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Abstract: Background: Tickborne-encephalitis (TBE) is a potentially life-threating neurological
disease that is mainly transmitted by ticks. The goal of the present study is to analyze the potential
uniform environmental patterns of the identified TBEV microfoci in Germany. The results are used
to calculate probabilities for the present distribution of TBEV microfoci in Germany based on a
geostatistical model. Methods: We aim to consider the specification of environmental characteristics
of locations of TBEV microfoci detected in Germany using open access epidemiological, geographical
and climatological data sources. We use a two-step geostatistical approach, where in a first step, the
characteristics of a broad set of environmental variables between the 56 TBEV microfoci and a control
or comparator set of 3575 sampling points covering Germany are compared using Fisher’s Exact
Test. In the second step, we select the most important variables, which are then used in a MaxEnt
distribution model to calculate a high resolution (400 × 400 m) probability map for the presence of
TBEV covering the entire area of Germany. Results: The findings from the MaxEnt prediction model
indicate that multi annual actual evapotranspiration (27.0%) and multi annual hot days (22.5%) have
the highest contribution to our model. These two variables are followed by four additional variables
with a lower, but still important, explanatory influence: Land cover classes (19.6%), multi annual
minimum air temperature (14.9%), multi annual sunshine duration (9.0%), and distance to coniferous
and mixed forest border (7.0%). Conclusions: Our findings are based on defined TBEV microfoci
with known histories of infection and the repeated confirmation of the virus in the last years, resulting
in an in-depth high-resolution model/map of TBEV microfoci in Germany. Multi annual actual
evapotranspiration (27%) and multi annual hot days (22.5%) have the most explanatory power in our
model. The results may be used to tailor specific regional preventive measures and investigations.

Keywords: MaxEnt; prediction model; TBE; tick-borne encephalitis; TBEV; microfocus; Ixodes ricinus;
geostatistical approach; environmental variables; climatological data; land-use patterns

1. Introduction

Tickborne-encephalitis (TBE) is a potentially life-threating neurological disease that
is mainly transmitted by ticks [1,2]. The causative viral agent is tickborne-encephalitis
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virus (TBEV), which is a member of the mammalian tick-borne group in the family Fla-
viviridae [3]. In Europe, TBEV is endemic in Central Europe, in Eastern Europe, in parts
of the Scandinavian countries, in the Baltic region and is genetically divided into several
subtypes. Each year, in Europe [4] and Asia, there are 10,000–12,000 notified cases of TBE.
In Germany [5], there are between 400–700 cases reported to the national health authorities
annually, with an increasing trend. The main vector for TBEV is the hard tick Ixodes ricinus.
Small rodents, such as Apodemus spp. and Myodes spp., are believed to be the reservoir
hosts of TBEV [3], harboring the virus with a high and prolonged viraemia [6,7]. The
population dynamics of these host species and its environmental influencing factors are
crucial for maintaining stable zoonotic cycles of TBEV between rodents and Ixodes ticks [8].
To date, there is no robust ecological evidence that the concept of co-feeding is important
for the stability of established zoonotic TBEV cycles in nature—as studied so far in Ger-
many [8]. The transmission cycle occurs in the so-called microfoci, small areas with an
average size of about 0.5 to 1 ha, which are stable for decades and usually do not expand
or shift. The small sized areas of these transmission cycles and their stability are still not
understood and, so far, environmental models do not provide plausible explanations for
this spatio-temporal stability.

There are several published models regarding the prediction of human TBE cases and
tick numbers based on rodent population dynamics, weather conditions, and other environ-
mental influences such as beech mast [9–11]. In addition, larger game animals are associated
with the appearance of TBEV as they support the tick population as hosts of adult ticks [1].
An important issue in understanding zoonotic infections is to elucidate environmental fac-
tors, which are the contributors of maintaining zoonotic cycles and transmission to humans.
Various scientific approaches have been applied to investigate the role of landscapes, land
use, and landcover regarding different zoonoses, including tickborne disease such as TBEV
infections [12,13], often in combination with meteorological data [14–16]. There are only
few data for the spatial prediction of future distribution areas of TBEV [17]. The majority of
these studies are based on aggregated data using NUTS (Nomenclature of Territorial Units
for Statistics) level 3 [18]. A recently published work from Germany generated a sub-district
risk-map for TBE, exclusively for southern Germany, based on 567 probable self-reported
places of infection (POI) and 41 confirmed places/foci of infection [19]. The POI were associ-
ated with specific ecological and anthropogenic aspects—the derived information resulted
in a 69% sensitivity and 63% specificity [19]. It is known, that TBEV is not homogeneously
distributed throughout questing ticks across all locations. TBEV is rather detected in defined
geographic areas of approximately 1ha. The terms “TBEV microfocus” and “TBEV hot spot”
are inconsistently used in the literature to describe these surface areas—even high incidence
districts NUTS level 3 are referred to as microfocus. We prefer the term TBEV microfocus
in the definition of a small (~1 ha) geographic area with a repeatedly proven presence of
TBEV in ticks or in small mammals—a very similar description/definition was introduced
by Nosek et al., more than 50 years ago [20,21].

