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Abstract: Malaria remains a serious public health challenge in Ghana including the Greater Accra
Region. This study aimed to quantify the spatial, temporal and spatio-temporal patterns of malaria
in the Greater Accra Region to inform targeted allocation of health resources. Malaria cases data from
2015 to 2019 were obtained from the Ghanaian District Health Information and Management System
and aggregated at a district and monthly level. Spatial analysis was conducted using the Global
Moran’s I, Getis-Ord Gi*, and local indicators of spatial autocorrelation. Kulldorff’s space–time scan
statistics were used to investigate space–time clustering. A negative binomial regression was used to
find correlations between climatic factors and sociodemographic characteristics and the incidence
of malaria. A total of 1,105,370 malaria cases were reported between 2015 and 2019. Significant
seasonal variation was observed, with June and July being the peak months of reported malaria cases.
The hotspots districts were Kpone-Katamanso Municipal District, Ashaiman Municipal Districts,
Tema Municipal District, and La-Nkwantanang-Madina Municipal District. While La-Nkwantanang-
Madina Municipal District was high-high cluster. The Spatio-temporal clusters occurred between
February 2015 and July 2017 in the districts of Ningo-Prampram, Shai-Osudoku, Ashaiman Municipal,
and Kpone-Katamanso Municipal with a radius of 26.63 km and an relative risk of 4.66 (p < 0.001).
Malaria cases were positively associated with monthly rainfall (adjusted odds ratio [AOR] = 1.01; 95%
confidence interval [CI] = 1.005, 1.016) and the previous month’s cases (AOR = 1.064; 95% CI 1.062,
1.065) and negatively correlated with minimum temperature (AOR = 0.86, 95% CI = 0.823, 0.899) and
population density (AOR = 0.996, 95% CI = 0.994, 0.998). Malaria control and prevention should be
strengthened in hotspot districts in the appropriate months to improve program effectiveness.

Keywords: Greater Accra region; Ghana; malaria; space; time; clustering; modelling

1. Introduction

Malaria is a vector-borne tropical disease present in 85 countries worldwide, in-
fecting approximately 241 million people, and causing 627,000 deaths in 2020 [1]. The
age-standardized rate of disability-adjusted life years (DALYs) from malaria was 6498 per
100,000 population in 2017 [2]. In the same year, the World Health Organization (WHO)
African Region reported 95% and 96% of global malaria cases and deaths, respectively [3].
Malaria is caused by Plasmodium parasites and is predominantly transmitted via the bite of
the female Anopheles mosquito, but it can also be transmitted from mother to child or via
blood transfusion [4]. While malaria is present in many regions, Africa and Asia carries
significant burden and deaths [1,5,6]. Over 65% of the global death toll from malaria is in
children under the age of five years, as repeated infections lead to near-complete immunity
from severe disease and death, thereby protecting older people [7–9]. Malaria is endemic
in Ghana, accounting for 40% of all outpatient visits to hospital [10].
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Disease incidence is influenced by a wide range of factors, including the environmental
suitability for the vectors, the population at risk, and the control measures taken. The
primary malaria vectors in Ghana are Anopheles gambiae and An. funestus, with An. gambiae
becoming more dominant as urbanization progresses, and P. falciparum is the primary
Plasmodium parasite [11,12]. Factors that influence environmental suitability for mosquito
vectors include climate, altitude, vegetation, and control measures [4]. P. falciparum, once
transmitted to the female mosquito from an infected human, has a temperature-dependent
extrinsic incubation period before becoming infectious to other individuals [13,14]. An.
gambiae and An. funestus tend to be most prevalent in tropical, humid conditions with access
to small pools of water [15,16]. Control measures such as sleeping under long-lasting insec-
ticide nets (LLINs) can reduce malaria incidence significantly, with the WHO estimating
that 1.7 billion cases of malaria were averted between 2000 and 2020 [1]. However, progress
towards malaria elimination has stalled in recent years. Globally, malaria incidence de-
clined by 27% between 2000 and 2015 but by only 1.2% between 2015 and 2019 [9]. In
certain areas, the burden due to malaria is increasing due to resource limitations for health
systems and drug and insecticide resistance as well as expanding climatic suitability [11].

