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Abstract: In the past, the research on models related to urban land-use change and prediction
was greatly complicated by the high precision of models. When planning some garden cities, we
should explore a more applicable, specific, and effective macro approach than the community-level
one. In this study, a model consisting of spatial autoregressive (SAR), cellular automata (CA), and
Markov chains is constructed. One It can well-consider the spatial autocorrelation and integrate the
advantages of CA into a geographical simulation to find the driving forces behind the expansion of a
garden city. This framework has been applied to the urban planning and development of Chengdu,
China. The research results show that the application of the SAR model shows the development
trend in the southeast region and the needs to optimize the central region and protect the western
region as an ecological reserve. The descriptive statistics and the spatial autocorrelation of the
residuals are reliable. The influence of spatial variables from strong to weak is distance to water,
slope, population density, GDP, distance to main roads, distance to railways, and distance to the
center of the county (district). Taking 2005 as the initial year, the land-use situation in 2015 was
simulated and compared with the actual land-use situation. It seems that the Kappa coefficient of the
construction-land simulation is 0.7634, with high accuracy. Therefore, the land use in 2025 and 2035
is further simulated, which provides a reference for garden cities to formulate a reasonable urban
space development strategy.

Keywords: urban spatial growth simulation; GIS; cellular automata; spatial autoregressive; Chengdu

1. Introduction

Technological progress has promoted the development of modern society. In pursuit
of the single objective of the economy, land-resource utilization activities in developing
countries have also been seriously fragmented [1–3]. Over- and irrational utilization like
farmland loss, soil quality degradation, biodiversity reduction, and so on exist in land-
resource utilization, triggering natural resource depletion and ecological degradation.
Therefore, conservation and restoration strategies are particularly important in land-use
planning. A garden city was proposed by Ebenezer Howard (1902), who stated that a
rural strip should be consistently preserved around the city as the proper principle of
urban development for providing ecological services and a convenient life, and for the
protection of the natural environment. For instance, vegetable gardens in communities
and vegetable plots around the cities are not only an important symbol of the rural–urban
fringe but also the key to solving the problem of urban and rural environmental cognitive
dissociation [4,5]. Furthermore, developed countries and cities, such as Germany [6], Los
Angeles in the United States [7], and Welwyn in the United Kingdom [8], are committed
to both the establishment of a garden city and the ecology of a community. A garden city
is often designed and managed at the community level, which is a typical micro land-use
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behavior. So the spatial development of a garden city should also be explored through
the “bottom-up” approach [9], but many existing methods are limited to specific cases,
having no universal applicability. Thus, the models related to urban land-use change and
prediction should be relatively simplified as far as possible, rather than blindly pursuing
complexity. In due course, a more macro-level approach that is more applicable, adaptable
to more unique cases, and effective than the community-level one should be explored.

Land, an important material basis and space for human survival and development
and an intricate complex of natural, historical, and economic attributes, develops under the
dual influence of nature and society. Therefore, land-use change of each region happens all
the time. Methods like field-location surveys and remote-sensing monitoring can be used
to search for information about land-use change, but both of them can only be applied to
investigate the changes that have occurred. However, the future direction and situation
of land development need to be predicted based on simulation methods, which are often
used to obtain observations of future land use to guide decision-making and improve land
policies [10]. Urban land is the carrier of social and economic activities, natural and artificial
landscapes, and so on. Dynamic urban change, whether planned or unplanned, will change
the structure, shape, and function of built-up and non-built-up areas [11]. Analysis of
urban land-use change can make urban sustainability deeply understood and developed.
Moreover, the construction of new-type urbanization needs urban decision-makers to stand
in a pre-emptive position and think from a long-term and humane perspective. Therefore,
this study constructs a model that consists of spatial autoregressive (SAR), cellular automata
(CA), and Markov chains. It can consider spatial autocorrelation well and integrate the
geographical advantages of CA simulation to help to seek the driving forces behind the
expansion of a garden city, which could provide a certain reference for the formulation of
reasonable urban spatial development strategies for a garden city.

