the
four dimensions in Wenchuan increased somewhat compared to 2012 (Figure 4b), indicat-
ing that the area has some capacity to withstand and recover from the disaster. However,
Wenchuan’s disaster resilience (Figure 4a) decreased relative to 2012, indicating that the
2013 disaster increased Wenchuan’s disaster stress and outweighed the benefits of the
increased levels of the four dimensions.

This paper calculated coefficients of variation for the four components to explore the
development gap between regions in Aba, as shown in Table 2. The coefficient of variation
is determined by the standard deviation and mean of the data. A smaller coefficient of
variation represents a minor degree of departure and vice versa. This paper uses the
coefficient of variation to measure the balance of resilience development in the study area.
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Table 2. Variation of coefficient of disaster resilience in Aba.

Environment Economy Society Infrastructure

2010 50.4% 55.7% 27.1% 60.0%
2011 50.6% 54.4% 33.4% 59.8%
2012 50.6% 53.2% 31.5% 58.1%
2013 50.1% 49.1% 34.7% 57.5%
2014 50.2% 49.5% 31.9% 56.7%
2015 50.2% 49.6% 35.2% 54.8%
2016 50.2% 45.5% 34.9% 52.5%
2017 51.0% 43.8% 37.5% 48.8%
2018 51.4% 44.4% 39.3% 51.9%
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Environment, economy, society, and infrastructure were examined. The large values
of the coefficient of variation for these four dimensions indicate that environmental, eco-
nomic, social, and infrastructure levels between counties vary significantly. The variation
coefficient of the social dimension increased from 27.1% in 2010 to 39.3% in 2018, indicat-
ing an increase in the disparity of social resources between countries. The coefficient of
variation of the social resilience and environmental dimensions increased somewhat but
generally stabilized. In contrast, the coefficient of variation of economic and infrastructure
dimensions shows a decreasing trend, indicating that the Aba government keeps balancing
economic development and infrastructure construction, which significantly reduces the
imbalance of infrastructure and economic development between counties.

3.3. Spatial Variation in Disaster Resilience in 13 Counties

For data visualization and further research into the spatial clustering characteristics of
changes in disaster resilience in each county, using the mean and standard deviation, this
study categorizes the disaster resilience index of 13 areas in Aba from 2011 to 2019 into five
levels: high, moderately high, medium, moderately low, and low, as shown in Figure 6 [51].
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Figure 6. 2010−2018 disaster resilience index of counties in the study area.

Regarding spatial distribution, disaster resilience is generally higher in the southeast
and overall lower in the northwest, except for Maerkang. From 2010 to 2017, the disaster
resilience in the eastern part of the study area was generally high. Unfortunately, after
2017, due to the impact of the Jiuzhaigou large-scale earthquake, the disaster resilience in
the eastern part of the study area declined (Figure 5). To numerically visualize the spatial
distribution of disaster resilience differences, global Moran’s I (Table 3) and local Moran’s I
(Figure 6) can be calculated.
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Table 3. Global Moran’s I result of the Aba disaster resilience.

Moran’s I Mean SD z-Value p-Value

2010 0.256 −0.0833 0.0941 3.676 0.001
2011 0.270 −0.0803 0.0900 3.895 0.001
2012 0.291 −0.0911 0.0890 4.298 0.001
2013 0.228 −0.0873 0.0920 3.424 0.001
2014 0.246 −0.0800 0.0942 3.460 0.001
2015 0.296 −0.0833 0.0909 4.245 0.001
2016 0.292 −0.0830 0.0907 4.131 0.001
2017 0.075 −0.0808 0.0925 1.685 0.057
2018 0.045 −0.0863 0.167 1.660 0.070

According to the global Moran’s I for disaster resilience in Aba, the Moran’s I is greater
than 0 throughout the study period. The Moran’s I showed an upward trend in 2010–2016,
but a decline in 2013, and the Moran index fell sharply in 2017–2018. In 2010–2016, the
z-value was greater than the critical value (2.58), and the significant value level was 0.01,
and in 2017–2018, the z-value was greater than the critical value (1.65), the significant
value level was 0.1, and these results are significant. The results show a significant positive
correlation between the distribution of disaster resilience in Aba and the disaster resilience
of different counties, showing a significant spatial aggregation phenomenon.