Across Ghana, malaria incidence per 1000 people decreased by 7.8% each year between
2011 and 2018 but by only 2.6% per year between 2018 and 2020 [17]. To continue the
success of control measures in Ghana, programs need to take into account the spatially
heterogeneous nature of the malaria burden, as well as health care access [18–20]. In the
Greater Accra Region, only 2% of children aged between 6–59 months tested positive for
malaria by microscopy, compared with 27% in the western region of Ghana [21]. Therefore,
targeted distribution of preventative measures is more likely to be effective as opposed
to uniform black resource allocation [22]. Hotspot and cluster analyses are useful tools
for assessing geographic variation in malaria risk and incidence [23–26]. Understanding
the temporality of transmission can further support decisions regarding the timing of
control measure deployment. Therefore, this study aimed to quantify the spatial, temporal
and spatiotemporal patterns of malaria in the Greater Accra Region using retrospective
surveillance data. The regional malaria program can use the findings from this study for
targeted deployments of control measures including LLINs, indoor residual spraying (IRS)
and intermittent preventive therapy in pregnancy (IPTp).

2. Materials and Methods
2.1. Study Site

The Greater Accra Region is the smallest of the 10 administrative regions in Ghana,
spanning 3245 km2 in the southeast of the country (Figure 1) [27]. According to the 2021 cen-
sus, it is the most populous region in Ghana with 5,455,692 people in the region [28]. Cor-
respondingly, the population density in Greater Accra Region is much higher than in the
rest of Ghana. Greater Accra Region has 29 metropolitan and municipal district assemblies
(MMDAs), hence referred to as districts [29]. The MMDAs that are mentioned throughout
this paper are: 1-Weija-Gbawe Municipal District, 2-Accra Metropolitan District, 3-Adenta
Municipal District, 4-Ashaiman Municipal District, 6-Shai-Osudoku District, 7-Ga East
Municipal District, 10- Tema Metropolitan District, 11-Ningo-Prampram District, 13-Ga
North Municipal District, 17-Ga Central Municipal District, 18- La-Nkwantanang-Madina
Municipal District, 19-Kpone-Katamanso Municipal District, 20-Ayawaso East Munici-
pal District, 21-La-Dade-Kotopon Municipal District, 22-Korle-Klottey Municipal District,
23-Ayawaso West Municipal District, 24-Ayawaso North Municipal District, 25-Okaikwei
North Municipal District, 26-Ayawaso Central Municipal District, 27-Ablekuma Central
Municipal District, 28-Ablekuma North Municipal District and 29-Ablekuma West Munici-
pal District (Figure 1). The Greater Accra Region has a tropical climate, with high humidity
and average daily temperatures above 27 ◦C [30]. Variability in temperature is low, while
the rainfall can vary significantly depending on the season [30].
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Figure 1. Map of study area (inset) and a choropleth map of the Greater Accra Region indicating the
mean number of malaria infections per year (per 1000 people), 2015–2019.

2.2. Data Sources

This study used secondary aggregated clinical data for all age groups of confirmed
malaria infections between 2015 and 2019, from hospitals and primary health facilities
(hereafter referred to as health facilities) in the Greater Accra Region. These data were
obtained from the Ghana Health Service and the Greater Accra Regional Health Directorate.
Patients with fever or suspected malaria undergo blood tests with either a rapid diagnostic
test (RDs) or microscopy. Malaria-positive patients are treated using the national guidelines,
and their results are recorded by the treating health facilities. These data are aggregated
temporally monthly and spatially at a district level and reported to the national surveillance
system at the end of each month.

The district shapefiles were obtained from OpenStreetMap and imported into QGIS
version 3.22 [31]. The yearly district population was obtained from the Health Information
Department of the Greater Accra Regional Health Directorate, and the monthly population
was linearly interpolated from yearly population data between 2015 and 2019. District-
level monthly temperature and rainfall variables were determined based on data from
WorldClim at a spatial resolution of 1 km [30].