In line with the findings and ideas from Nosek et al. [21], to date, there is speculation
over an evolving concept of various regional TBEV microfoci embedded in a larger defined
natural focus. There are only scarce data or anecdotal reports [22] on the size and com-
position of such TBEV microfoci, notably the determinants of their size [23,24]. It can be
assumed that the focus size of approximately 1ha is defined by the presence of the reservoir
host, e.g., small rodents, and its biological operating range in such a habitat. Hence, it
is hypothesized that certain genetic features and transcriptome profiles of the candidate
rodent reservoir host predispose for asymptomatic carriage of TBEV and for consequent
transmission to Ixodes ricinus.

The goal of the present study is to analyze potential uniform geographical patterns
of the identified TBEV microfoci in Germany. We aim to consider the specification of
geographical characteristics of these locations using open access epidemiological, meteoro-
logical, and geographical data sources. The results are used to calculate probabilities for
the present distribution of TBEV microfoci in Germany based on a geostatistical model.
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2. Materials and Methods
2.1. Study Area

It has been shown that TBEV is mainly present in the southern parts of Germany. The
federal states of Bavaria and Baden-Wuerttemberg account for more than 90% of all notified
TBE cases in Germany. Therefore, most of the potential tick-collection sites are located
in southern Germany. However, on the basis of newly reported TBE patient cases in the
northern or eastern federal states, candidate sites have also been flagged in these parts
of Germany, e.g., Lower Saxony. In total, we included in our study 56 confirmed TBEV
microfoci in Germany. Figure 1 provides an overview of these microfoci and land cover
obtained from Corine Land Cover products.
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2.2. Definition of a TBEV Microfocus

TBEV microfocus—a defined geographical area in which TBEV was detected in quest-
ing ticks at least one time. In most of the locations, the presence of TBEV in ticks was
repeatedly confirmed over the last 10 years. These TBEV microfoci are traced in nature
based on detailed medical histories of TBE patients regarding the environmental sites where
tick bites were acquired—only one site was discovered through a random search. The
exact dimensions of the TBEV microfoci are unknown and there is only scarce information
published in the context of this issue. However, it is suggested that such natural sites are
sized at around 1 ha [22]. Overall, 56 TBEV microfoci were identified (see Table 1).

Table 1. TBEV microfoci included in our analysis. For each TBEV microfocus, geodata are refer-
enced as well as the corresponding federal states.