An urban land system is characterized by complexity, dynamics, and uncertainty.
First, the land system is complex, for its development process involves physics, biology,
chemistry, social science, and other fields, and covers multiple theories. Its complexity is a
whole caused by local interactions, which can be described by the “bottom-up” approaches,
such as cellular automata (CA) and multi-agent, and the integrated models based on them.
Second, the development of land management and planning requires a deep understanding
of the dynamics of land systems. With the application of systematic science, land-change
models have also begun to be adapted to have complex dynamic characteristics. In addition,
the subjective uncertainty of land utilization and the objective uncertainty of natural
environment change, social environmental turbulence, economic fluctuation, and scientific
and technological progress will emerge constantly. Thus, it can be seen that the complexity,
dynamics, and uncertainty of a land system are not only related to natural attributes but
also closely bound up with human activities. The characteristics of a land system determine
the difficulty of modeling.

Urban expansion problems are well dealt with by a scenario simulation model, which
can simulate land-use situations under different development scenarios based on historical
land-use data, and then put forward the scheme of how to optimize the quantity and spatial
allocation of land resources under certain circumstances [12], such as multi-agent, system
dynamics (SD), CLUE-S, Bayesian network, artificial neural networks (ANN), and CA.

The multi-agent model is widely used in land-use simulation, which has made an
outstanding contribution to the understanding of complex system theory and the decision-
making behaviors of social agents [13]. Although there are conducts subject to the land-unit
scale and the principle of agent decision-making [14,15], the multi-agent model is not
generalizable because of the lack of a unified spatial scale. Moreover, the definition and
decision-making of agents are difficult to determine. Therefore, in terms of application, the
multi-agent model has limitations, whether it is used alone or integrated with other models.

System dynamics (SD) is widely used in decision-making support, mainly in the area
of energy and resource environmental protection [16,17]. For instance, Glöser et al. [18]
used SD to study global copper flows. Zuser and Rechberger [19] employed SD to ex-
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plore the scarcity of photovoltaic resources, and others such as Rui et al. [20], Swinerd
and McNaught [21], Alejandro Ruiz Galeano and Cecilia Bautista Rodríguez [22], and
Yao et al. [23]. In terms of stakeholders and strategies, however, the effect of SD remains
limited and it lacks “spatial embodiment” with poor adaptive ability. Compared with SD,
CLUE-S focuses on local interpretation and finds it difficult to represent a macro interaction
process. For example, Peng et al. [24] used the CLUE-S model to simulate the dynamics
of wetlands in cities. Wu et al. [25] applied the CLUE-S model to land-use simulation in
Jiangsu Province, China. Shi et al. [26] determined wetland degradation trajectory by the
CLUE-S model. Others like Lamichhane and Shakya [27], Li and Song [28], Tang et al. [29],
and Tian et al. [30] also used it. Different from the above two methods, the Bayesian net-
work is suitable for dealing with uncertainty problems, but it copes with huge calculations
with difficulty [31,32], while ANN is expert at solving problems but is not good at dealing
with uncertainty problems, and there are some deficiencies in the explanation of the driving
forces [33,34].

As another method of understanding the complexity of a system [35], the “bottom-up”
characteristic of the cell automata (CA) reflects the scenario that the local individual behav-
iors in a complex system constitute a global pattern. CA, very powerful in spatial calcula-
tion, is superior to other models in its effectiveness in reflecting the complex characteristics
of land-use evolution. Thus, CA is suitable for the simulation of geographic processes [36].
In 1970, Tobler first used CA to simulate urban sprawl in Detroit, USA, and emphasized
that the core feature of the geographic model is the neighborhood impact [37,38]. After
that, CA has been widely applied to simulate various geographic processes, especially
urban sprawl and land-use change, specifically involving the definition of transition rules,
neighborhood impact, effect of spatial scale, model evaluation, precision detection, and case
application [39,40]. More than that, CA is excellent at integrating with other models [41].
Rahman et al. [42] used the CA-ANN model to take, as an example, Asassuni Upazila
and to explore the future land-use situation of the area for land-use planning. Omrani
et al. [43] adopted the ANN-CA-based future land-use simulation (FLUS) model for a
scenario-based flood-risk assessment. Tayyebi et al. [44] presented the CA model based on
the distance dependence method (DDM) and the distance independent method (DIM), and
the urban growth boundary (UGBs) of the metropolitan area of Tehran, Iran, was predicted
with a superior fit. Tang [29] utilized the comprehensive evaluation and trade-off of the
ecosystem service function (InVEST) model and integrated the CA model to study the
influence of farmland expansion on carbon reserves under different scenarios in Hubei
Province. Fu et al. [45] employed logistic regression united with CA to forecast and analyze
land-use change.