2.3. Descriptive Statistics

Malaria data were aggregated across 2015–2019 and normalised for population by
the Ghana Statistical Service (GSS) projected population in 2019. A choropleth map was
created to represent the annual parasite index (API), which is the number of malaria cases
each year per 1000 people [32]. Average monthly rainfall and maximum and minimum
temperatures for each of the districts were calculated and are presented.
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2.4. Temporal Analysis

The data were aggregated across districts to calculate monthly malaria cases in the
Greater Accra Region. The seasonality of malaria was investigated using boxplots and line
plots using monthly data. Means and 95% CIs for the data were considered for the line
plots. Comparison between June and July mean reported cases to the rest of the year was
conducted with Welch’s t-test.

2.5. Spatial Analysis

Spatial analysis was undertaken with Global Moran’s I, the Getis-Ord Gi* statistic,
and local indicators of spatial autocorrelation (LISA) [33–35]. The Global Moran’s I statistic
provides a measure of the spatial autocorrelation (tendency of neighbouring regions to
have similar values), where a positive value indicates positive spatial autocorrelation, and a
negative value indicates negative spatial autocorrelation [34]. Hotspot districts (Gi* statistic)
are districts that have higher reported malaria cases than the mean for the Greater Accra
Region [33]. LISA compares the similarity of risk between a district and its neighbours: a
positive value indicates similar risk, while a negative value indicates dissimilar risk [35].
This can be used to obtain clusters (high risk surrounded by high risk), cold spots (low
risk surrounded by low risk) and outliers (high risk surrounded by low risk and low risk
surrounded by high risk) [35]. For example, a result of low-high represents a district with
low risk surrounded by districts with high risk.

2.6. Space–Time Analysis

Kulldorff’s space–time statistic was used to identify likely clusters in space–time,
that is, monthly by districts over the study period. Three sets of data were input into
the SaTScan software: the monthly district malaria cases, the population in each of the
29 districts and the latitude and longitude of the centroids of each district. Kulldorff’s scan
statistic utilises moving cylinders with the base of the cylinder in the spatial component
and the height in the temporal component, with the maximum spatial cluster size set at
25% of the population at risk and the maximum temporal cluster size at 50% of the study
period [36]. It considers the observed cases inside and outside the windows to estimate
the likelihood that the observed cases inside the window are greater than what is expected
(estimated as relative risk [RR]) by chance [36]. The window size with the highest log-
likelihood ratio (LLR) was considered the most probable cluster, i.e., the cluster that is least
likely to have occurred randomly. Statistical significance of clusters was obtained with 999
Monte Carlo replications at p <0.05.

2.7. Regression Analysis

Negative binomial regression was chosen over Poisson regression due to a lower
Akaike information criterion (AIC) (Supplementary Table S1). A negative binomial gener-
alized linear model was used to find the correlations between monthly malaria cases (Y)
with the climatic covariates (rainfall, temperature), previous month’s malaria cases (log
base 1.1 transformed) and population density (log base 1.1 transformed). A collinearity
analysis using the variance inflation factor (VIF) showed that there was some collinearity
between the maximum and minimum temperature (Supplementary Table S2). Therefore,
two models with and without maximum temperature were fitted to select the best model
using AIC. The model with minimum temperature, rainfall, malaria cases of the previous
and population density was the model with the lowest AIC (Supplementary Table S3).

The model with the lowest AIC was a model that used the minimum temperature,
rainfall, the previous month’s reported cases (log-transformed), and the population density
(log-transformed).

Yit ∼ NegBin(µit, θ) (1)

log(µit) = α+ βTminit + γRainfallit + δ log1.1(Yt−1) + ε log1.1(Popdensit) (2)
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where α, β, γ, δ, and ε are regression coefficients; Tminit and Rainfallit are the minimum
temperature and rainfall for district i at month t; Yt−1 is the previous month log-transformed
and Popdensit is the population density log-transformed.

Space–time analysis was performed with the SaTScanTM software v10.0.2 (MA, USA).
Temporal on Python using Spyder IDE (version 5.1.5). Regression analysis was conducted
using Stata 16.1 (StataCorp LLC, TX, USA). Maps were created with ArcGIS v10.8.1 (ESRI,
Redlands, CA, USA).