It is worth noting that Moran’s I declined in 2013 but still showed a significant positive
correlation across counties. The difference is that in the two years of 2017 and 2018, the n’s I
of each county area are close to 0, which means that the degree of clustering of the disaster
resilience distribution in the county area weakened, showing a random distribution trend.

To further determine which counties in Aba have a spatial clustering phenomenon
and analyze the spatial correlation of each county, this paper calculated local Moran’s I and
plotted local indicators of spatial association (LISA), as shown in Figure 7.
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HH, LL, and HL clusters existed in Aba during the study period. From 2010 to 2016,
the HH clustering area was mainly in the eastern part of the Aba Prefecture, including
Songpan and Mao, and the HL clustering area was mainly in Heishui, in the middle. In
contrast, the LL-type counties are relatively widely distributed, and the western plateau
counties in the Aba Prefecture show an LL-type distribution, indicating a strong local
spatial positive correlation between the disaster resilience and the counties. After 2017,
the disaster resilience of Aba changed greatly, and the spatial cluster of disaster resilience
decreased. Only Songpan County has HH-type clusters.

3.4. Influencing Factors of Disaster Resilience

Based on the PLS regression (see Section 2.3.4), the standardized regression coefficients
of the factors influencing disaster resilience and the VIP values were calculated (see Table 4
and Figure 8), and the factors influencing the change in disaster resilience were analyzed
(1–21 in Figure 7 correspond to the 21 indicators in Table 1, respectively).

From the results of PLS regression, 16 of the 21 indicators have VIP values greater
than 0.8 (Figure 8). These indicators have a more significant impact on disaster resilience,
where the indicators with the highest VIP values for each dimension were average ele-
vation (VIP = 0.894), social consumer goods retail (VIP = 1.110), students (VIP = 1.244),
communication devices (VIP = 1.447), and the collapse of the ground (VIP = 1.480).

From the regression coefficients, the coefficients of average elevation, residential
savings, debris flow, landslide, and landslide hazards are negative, while the coefficients of
the remaining indicators are all positive (Table 4). This indicates that, excluding these five
indicators, all the remaining indicators show a positive effect on disaster resilience.

Table 4. PLS regression results.

Dimension Variable Coefficient VIP

Environment
Coverage 0.222 0.856
Elevation −0.169 0.894
Land area 0.059 0.679

Economy

GDP 0.003 0.918
Industry structure 0.040 0.955

Social consumer goods retail 0.171 1.110
Finance revenue 0.225 1.041

Savings −0.127 1.075

Society

Students 0.023 1.244
Bed space 0.169 0.657
The doctor 0.019 0.844
Social labor 0.211 0.650

Social security 0.064 0.628

Infrastructure

Communication devices 0.411 1.447
Public transport 0.229 0.720

Electricity 0.189 1.080
Social investment 0.316 0.812

Internet users 0.123 1.138

Disaster pressure
Debris flow −0.539 1.184
Landslide −0.238 0.973

The collapse of the ground −0.530 1.480

In summary, combining the regression coefficients and VIP values, it can be found
that the key factors affecting resilience are average elevation, total social retail merchandise,
fiscal revenue, number of doctors, communication equipment, social fixed asset investment,
debris flow, landslide, and the collapse of the ground. Most notably, all three hazards of
disaster stress show a strong negative impact on disaster resilience.
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4. Discussion and Recommendations
4.1. Discussion

The paper discusses the results from environment, infrastructure, economy, society,
disaster pressure, and spatial heterogeneity.

(1) Environment. County environmental levels remained relatively stable in 2013 and
2017, when they suffered from large disasters. However, the coefficient of variation between
counties (see Table 2) is large and increased during 2010–2018, representing an increased
imbalance in environmental aspects between counties. Among them, the three counties with
the lowest rates are Hongyuan, Ruoergai, and Aba counties because the average altitude
and the forest cover rate have the most significant effects on the environmental level.
These three counties are situated in the northwest plateau region of the Aba Prefecture at a
relatively higher altitude, have a relatively low amount of forest cover, and are experiencing
grassland desertification. As a result, these regions are ecologically fragile and have a low
carrying capacity for resources and the environment.