NAME FEDERAL STATE GEODATA N GEODATA E

SCHILTACH BW 48.293264 8.320032
AUBACHSTRASSE BW 48.638261 8.124403

ZELL A.H. BW 48.337588 8.069234
OBERRIED BW 47.955061 7.961001

OEDENREUTH BAY 49.382107 10.89899
HOEHENGAU BAY 49.500923 11.859877

BURGLENGENFELD BAY 49.187749 12.037393
NEUHOF BAY 49.114536 11.878744

ASCHACH BAY 49.468414 11.884132
POPPENRICHT BAY 49.478247 11.789021
JAEGERSHOF BAY 49.299229 13.026569

BUCHTAL BAY 49.404872 12.081410
ELSENTHAL BAY 48.840594 13.384545

RUIT BAY 49.399371 12.127877
FUERSTENSTEIN BAY 48.716547 13.316138

HASELMUEHL BAY 49.408911 11.882931
HESELBACH BAY 49.297312 12.200458

IMMENSTETTEN I BAY 49.499808 11.889831
IMMENSTETTEN II BAY 49.482915 11.885282

KOELBLDORF BAY 49.260300 12.247922
WACKERSDORF BAY 49.320899 12.204749

WOLFSBACH BAY 49.361010 11.911637
PENKHOF BAY 49.411895 11.921286

MAIS BAY 47.982107 12.592499
LEUPOLZ BW 47.752795 9.817677

AAAASTEINBERG BAY 49.275271 12.176248
MUEHLAU BAY 47.724978 12.392581
PETTING BAY 47.926210 12.819270

BATTAUNE SAC 51.599236 12.751076
HUB BAY 49.244607 11.961373

ELSTERBERG THUE 50.611252 12.155112
EBERMANNSDORF BAY 49.395530 11.945491

SPIESSBERG BW 47.699637 9.737666
FEUERHOF BAY 49.522681 11.746832

RHEINE NRW 32.233590 7.527555
LINGEN NS 52.505504 7.275217

HERRNRIED BAY 49.103862 11.735617
AMOENAU HES 50.898691 8.689737

FRAUNBERG BAY 49.468676 12.138802
WANGEN I BW 47.699354 9.816652
WANGEN II BW 47.697346 9.798715
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Table 1. Cont.

NAME FEDERAL STATE GEODATA N GEODATA E

SCHNAITTENBACH BAY 49.529464 11.993255
GLEISSENBACH BAY 48.469833 12.062751

MUENCHEN-PERLACH BAY 48.079474 11.595674
TUEBINGEN BW 48.548510 9.060509

WAGING BAY 47.926538 12.736940
KARSEE BW 47.746614 9.806434

NUERNBERG BAY 49.429985 11.142228
WETTER HES 50.907811 8.750076
RAFFA BAY 49.198897 12.077333

INZENDORF BAY 49.449152 12.094763
URSULAPOPPENRICHT BAY 49.498136 11.859962

ASBACH BAY 49.381200 12.169548
WEINBERG BAY 49.326259 12.129508

ZWIEFALTEN BW 48.247522 9.460531
HAHNBACH BAY 49.498350 11.859444

Abbreviations Federal States: BAY: Bavaria; BW: Baden-Wuerttemberg; HES: Hesse; NRS: Northrhine-Westfalia;
NS: Lower Saxony; SAC: Saxonia; THUE: Thuringia.

2.3. Epidemiological Dataset and Case Definition

Infections due to TBEV became a notifiable disease in Germany in 2001. Case defi-
nitions are issued by the Robert Koch Institute (RKI). The German case definition differs
from the definition issued by the European Centre for Disease Prevention and Control
(ECDC). It includes febrile forms of TBEV infections without CNS symptoms. The reported
number of TBEV infections has been open to access, available in different formats, as
well as spatial and temporal resolutions, since 2001 at https://www.rki.de/DE/Content/
Infekt/SurvStat/survstat_node.html, accessed on 1 June 2022. The data used span the
years 2001–2020 and are aggregated on county/NUTS 3 level.

2.4. Tick Collection, TBEV Detection, and TBEV Isolation

Ticks were collected by flagging, as described before [25]. Ticks were kept alive and
morphologically identified at the TBEV national reference laboratory to species level—
Ixodes ricinus (as previously published [25]). Ticks were pooled according to developmental
stage and sex (10 nymphs and 5 adult female or male ticks) and processed for TBEV RNA
and virus isolation according to Kupca et al. [26], except that, for virus isolation, A549 cells
were used instead of Vero cells. The details of TBEV detection (primer details have been
published before [27]) and TBEV isolation are included in the supplement material (see
Supplementary S1 material and methods).

2.5. Environmental Raw Data Sets

To analyze the impact of environmental characteristics on the presence or absence of
TBEV, free available gridded raster data have been collected. In general, these are data sets
describing the geographical, climatological, and ecological situation within the study area.
Primary data sets are Digital Elevation Model (DEM), Corine Land Cover (CLC), and a
set of core climatological data (CLI). They were obtained from the open access Copernicus
portal (https://land.copernicus.eu/, accessed on 1 June 2022) and the open data section of
the Climate Data Center hosted by the German Meteorological Service DWD (Deutscher
Wetterdienst). Epidemiological information regarding notified TBE cases in Germany
2001–2020 are freely available from the Robert Koch Institute (RKI).

https://www.rki.de/DE/Content/Infekt/SurvStat/survstat_node.html
https://www.rki.de/DE/Content/Infekt/SurvStat/survstat_node.html
https://land.copernicus.eu/
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2.6. Data Preparation and Processing