3. Results
3.1. Descriptive Statistics

Across the study period, a total of 1,105,370 malaria cases were recorded in the region.
The eastern districts of the region had higher rates of malaria as shown in the choropleth
map (Figure 1), while the districts near the Accra metropolitan district in the southwest
tended to have low API (Figure 2). Average minimum temperatures ranged between
districts from 23.3 ◦C to 24.4 ◦C (mean = 23.9 ◦C), while average maximum temperatures
were between 31.3 ◦C and 32.4 ◦C (mean = 31.9 ◦C). Rainfall varied between districts from
75.8 mm to 96.2 mm per month, with the mean being 83.7 mm. A table detailing the
total reported malaria cases, populations and the API and climate data can be found in
Supplementary Table S4.
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3.2. Temporal Analysis

Figure 2 shows that June and July represent clear peaks in the monthly case load in
the Greater Accra Region, and cases tend to fluctuate in the other months, with an increase
in one month tending to follow a decrease in the previous month. Larger interannual
variation, indicated by a wider confidence interval (Figure 3), can be seen in the months
with lower mean case numbers. In late 2017/early 2018 there was a clear period in which
the incidence of malaria was substantially higher than the mean, and in the corresponding
period in 2018/2019 the incidence was much lower than the mean. June and July both
had mean reported case numbers higher than the rest of the year (p < 0.05), indicating that
malaria prevalence is statistically significantly higher during these months.



Int. J. Environ. Res. Public Health 2022, 19, 12006 6 of 13

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 6 of 14 
 

 

3.2. Temporal Analysis 
Figure 2 shows that June and July represent clear peaks in the monthly case load in 

the Greater Accra Region, and cases tend to fluctuate in the other months, with an increase 
in one month tending to follow a decrease in the previous month. Larger interannual var-
iation, indicated by a wider confidence interval (Figure 3), can be seen in the months with 
lower mean case numbers. In late 2017/early 2018 there was a clear period in which the 
incidence of malaria was substantially higher than the mean, and in the corresponding 
period in 2018/2019 the incidence was much lower than the mean. June and July both had 
mean reported case numbers higher than the rest of the year (p < 0.05), indicating that 
malaria prevalence is statistically significantly higher during these months. 

 
Figure 3. Line plot of monthly reported malaria cases with mean and 95% confidence interval in 
the Greater Accra Region, 2015-2019: (A) Each year in different colours; (B) Whole study period as 
one line. 

3.3. Spatial Analysis 
The Global Moran’s I was 0.111 (p-value < 0.001) indicating a clustering effect (Sup-

plementary Figure S1). From the Getis Ord Gi* analysis, the hotspot districts were Kpone-
Katamanso Municipal District, Ashaiman Municipal District, Tema Municipal District, 
and La-Nkwantanang-Madina Municipal District (Figure 4A). Cluster analysis using 
LISA showed that only La-Nkwantanang-Madina Municipal District was a high–high 
hotspot. Tema Metropolitan and Accra Metropolis were low–high and high–low outliers, 
while Ayawaso West, La-Dade-Kotopon, Ayawaso North, Ayawaso East, Ayawaso Cen-
tral, Korle-Klottey, Ablekuma West, Weija-Gbawe, Ablekuma North, Ablekuma Central, 
Okaikwei North and Ga Central districts are low–low cold spots (Figure 4B). 
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one line.

3.3. Spatial Analysis

The Global Moran’s I was 0.111 (p-value < 0.001) indicating a clustering effect
(Supplementary Figure S1). From the Getis Ord Gi* analysis, the hotspot districts were
Kpone-Katamanso Municipal District, Ashaiman Municipal District, Tema Municipal Dis-
trict, and La-Nkwantanang-Madina Municipal District (Figure 4A). Cluster analysis using
LISA showed that only La-Nkwantanang-Madina Municipal District was a high–high
hotspot. Tema Metropolitan and Accra Metropolis were low–high and high–low outliers,
while Ayawaso West, La-Dade-Kotopon, Ayawaso North, Ayawaso East, Ayawaso Cen-
tral, Korle-Klottey, Ablekuma West, Weija-Gbawe, Ablekuma North, Ablekuma Central,
Okaikwei North and Ga Central districts are low–low cold spots (Figure 4B).