(2) Infrastructure. Hongyuan, Ruoerge, Aba, and Rangtang counties in Aba are the
regions with the lowest infrastructure level (see Figure 5). These regions, which are in
the transitional zone between high mountain valleys and plateaus, are impacted in their
ability to develop economically by the difficulty of transportation and the slow adoption of
communication and information technology.

(3) Economy. Because of its high concentration of ethnic minorities, remote location,
and delicate ecological environment, the Aba Prefecture naturally has low socioeconomic
development. At the same time, the county has imbalances in finance, industrial structure,
and consumption levels. Wenchuan, Jiuzhaigou, and Maerkang counties have significantly
higher economic levels than other areas. This is because Wenchuan and Jiuzhaigou have
the best location conditions in the state, near the economically developed Sichuan Basin,
which can effectively drive the economy. In addition, Maerkang, the capital town of Aba, is
located in the middle and has a more robust economic drive. Fortunately, between 2010
and 2018, the coefficient of variation for the economic dimension (see Table 2) fell by more
than ten percentage points, indicating that the economic level gap between counties is
gradually decreasing.

(4) Society. This dimension is the most balanced of the four. Except for the higher
social level in Maerkang, the other regions are relatively balanced (see Figure 5). Due to its
status as the capital town of Aba, the Prefecture invested more in medical resources, social
security, and education resources, which provided more employment opportunities and a
larger labor force, further improving the social level.

(5) Disaster stress. The 2013 Wenchuan mudslide outbreak triggered a ground collapse
and other disasters, and the 2017 Jiuzhaigou 7.0 magnitude earthquake triggered a variety
of secondary disasters, such as landslides and ground collapse. These disasters led to an
increase in disaster stress in the counties and caused a decrease in their ability to resist
and mitigate the impact when dealing with internal and external disturbances. Disaster
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resilience is reduced (see Figure 4), and relying on capital that utilizes the four dimensions is
complex. For example, the overall levels of Li and Heshui counties in 2013 and Jiuzhaigou,
Ruoerge, Songpan, and Mao counties in 2017 decreased compared to the previous year (see
Figure 7).

(6) Spatial Heterogeneity. The county’s environmental, economic, social, infrastruc-
tural, and disaster pressures led to substantial spatial heterogeneity in disaster resilience
(see Figure 6). The western region of Aba is a high mountain fringe with higher elevation,
making it more prone to geological hazards, such as landslides, landslides, and mudslides.
At the same time, the environmental, economic, social, and infrastructure levels are lower
than those in the eastern region, which leads to higher disaster resilience in the east region
of Aba and relatively lower resilience in the western region. Therefore, there is a spatial
aggregation phenomenon of HH aggregation in the east of the disaster resilience and LL
aggregation in the west (see Figure 7). However, the earthquake in Jiuzhaigou in 2017
severely affected the eastern part of Aba. The pattern of disaster resilience in Aba changed,
and the spatial aggregation effect decreased, showing a trend of random distribution.

Combining the above findings, it is uncomplicated to conclude that environment,
infrastructure, economy, society, and disaster stress all together affect disaster resilience.
Regions with lower levels of development and higher disaster stress tend to be more
vulnerable and have lower disaster resilience (see Figures 4 and 5). In other words, low
disaster resilience frequently coexists with high vulnerability. When a region has low disas-
ter resilience, the impact of disasters on the environment, infrastructure, economic, and
social development levels will be more severe. The development levels determine disaster
resilience, and disaster resilience in turn influences the development levels. This demon-
strates that there is an interaction between disaster resilience and regional development.

Furthermore, the conclusions reached in this paper align with how Aba and its regions
developed, indicating that the framework it presents for analyzing regional resilience
is effective.

4.2. Policy Recommendations

Presently, Aba is facing frequent natural disasters and regional differences in devel-
opment levels. Coping with the impact of multi-hazards and achieving sustainable and
synergistic regional development became a vital future issue for Aba’s government. Based
on the previous identification of important influencing factors, spatial analysis, changes in
the four dimensions (see Figure 7) and gaps (see Table 2), and changes in disaster stress
(see Figure 2), the following policy recommendations are proposed to promote economic
development in Aba and reduce the differences in development levels between regions.