As mentioned above, multi-agent, SD, ANN, CLUE-S, and CA have a commonality.
When simulating the geographic process, they only take into account the impact of the
neighborhood, whose transition rules overlook the high autocorrelation between land
use and spatial variables [46,47]. In other words, there may be spatial clustering, non-
negligible, or randomly distributed residual errors in the simulation process, which will
affect the accuracy of the simulation results [35,48]. The first law of geography shows
that the spatial entities are correlated by their distance: the closer the distance, the higher
the correlation. On the contrary, the farther the distance, the lower the correlation [37,49].
Feng [35] compared logistic regression with spatial autoregression to find which one is
better at taking into account spatial autocorrelation, and the latter performed well under
the same conditions. Therefore, the spatial autoregression model can take good account of
spatial autocorrelation [50].

Based on the above discussion, it is found that many existing methods are limited
to specific cases, having no general applicability. So, this study constructs a model that
consists of spatial autoregressive (SAR), cellular automata (CA), and Markov chains. It
can consider spatial autocorrelation well and integrate the geographical advantages of CA
simulation to seek the driving forces behind the expansion of a garden city. On the one
hand, the approach that is more macroscopic can be effectively adapted to more unique
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cases; on the other hand, the present model can be applied to land-use planning practices
to support decision-makers in developing appropriate policies for land-use planning.

2. Study Area

Chengdu (102◦54′~104◦53′ E, 30◦05′~31◦26′ N), an important western development
platform in the Yangtze River Economic Belt, is located at the upper reaches of the Yangtze
River and the eastern part of the Qinghai-Tibet Plateau. The highest elevation is 5364 m, the
lowest 359 m, and the elevation of the heartland of Chengdu is about 750 m. Chengdu has
a total area of 12,080 square kilometers and a resident population of more than 16 million.
The proportion of primary, secondary, and tertiary industry was 3.5:43.7:52.8 (2015) [51].
As of 2015, Chengdu’s urban agglomeration included five central areas (Wuhou, Qingyang,
Jinniu, Jinjiang, and Chenghua), other surrounding areas (Shuangliu, Longquanyi, Qing-
baijiang, Xindu and Wenjiang, and Pidu), four counties (Jintang, Dayi, Xinjin, and Pujiang)
and four county-level cities (Dujiang, Pengzhou, Chongzhou, and Qionglai). The admin-
istrative division map is shown in Figure 1. Relying on the good ecological environment
and superior location of western China, Chengdu, the city with the world’s longest urban
central axis in a single-center radiation structure, has become the most critical and fastest
growing strategic highland in western China. Moreover, as the first garden city in China,
Chengdu is also a new-type urbanization pilot city integrating internal optimization with
external expansion. Thus, the proposed modeling framework can be adopted in the area.
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Figure 1. County map of Chengdu. Figure 1. County map of Chengdu.

The data in this paper are from the remote sensing monitoring database of the current
land-use database by the Institute of Geographic Sciences and Natural Resources Research
in China. The original data are processed to obtain other data, such as land-use data
(30 m, www.resdc.cn, accessed on 16 September 2022), altimetric data and slope data (30 m,
www.gscloud.cn, accessed on 16 September 2022), population density data, and GDP data
(1 km, www.resdc.cn, accessed on 16 September 2022); it also obtains data like the distance
to water, major roads, railways, and the center of the county (www.openstreetmap.org/,
accessed on 16 September 2022) in 2005, 2010, and 2015. Figures 2 and 3 show the land-
use map of Chengdu in 2005 and 2015, respectively, and Figure 4 shows the elevation
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map of Chengdu. The land-use transition process is influenced by multiple factors such
as physical geographical attributes, and socio-economic and restrictive conditions [52].
Physical geographical attributes refer to the elevation, slope, geology, soil, and so on. Social-
economic conditions refer to the economy, population, policies, and so on. Restrictions
include basic farmland, ecological protection areas, special land, control of the total amount
of construction land, and so on [53]. Other important urban development driving forces
also include distance to water, the center of the county (district), major roads, and so on.
Among them, the roads network is an important part of the urban form, representing
transportation costs, transportation convenience, economic accessibility, and the matching
urban scale. In short, specific situations of the study area, such as slope (Slope), population
density (Population), GDP (GDP), distance to the center of the county (Dcenter), water (Dwater),
major roads (Droads), and railways (Drailways), are standardized and used for urban-space
simulation in Chengdu. Then the random sampling method is used to extract sample
points to train the transition rules.
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3. Methodology
3.1. Markov Chain