All primary data sets were resampled to a uniform resolution of 400 × 400 m. The rea-
son for the specification is the observation that, not only the environmental characteristics
within the TBEV microfoci (100 × 100 m) themselves have an impact on the presence or
absence of TBEV, but also the condition of the surrounding landscape. Furthermore, it was
given by the native spatial resolutions of the data used in this investigation. These resolu-
tions varied between 25 × 25 m in the case of the Digital Elevation Model and 1000 × 1000 m
for most of the climatological data. Together with the need for a unified spatial resolution
of all raster data, a grid cell size of 400 × 400 m acted as a reasonable compromise.

Subsequently, these gridded raster data were used to derive a couple of secondary
data sets describing each specific aspect of the environment in Germany. Based on the
DEM, these are the slope (SLP), aspect (ASP), and topographical position index (TPI), while
the Corine Land Cover (CLC) data were used to calculate a parameter for the distance
of a 400 × 400 m grid cell to the nearest forest border, either when the cell was located
within a forest area or outside it. The distance to nearest forest border variable (DIST) was
introduced due to the exploration of the land-use data within a 400 × 400 m “landscape
area” around the 56 TBEV microfoci, where only nine of them did not have any proportion
of forest within their 400 × 400 m buffers (see Figure 2). The remaining 47 TBEV microfoci
showed different proportions of all three CLC forest land-use classes, indicating that the
presence of a forest at or nearby a TBEV microfocus might have an impact on the presence
or absence of TBEV. The DIST parameter itself was derived based on the CLC data set of
2018 with an original resolution of 100 × 100 m.

Furthermore, CLC data were used to derive several landscape metrics, again using the
original 100 × 100 m CLC data. It has been published before [28] that these metrics allow
for the description and quantification of spatial patterns affecting ecological processes over
time and space. Because of the huge number of landscape metrics that evolved during the
last 25 years, a subset of commonly used metrics has been calculated and included in the
investigation. These are, in detail, the number of patches (NP), the patch richness (PR),
the largest patch index (LPI), the edge density (ED), the splitting index (SPLIT), and the
effective mesh size (MESH). Further metrics have been calculated for the proportions of the
different forest types, as well as the proportions of pastures, arable land, vineyards, and
discontinuous urban fabric types. While landscape metrics are usually used to characterize
a landscape based on land cover patterns within this landscape, in our investigation, the
metrics were calculated for every of the 400 × 400 m grid cells used in the raster data before.
The effect of landscape metrics could then be explored in the same manner as the other
data set.

The data set concerning the number of notified TBEV infections was aggregated to
a grand total spanning all years included in this analysis to reflect the average situation
during the last 20 years, rather than in a single year. Regarding the spatial resolution, the
data sets were aggregated data on county level/NUTS 3, with exceptions in regions with a
huge population where smaller boroughs were used as spatial reference.
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2.7. Analyzing the Influence of Environmental Characteristics on the Presence or Absence of TBEV
and Selecting the Main Environmental Drivers for the Distribution of TBEV

We compared the characteristics of the environmental variables between 56 TBEV
microfoci detected in Germany and a control or comparator set of 3575 sampling points
covering Germany within a regular grid of 10 × 10 km. In order to determine which
variables mattered the most for the modelling of TBEV, we applied the maximum entropy
modelling algorithms from the MaxEnt software (http://biodiversityinformatics.amnh.
org/open_source/maxent/ accessed on 1 April 2022). We identified a set of land cover,
elevation, and meteorological variables through the literature research that were likely
relevant to the distribution of TBEV in the study area. We identified those variables
influencing the presence or absence of TBEV by applying Fisher’s exact test to the TBEV
microfoci and the comparator points. Comparing the two distributions a Fisher’s Exact Test
resulted in a p-value of <0.001, stating a significant difference and indicating a relationship
between variables and the presence or absence of TBEV microfoci. This kind of analysis was
carried out using all primary and derived variables listed above (see Table 2). Significant
differences were measured using Fisher’s Exact Test. Those with p-values of <0.001 *** were
exclusively used for the further selection of items influencing the presence or absence of
TBEV microfoci in our model.