3.4. Space–Time Analysis

There were eight space–time clusters from SaTScan analysis. The most likely multi-
district cluster occurred between February 2015 and July 2017 in Ningo-Prampram, Shai-
Osudoku, Ashaiman Municipal and Kpone-Katamanso Municipal districts with a radius
of 26.63 km and an RR of 4.66. A secondary cluster occurred in the districts of Ga East,
Ga North and La-Nkwantanang-Madina between June 2017 and November 2019, with a
radius of 7.94 km and a risk ratio of 1.96. Several of the clusters had a radius of 0 km, which
indicates a single district (Figure 5 and Table 1).

3.5. Negative-Binomial Analysis

A 1 cm increase in monthly rainfall is associated with a 1.0% increase in malaria cases
(relative risk [RR] = 1.01, 95% confidence interval [CI] 0.5%, 1.6%). A decrease in cases by
14.0% (RR = 0.87, 95% CI 10.1%, 17.7%) was associated with a 1 ◦C increase in minimum
temperature. An increase in malaria cases by 10% in the previous month is correlated with
an increase in malaria cases in the subsequent month by 6.4% (RR = 1.06, 95% CI 6.2%,
6.5%). A 10% increase in population density was correlated with a 0.4% lower incidence of
reported malaria (RR = 0.996, 95% CI 0.2%, 0.4%) (Table 2).
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Table 1. The date range and location of space–time clusters of malaria incidence in the Greater Accra
Region, 2015–2019.

Time Period
(Month Year) Latitude Longitude Radius (km) Population No. of

Cases
Expected

Cases
No. of

Districts RR LLR p-Value *

15 February–17 July 5.8126 0.1730 26.6 483,466 216,521 54,874.3 4 4.66 148,688.1 <0.001
15 February–17 July 5.6967 0.1308 0 88,105 41,972 10,000.12 1 4.32 28,704.2 <0.001

15 May–16
November 5.6060 0.1218 0 156,336 15,921 11,208.48 1 1.43 885.4 <0.001

15 July 5.5386 0.2269 0 509,868 2243 1918.16 1 1.17 26.1 <0.001
17 June–19
November 5.7000 0.2196 7.9 411,736 94,709 50,348.11 3 1.96 16,426.8 <0.001
17 June–19
November 5.6169 0.3065 0 133,495 22,665 16,324.08 1 1.40 1115.8 <0.001

18 April 5.5591 0.3128 0 180,058 849 714.82 1 1.19 11.9 <0.05
19 August–19

November 5.6212 0.2249 0 236,067 8296 3990.12 1 2.09 1774.8 <0.001

RR—relative risk; LLR—log-likelihood ratio; * significant at p value of 0.05.

Table 2. Associations between environmental variables and malaria incidence risk in the Greater
Accra Region, 2015–2019.

Covariates Coefficient 95% CI Risk Ratio 95% CI

Intercept 5.610 5.001, 6.218 − −
Rainfall (cm) 1.013 × 10−2 7.29 × 10−3, 1.297 × 10−2 1.01 1.005, 1.016

Min temp (◦C) −0.137 −0.161,−0.113 0.86 0.823, 0.899
Malaria cases * 6.17 × 10−2 5.99 × 10−2, 6.34 × 10−2 1.064 1.062, 1.065

Population density ** −3.69 × 10−3 −5.55× 10−3,−1.83× 10−3 0.996 0.994, 0.998

CI—confidence interval; * Malaria cases of previous month log transformed; ** Population density log trans-
formed.

4. Discussion

This analysis considered the variation in malaria burden between districts and over
time across the Greater Accra Region, as well as identifying the climatic drivers of malaria in
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this region. There was significant inter-district variation of malaria incidence, with the API
varying between 4 and 185. Temporal analysis showed a seasonal peak in June-July each
year, with cases tending to increase and decrease in the other months. Kpone-Katamanso
district reported higher than expected malaria during the study period. Rainfall and
malaria in the previous month were positively associated with reported malaria, while
temperature and population density were negatively associated with malaria.