(1) Promote regional co-development. The large disparity in development levels
among Aba’s counties (see Table 2) and areas with low disaster resilience clustering (see
Figure 7) necessitate the need to balance regional development. Regional variations in
development levels are unavoidable in Aba because of the unequal distribution of resources.
The government of Aba ought to make use of the location. Wenchuan and Jiuzhaigou in
the eastern region should strengthen cooperation with the neighboring areas to lead the
economic development of the Aba Prefecture and achieve shared regional development.
Wenchuan and Jiuzhaigou in the east of the region should enhance collaboration with the
adjacent areas to lead the development of Aba and achieve shared regional development.
Jinchuan and Heshui in the western region actively promote a resource-based economy,
build high-quality tourist areas, quicken the growth of tertiary industry, and close the
development gap between the eastern and western regions.

(2) Strengthening development level building. The capacity of a region to prevent,
resist, and rescue from disasters, is determined by its environment, economy, society, and
infrastructure. That is, a lower level of development represents greater vulnerability, and a
higher level of development represents greater disaster resilience. Thus, improving these
elements and the interconnection of the four dimensions leads to higher disaster resilience
and lower vulnerability. Economically, the government of Aba should take advantage of the
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economies of Wenchuan, Jiuzhaigou, and Maerkang to stimulate social consumption within
the region, boost social demand, and promote inter-regional linkages to achieve region-
wide economic development. Environmentally, the government should promote urban
and rural green construction, strengthen afforestation and compulsory tree planting efforts,
and maintain soil and water to enhance forest coverage. Socially, the government should
increase the ability to defend social organizations, expand the health sector’s operations,
and safeguard health care services. Infrastructure-wise, the government should boost
investment in infrastructure building, modernize communication equipment, public transit,
etc., especially in the western regions such as Hongyuan, Ruoerge, Aba, and Rangtang.

(3) Emphasis is placed on catastrophe management and prevention. The growth in
disaster pressure from 2010 to 2018 (see Figure 3) shows that each county’s potential disaster
locations increased. Disasters, including earthquakes, landslides, and debris flows, are
frequent in this area due to Aba’s special geographic location (see Figure 2). Multi-disasters
significantly impact the development of disaster resilience, especially in the western region
where disaster resilience LL is concentrated (see Figure 7). The government of Aba needs
to focus on disaster prevention, resistance, and rescue efforts, regularly identify potential
disaster sites, and develop strategies for avoidance and relocation to minimize the impact
of the catastrophe.

The recommendations presented in this paper can help to promote the economic
development of Aba, reduce the differences in development levels between regions, and
improve disaster resilience to achieve sustainable regional development.

5. Conclusions

The paper used the DROP model’s four dimensions—environmental, economic, social,
and infrastructure. Additionally, the disaster stress dimension was included to account for
the effect of multi-hazards. Twenty-one indicators were selected to quantitatively assess
disaster resilience in Aba during 2010–2018, analyze regional development differences and
spatial and temporal changes in disaster resilience in Aba, and identify key influencing
factors. The results show that the model can accurately assess how disaster resilience
changed over time. The study discovered that each county in Aba has a different disaster
resilience and development level for each dimension. Additionally, there is a spatial
aggregation phenomenon where disaster resilience is H-H in the east and L-L in the west.
To improve regional resilience to seek sustainable development in ecologically vulnerable
areas, this paper proposes: (1) Promote regional co-development, and improve the level of
regional development. (2) Strengthen economic and environmental dimensions, enhancing
connections across dimensions. (3) Pay attention to disaster prevention and management,
and establish a complete disaster prevention, resistance, and rescue system.

The paper improves the current calculation model, incorporates per capita disaster
hazard potential points for disaster resilience calculation, and adds disaster pressure to
the traditional resilience evaluation. It also chooses poor mountainous areas, currently
understudied, for the study. This paper applies the regional resilience framework to
the highland mountainous regions, which can serve as an example for other regional
resilience studies similarly situated and impacted by multi-hazards. Furthermore, we
apply the framework to China, a developing country, which serves as a reference for other
countries facing similar challenges and multi-hazard disasters. However, this paper has
some limitations, and future research may combine subjective and objective factors instead
of leaving out subjective factors from the resilience calculation. In addition, expert scoring
or other subjective weighting techniques may be used in conjunction with the calculation
of each indicator’s weight. Moreover, only the inherent resilience under the influence of
multi-hazards was calculated in this study, and the combination of adaptive resilience with
inherent resilience can be considered.
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