Table 2. (a–d) All initially included and tested environmental variables (landscape metrics, dig-
ital elevation model, and meteorological variables). P values are displayed. For further details
regarding the environmental variables and a description for an analysis using R, we refer to
https://r-spatialecology.github.io/landscapemetrics/, accessed on 1 April 2022.

(a)

LANDSCAPE METRIC (LSM) p value
L ED 0.009 **
L SHAPE MN 0.153
L LSI 0.009 **
L AREA MN 0.023 *
L NP 0.015 *
L CORE SD 0.721
L SHEI 0.204
L SHDI 0.024 *
L SIDI 0.023 *
L SIEI 0.173
L FRAC MN
L PARA MN

0.124
0.013 *

L PR 0.063
L PD 0.015 *
L LPI 0.007 **
L CONTIG MN
L CONTAG

0.064
0.341

L IJI 0.313
L COHESION 0.021 *
L MESH 0.017 *
L SPLIT 0.006 **
L AI 0.023 *
L ENT 0.012 *
L DCAD 0.015 *
L TCA 0.041 *
L JOINENT 0.003 **
P AREA DISCONTINUOUS URBAN FABRIC 0.58
P AREA INDUSTRIAL OR COMMERCIAL UNITS 0.500
P AREA ARABLE LAND <0.001 ***
P AREA VINEYARDS 0.031 *

http://biodiversityinformatics.amnh.org/open_source/maxent/
http://biodiversityinformatics.amnh.org/open_source/maxent/
https://r-spatialecology.github.io/landscapemetrics/


Int. J. Environ. Res. Public Health 2022, 19, 11830 9 of 20

Table 2. Cont.

P AREA PASTURES 0.393
P AREA BROAD LEAVED FOREST 0.203
P AREA CONIFEROUS FOREST <0.001 ***
P AREA MIXED FOREST
P AREA CONIFEROUS AND MIXED FOREST

<0.001 ***
<0.001 ***

DISTANCE TO FOREST BORDER 0.444
DISTANCE TO BROAD LEAFED FOREST BORDER 0.036 *
DISTANCE TO CONIFEROUS FOREST BORDER 0.043 *
DISTANCE TO MIXED FOREST BORDER 0.002 **
DISTANCE TO CONIFEROUS AND MIXED FOREST BORDER <0.001 ***
DISTANCE TO ARABLE LAND BORDER 0.431

(b)

DIGITAL ELEVATION MODEL p value
ELEVATION <0.001 ***
TPI 0.032 *
ASPECT 0.323
SLOPE 0.547
(c)

METEOROLOGICAL VARIABLES p value
MATEMP
MASUMMERTEMP

<0.001 ***
0.108

MATEMPMIN <0.001 ***
MATEMPMAX 0.199
MAPRECIP
MASUMMERPRECIP

0.002 **
0.006 **

MAVEGBEG 0.005 **
MAWDAT <0.001 ***
MASUN <0.001 ***
MAFROSTD <0.001 ***
MAICED
MASUMMERD

<0.001 ***
<0.001 ***

MAHOTD <0.001 ***
MAEVAR <0.001 ***
MASOILM <0.001 ***
MASOILTEMP
MAGRAD

<0.001 ***
<0.001 ***

(d)

POPULATION p value
POP 0.363

See for further details: https://r-spatialecology.github.io/landscapemetrics/ accessed on 1 June 2022. * p < 0.05;
** p < 0.01; *** p < 0.001.

2.8. Selecting Main Environmental Drivers for the Distribution of TBEV by Using the
MaxEnt Model

Figure 3 lists those variables that passed Fisher’s Exact Test (MaxEnt variable set I). In
an iterative process of reducing variable dependency and partly redundant information
(MaxEnt variable set II-IV), we identified the most relevant variables for the prediction of
TBEV presence. This includes the MaxEnt analysis of variable contributions, Jackknife test
for variable importance, and a literature driven review of redundancy. Variable contribu-
tions were estimated as variable contributions to the model in percent and as permutation
importance, where the model was reevaluated based on randomly permuted variables.
Additionally, we estimated variable importance by performing a Jackknife test. Here, each
variable was individually excluded from the overall model and additionally, a model with
only the excluded variable was created. Therefore, the Jackknife test estimated the explana-
tory power of the overall model if variables were not included, as well as which variables
held the highest information by themselves. This, in turn, means that variables could be