Rainfall was positively correlated with reported malaria cases. This finding is similar to
other studies which reported rainfall as an important driver of malaria transmission [37–40].
Rainfall provides breeding habitats for An. gambiae and An. funestus, as documented in
the fringes of the North African deserts where An. gambiae and An. funestus populations
increase rapidly at the onset of rain [6,41,42]. Therefore, people should be encouraged
to implement control measures including sleeping under LLINs, particularly in months
with high rainfall. Use of LLINs is particularly effective as most female mosquitos car-
rying P. falciparum only bite at night [43]. Further, febrile cases during the rainy season
need investigation for prompt treatment with anti-malarial drugs and integrated vector
control initiated as outlined in the Global Technical Strategy for Malaria 2016–2030 [44].
Vector control can be accomplished with LLINs and indoor residual spraying (IRS) and by
reducing the number of breeding sites such as puddles caused by broken pipes or unfilled
dugouts [12,44].

In this study, cases in the previous month were positively associated with the malaria
case load of the current month. Malaria-infected individuals can pass on the infection
to female An. gambiae and An. funestus through the blood meal, which in turn will
infect healthy individuals in subsequent bites. Matured gametocytes (transmissible stage
from humans to mosquitoes) are ingested by female mosquitoes and sporogonic cycle
(in mosquitoes) of P. falciparum is around 11–16 days [45]. It takes around 10 days for
P. falciparum to become gametocytes in humans [45]. Therefore, data from previous months
can be used as a proxy for infection for the subsequent month. This information can be
used for identifying control measures such as distributing LLINs and monitoring their use.

Minimum temperature was negatively correlated with malaria incidence. This result
contrasts with the findings of Bi et al. (2003) in China and Mohammadkhani et al. (2016)
in Iran, who found that minimum temperature was positively correlated with malaria
incidence [40,46]. A study by Dabaro et al. (2021) in Ethiopia reported that minimum
temperature was not a statistically significant covariate of malaria [47]. However, the
research areas for these three studies were substantially colder than the Greater Accra
Region, with the mean minimum temperature less than 20 ◦C in each case. By contrast,
in Ghana, the minimum temperature was greater than 22.9 ◦C every month, and the
maximum temperature was greater than 28.9 ◦C every month (Supplementary Table S5).
This is significant as Wang et al. (2022) noted that the temperature-dependent reproduction
number was maximised at around 25 ◦C [48]. It is hence likely that the mean temperature
is greater than the optimal temperature for reproduction in the Greater Accra Region,
which could be a reason for the negative correlation found. Another reason could be that
the impact of temperature on malaria incidence due to An. gambiae, An. funestus and P.
falciparum survival is complex and not fully captured in the model [49–51]. Patz and Olson
(2006) noted that increases in temperature will lead to a decreased extrinsic incubation
period of the parasite [52]. By contrast, Noden et al. (1995) found that particularly high
temperatures reduce parasite densities and infection rates [50]. These findings can be
reconciled by the model of Shapiro et al. (2017), which captured the observed biology of
P. falciparum with An. stephensi, and found an optimum transmission temperature of 26 ◦C,
with transmission possible in the temperature range between 17 ◦C and 35 ◦C [53]. These
results may vary depending upon location, as Shapiro et al. (2017) used incubators for their
experiments, and Blanford et al. (2013) found that using mean monthly temperature as
an input into models will result in an overestimation of parasite development in warmer
climates such as Ghana due to effects of diurnal variation [14,53]. Variation in temperature
also affects the biting rate and gonotrophic processes [54,55].
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Population density was weakly negatively correlated with malaria cases. This agrees
with a large amount of the literature regarding malaria incidence in urbanised areas. Several
studies have indicated that urban areas have lower levels of malaria incidence [56,57].
Kabaria et al. (2017) found that malaria risk and population density follow a nonlinear
relationship, with malaria risk positively correlated with population densities smaller
than 1000 people/km2 and negatively correlated with population densities greater than
1000 people/km2 [58]. In the Greater Accra Region, most of the districts have a population
density greater than this value, so this agrees with the findings. There are several reasons
why this is the case. Residents in urban areas in the Greater Accra Region have increased
access to houses which are made of materials less susceptible to mosquitos entering the
home [59]. Wealthier urban areas are associated with lower incidence of malaria due to
increased access to health services, better garbage collection, higher sewer connection
rate, and less open water sites susceptible to mosquito breeding [16,60,61]. However, An.
gambiae adapting to breed in polluted regions and urban areas having lower uptake of
malaria prevention measures in Ghana may provide a reason why the correlation was
weak [12,21,62].