https://r-spatialecology.github.io/landscapemetrics/
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dropped from the model if their contribution to the overall model was subordinate. As
some of the environmental data were highly correlated (e.g., frost days and ice days), this
information also influenced the decision regarding which variables were excluded from
the model.
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Through this iterative process and based on their individual contributions and pre-
dictive performance, we finally identified six variables that were the most effective at
predicting the occurrence of TBEV (Figure 3). Those were “distance to coniferous and
mixed forest borders”, “land cover classes”, “multi annual sunshine duration”, “multi
annual minimum air temperature”, “multi annual hot days”, and “multi annual actual
evapotranspiration”. Based on these variables, MaxEnt was used to calculate a probability
distribution grid for the occurrence of TBEV with a resolution of 400 × 400 m for the
whole of Germany. The results of the variable contributions and Jackknife tests for variable
importance for each analytical step can be found in the Supplementary Figure S4.
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2.9. Comparing the MaxEnt Probability Distribution and the Number of TBEV Infections
in Germany

The notified incidence of TBEV infection between 2001–2020 aggregated on NUTS
3 level on the one hand, and predicted probabilities for the occurrence of TBEV in a
400 × 400 m grid by using MaxEnt, on the other hand, allowed for an additional evaluation
of the MaxEnt results. This was done by aggregating the MaxEnt probabilities on the NUTS
3 level geometry and calculating the Pearson’s product–moment correlation coefficient
between notified incidence and predicted probabilities based on the 401 NUTS 3 level
objects for Germany.

2.10. Tools

Calculations and graphics were made using R version 4.0.5 (R Core Team, 2021 https:
//www.R-project.org/, accessed on 1 June 2022), supplemented by the packages raster
(Hijmans, 2021. https://CRAN.R-project.org/package=raster, accessed on 1 June 2022),
sp (Pebesma and Bivand, 2005. https://cran.r-project.org/doc/Rnews/, accessed on 1
June 2022), sf (Pebesma, 2018. https://doi.org/10.32614/RJ-2018-009, accessed on 1 June
2022), landscape metrics [29], dismo (Hijmans et al., 2021. https://CRAN.R-project.org/
package=dismo, accessed on 1 June 2022), ggplot2, and others. For viewing and analysis of
the gridded raster data, the open-source GIS QGIS 3.16 LTR was used.

3. Results
3.1. The Impact of Environmental Variables on the Presence or Absence of TBEV

The exploration of the histogram plot for the Corine Land Cover data set (CLC)
showed several differences between the distributions within the “landscape areas” around
the TBEV microfoci compared with the control sampling points (see Figures 2 and 4). In
total, there were 30 different land cover types occurring at the 3575 control sampling points,
while only eight different classes could be detected at the TBEV microfoci. Land-use types
“vineyards” (15), “coniferous forest” (24), and “mixed forest” (25) were obviously over-
represented in the TBEV microfoci, whereas the types “discontinuous urban fabric” (02),
“non-irrigated arable land” (12), “pastures” (18), and “broad-leaved forest” (23) were over-
represented at the control sampling points. The frequency of the land-use type “industrial
or commercial units” (03) seemed to be more balanced.

Comparing the two distributions a Fisher’s Exact Test resulted in a p-value of <0.001 ***
state a significant difference and indicate a relationship between land cover types and the
presence or absence of TBEV microfoci. This kind of analysis was carried out using all of the
primary and derived variables listed above (see Table 2a–c, Supplementary Figures S1–S3).

Variables with p-values of <0.001 *** were then exclusively used for the further analysis
concerning the influence of environmental factors on the presence or absence of TBEV
microfoci in particular. In this context, the most important characteristics were ground
elevation (see Table 2b); most of the climatological variables (see Table 2c); and, regarding
landscape metrics, the proportion of coniferous and mixed forest, the proportion of arable
land, and the distance to the nearest coniferous and mixed forest border (see Table 2a).
Slope and aspect derived from the Digital Elevation Model or most of the other landscape
metrics did not show a significant difference in their distributions. The topographical
position index had weak significance at p = 0.03 *.

With regard to landscape fragmentation in/around TBEV microfoci, there were several
characteristics with a weaker statistical significance, such as edge density (ED), number
of patches (NP), and splitting index (SPLIT). These items indicated that in/around TBEV
microfoci, the landscape was more fragmented (see Table 1). However, these characteristics
were not included in the planned MaxEnt model, because other variables seemed to have a
geo-statistically greater impact on the presence or absence of TBEV microfoci in nature.

https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=raster
https://cran.r-project.org/doc/Rnews/
https://doi.org/10.32614/RJ-2018-009
https://CRAN.R-project.org/package=dismo
https://CRAN.R-project.org/package=dismo
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Figure 4. Distribution of different land cover types around the TBEV microfoci compared with the 
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Figure 4. Distribution of different land cover types around the TBEV microfoci compared with the
control sampling points. The results of Fisher’s Exact Test are displayed in the inset.
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This was particularly true for 12 of our climatological variables showing a significance
of p < 0.001 ***. Because of their cross correlations and mutual influences, some of them
tended to explain similar characteristics in the presence or absence of TBEV microfoci, which
had to be considered when interpreting which of the climatological variables mattered
the most. Multi annual actual evapotranspiration, for example, highly depends on multi-
annual wind speed, multi annual soil moisture, and multi annual soil temperature, and
thus acts as one of the most important variables where the wind and soil variables can
be omitted. A similar statistical coincidence is given by the variables multi-annual frost
days, multi-annual ice days, multi-annual summer days, and multi-annual hot days on the
one side, and multi-annual global radiation, multi-annual mean temperature, multi-annual
sunshine duration, and multi-annual minimum temperature on the other side. At best, we
found the four climatological variables of multi-annual sunshine duration, multi-annual
minimum temperature, multi-annual hot days, and multi-annual actual evapotranspiration,
which mainly control the presence or absence of TBEV microfoci concerning climatological
conditions (Figure 3).

3.2. MaxEnt Prediction Model

The findings indicate that multi-annual actual evapotranspiration (27.0%) and multi-
annual hot days (22.5%) had the most explanatory power in our model. These two variables
were followed by four others with a lower, but still important, explanatory power: land
cover classes (19.6%), multi-annual minimum air temperature (14.9%), multi-annual sun-
shine duration (9.0%), and distance to coniferous and mixed forest border (7.0%). Based
on this selected set of the statistically most powerful six environmental parameters (see
Table 2), a MaxEnt model was used to calculate a probability distribution grid for the
occurrence of TBEV with a resolution of 400 × 400 m, as illustrated in Figure 5. The
predicted probability was visualized by different shades. It was demonstrated that the
highest prediction probability for the presence of TBEV was calculated in the federal states
of Bavaria and Baden-Wuerttemberg, with a particular focus on regions of the Black Forest,
the Bavarian Forest, and Upper Bavaria with its submontane districts. To a lower extent,
areas of southern Hesse, Thuringia, Saxony, and Rhineland-Palatinate, as well as Saarland,
were affected. There was a clear North-South divide. Interestingly, the MaxEnt model also
displayed the northern German regions, with considerable probability for the presence
of TBEV in the environment. This particular geographic area spans from Saxony to the
most western parts of the federal state of Lower Saxony. In a further step, the results
were aggregated on NUTS level 3, see Figure 6, for correlation with national notification
data on TBEV, which resembled a statistically independent set of data. MaxEnt predicted
probabilities and the notified incidence of TBEV infection between 2001–2020 (see Figure 7)
were correlated using Pearson’s product–moment correlation coefficient (see Figure 8).
The correlation with the national notification dataset showed a strong significance with
p < 0.001 *** and r at 0.60.
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4. Discussion

It is of great scientific importance to understand zoonotic infections and to identify
the core environmental factors maintaining the zoonotic cycles of the pathogens in the bio-
cenosis and in the transmission to humans. We introduce a MaxEnt model for the detection
of TBEV microfoci in Germany. The machine-learning-based approach, called maximum
entropy modeling, allowed for the calculation of a probability distribution resulting in
a fine-grained prediction map (400 × 400 m). This spatial resolution approximates the
biological concept of the microfoci embedded in larger natural foci very closely [21,24]. It
is speculated that the microfocus size of approximately 1ha is defined by the presence of
the vector, mainly Ixodes ricinus, the reservoir host, e.g., small rodents, and its biological
operating range in such a habitat.