Malaria in the Greater Accra Region is highly seasonal, with cases peaking around
June and July every year. Mattah et al. (2017) found that around a third of the sampled An.
gambiae habitats in Ghana dried up at least once in an 11-month period [12]. Correspond-
ingly, An. gambiae and An. funestus habitats are more numerous in the wet season, which
may be a driver of high malaria case numbers (Supplementary Table S5). Another driver
may be that the weeding of major crops such as corn occurs during this season, providing
more vector–human interactions, which drive malaria transmission [63]. Large interannual
variation was observed in the months with fewer mean reported cases. This interannual
variation may be climate driven, with large systems such as the Atlantic Multidecadal Oscil-
lation and the Inter-decadal Pacific Oscillations being drivers of rainfall in West Africa [64].
Another potential reason for this result is malaria control measures such as LLIN and IRS
that are in place in Ghana [21]. Grassly and Fraser used a theoretical model of a general
seasonal disease to show that control measures can lead to more variability in cases [65].

The space–time model found eight clusters in the observation period, and the observed
number of cases in these districts was statistically significantly higher than the expected
number of cases. The primary cluster identified from Kulldorff’s space–time scan statistic
covered the Ningo-Prampram, Shai-Osudoku, Ashaiman Municipal and Kpone-Katamanso
Municipal districts in the centre of the Greater Accra Region between February 2015 and
July 2017. These districts were not significant in Getis-Ord Gi* and LISA. This may be
because these larger districts do not have centroids near other districts, leading to wider
confidence intervals [33]. La-Nkwantanang-Madina, which was the hotspot identified,
was part of the second most likely cluster, and Tema Metropolitan District, which borders
the most likely cluster and the single-district clusters was classed to be a low-high outlier.
According to the 2021 Ghana census, districts in the primary space–time cluster tend to be
rural, with Shai-Osudoku and Ningo-Prampram with low population density compared
with the average across the Greater Accra Region [28] (Supplementary Table S4). This agrees
with the existing literature regarding increased transmission intensity in rural areas due to
the An. gambiae vector’s lack of fitness for urban settings/fitness [16]. The consistency of
these findings using different analytical methods provides confidence in the existence of
hotspots in particular locations. Therefore, spatially targeted resource allocation is likely to
improve the cost effectiveness of control programs.

There are several limitations to this study. First, the most important limitation of
the current study is the potential for the inconsistent reporting of malaria across health
centres and the likelihood that not all cases were captured by the passive surveillance
system. Second, populations of districts were projected and may have led to under- or
overestimation. Third, unmeasured risk modifiers such as living standards and socioeco-
nomic status of the study population, localised behavioural and treatment seeking patterns,
population mobility, LLIN use and residual indoor insecticide coverage were unaccounted
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for in the model. Future studies should consider a wider range of potential covariates for a
better understanding of the impacts of relationships between environmental conditions
and malaria incidence.

Despite these limitations, this study provides key insights into the districts within
the Greater Accra Region which have higher cases of reported malaria and can be used to
prioritize resources into districts with more cases. Interventions can be targeted around June
and July when the reported cases peak. In addition, the regression analysis, while missing
some risk modifiers, captures key climatic risk factors such as minimum temperature and
rainfall that were associated with malaria incidence.

5. Conclusions

Malaria cases were clustered in the central district in the Greater Accra Region in Ghana
and incidences were higher in June and July months. Climatic and sociodemographic were
also associated with the transmission of malaria in this study. The spatial heterogeneity of
malaria incidence even within a small region such as Greater Accra highlights the need to
identify high-risk areas (districts) for targeted interventions. Therefore, national malaria
program should prioritize these hotspot districts for malaria control activities including
LLINs, IRS and IPTp.

Supplementary Materials: The supplementary materials contain additional information not pre-
sented in the main results. The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph191912006/s1. Supplementary Table S1: Poisson and Nega-
tive Binomial (Full Model). Supplementary Table S2: Variance Inflation Factor (VIF). Supplementary
Table S3: Comparing model with and without minimum and maximum temperature. Supplementary
Table S4: Summary table of reported cases and climatic variables by district. Supplementary Table S5:
Rainfall and case numbers in the Greater Accra Region by month. Supplementary Figure S1 Global
Moran’s I.
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