From a vector biological point of view, the review of variables influencing the presence
or absence of TBEV is straightforward. Multi annual actual evapotranspiration, as well
as multi annual hot days, multi annual minimum air temperatures, and multi annual
sunshine duration or very similar temperatures indices, are linked in the literature to nymph
activity [8]. There is a well characterized complex interplay of TBEV vector dynamics and
TBEV infection rates in ticks [8,30]—notably, evapotranspiration is of vital importance for I.
ricinus, because of its known high sensitivity to aridity. The presence of coniferous or mixed
forests and the distance to coniferous and mixed forest borders were identified as further
important factors. These findings call attention to the ecological niche of the ecotone, which
has been of particular interest for investigating TBEV microfoci ever since. Most microfoci
are located at such forest thresholds, displaying a unique dynamic of I. ricinus and small
mammals between the ecotone and areas just behind this threshold in the forests (pers.
observation G. Dobler). The balance of this ecotone system is highly sensitive to changes in
the meteorological framework [31].

Although not included into our MaxEnt model because of technical reasons, a closer
look at the landscape metrics characterizing the fragmentation of the landscape is worth-
while. With a weaker significance than the six selected variables for the MaxEnt model,
these items seem to have some impact on the probability for the presence of a TBEV mi-
crofocus in nature. The degree of fragmentation and its influence remains a matter of
debate, without definitive answers. There might be links between fragmentation and TBEV
microfocus presence. A repeatedly stated controversial hypothesis for the reemergence of
TBEV in the eastern federal states of Germany—former GDR—might be the changes in
landscape fragmentation. The GDR propagated and state driven agricultural system was
organized in agricultural collectives, which cultivated huge patches of arable land. After
the breakdown of the collective agricultural system in the 1990s, the arable land became
more fragmented due to privatization. Simultaneously, there was a reemergence of TBEV
in Saxony and Thuringia. However, at this stage, our data do not support this thesis—on
the contrary, our findings point at an increased mesh size and less fragmentation around
the TBEV microfoci. This could be due to reafforestation measures after 1990. In brief, the
issue of TBEV reemergence in the eastern federal states of Germany should be subject to
further geostatistical research.

Our current model has practical implications because it enables public health care
authorities to anticipate where new TBEV microfoci and potential consecutive infections
will appear (or disappear). The discovery of new TBEV microfoci in Saxony (unpublished
observation M. Pfeffer) is in line with our prediction model, displaying an east-to-west prob-
ability for the presence of TBEV microfoci in north/middle Germany [32]. Other newly
identified TBEV microfoci in Lower Saxony, around Hannover, which were not included
in our MaxEnt model, are located in the predicted east-to-west band as well [32]. In this
context, it should be a matter of debate whether the current risk classification of the RKI,
based on notification data, should be revised or complemented by our results, which are
derived from vector biological factors/findings. Overall, our data are consistent with
findings from a recently published work, which used the self-reported points (n = 567) of
potential infection (POI) and a smaller amount of known microfoci (n = 41) for analyses
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and an ecological niche model [19], exclusively regarding the high-endemic federal states
of Bavaria and Baden-Wuerttemberg. To determine the characteristics of the POIs, com-
parator points/polygons were generated. The self-reported polygons of POI were 2.23 km2,
which are quite large area patches given the hypothesis that TBEV microfoci were sized at
approximal 1ha. A strength of our study was the fine-grained resolution of 400 × 400 m,
which enabled detailed spatial statements. Previous analyses used 10 × 10 km resolutions
at a subdistrict level for the illustration of potential POIs [19]. Furthermore, our findings
are based on defined TBEV microfoci with known histories of infection and the repeated
confirmation of the virus during the last years, resulting in an in-depth forecasting model of
TBEV microfoci. Biotic factors such as local tick abundance or anthropogenic factors such
as vaccination coverage have not been directly included in our investigation. This might be
a limitation of our study. However, we primarily identified the natural transmission foci of
TBEV, where humans do not play a biological role. Nevertheless, comparing the MaxEnt
prediction data (aggregated on NUTS 3 level) with the notification dataset spanning the
years 2001–2021, we can see a good correlation. This correlation with a nearly independent
set of data underscores the quality of the established MaxEnt model.

5. Conclusions

Our findings are based on defined TBEV microfoci with known histories of infec-
tion and the repeated confirmation of the virus in the last years, resulting in an in-depth
high-resolution model/map of TBEV microfoci in Germany. Multi annual actual evapo-
transpiration (27%) and multi annual hot days (22.5%) have the most explanatory power
in our model. The results may be used to tailor specific regional preventive measures
and investigations.
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