This sub-section focuses on the formula of the Markov chain. The mathematical
expression for the initial transition probability matrix Pm is:

Pm = PI J =


P11 P12 L P1N
P21 P22 L P2N
L L L L

PN1 PN2 L PNN

 (1)

where N is the number of states; PI J represents the probability of transitioning from
the state I to state J; and P_I J needs to satisfy two conditions: 1© 0 ≤ PI J ≤ 1, 2©
∑ PI J = 1 (I, J = 1, 2, 3, . . . , N).

According to the Markov model and conditional probability, the state vector P(N + 1)
of the system at N + 1 time can be determined by its state vector P(N) and transition
probability PI J at N time [54]: P(N + 1) = P(N) PPI J .

For N-order (N ≤ 2) transition probability, PI J (N) is the probability of a random
process from state E_I to state E_K through M(1 ≤ M < N) times transition, and then
from state EK to state EK. Since there is no aftereffect, these transitions can also be re-
garded as independent from each other. So, the process can be expressed by the total
probability formula:

PI J (N) = ∑ P_IK (M)× P_KJ (N −M)(1 ≤ M < N) (2)

It can be seen from Equation (2) that the high-order transition probability matrix
P_I J(N) should be acquired by step-by-step matrix multiplication according to Equation (1).

3.2. Neighborhood Influence

CA determines the state change of a cell through the transition rules. The state of a
cell at t+1 time is determined by the state of the time t and its neighborhoods [55]:

S_(t + 1) = f (S_t, N) (3)

where S refers to all possible state sets; f refers to transition rules; N is the neighborhood
of a cell; and a square neighborhood is mostly used, such as the Moore neighborhood of
n × n. In this paper, the default Moore (5 × 5) is selected as the neighborhood of a cell, and
its kernel is as follows:

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

3.3. Spatial Autoregressive Model

The probability P_r of each non-built-up cell transitioning into a built-up cell can be
fitted by the spatial autoregressive (SAR) model:

Pr = ê(Yi)/(1 + ê(Yi)) (4a)

Y_i = aX + λwYi + θ (4b)

θ = µZ + ρ, ρ ∼ N
(

0, β2
)

(4c)

where Yi represents the influence of spatial variables on land-use transition; a is the param-
eter vector of spatial variable X; λ is the coefficient of the spatial lag variable wYi; w is the
spatial weight matrix adopting to the first-order Queen contiguity; µ is the autoregressive
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coefficient; Z is the spatial autoregressive structure; θ is the residual vector; and ρ satisfies
the normal distribution [49]. When λ 6= 0 and µ = 0, it is a spatial lag model. It is not only
related to the spatially independent variables but also takes into account the correlation
between the spatially dependent variables. When λ = 0 and µ 6= 0, it is a spatial error
model, which implies that the model is more accurate.

3.4. Comprehensive Transition Probability

Comprehensive transition probability can be obtained by multi-criteria evaluation
(MCE). The probability of any cell changing from a non-built-up state to a built-up state is
denoted as P_a. This probability value is usually limited by the size of the spatial distance
variables, such as distance to the center of the county (district), major roads, railways, and
water [56].

P_a = P_m× S× P_r× Res (5)

where P_m refers to the transition probability from one state to another; S is the neighbor-
hood influence; P_r is the transition probability of land use determined by spatial variables;
and Res represents the restrictions including the large area of water, basic farmland, ecolog-
ical reserves, and national parks that cannot be transitioned into built-up cells because of
geographical constraints and protective policies [57].

3.5. Methods of Model Evaluation

In this paper, descriptive statistics and spatial autocorrelation of residuals are used to
evaluate the goodness of the model [58]. Good models are those that have the average value
of residuals close to 0, the sum of squares of residuals as small as possible, and the residuals
randomly distributed. Therefore, the p-value should be large and if the p-value is greater
than 0.05, the probability of random distribution is greater. The specific value and spatial
autocorrelation statistics of residuals can be obtained through GeoD and GIS. The kappa
index can be used as the main evaluation method for comparing the simulated land-use
image with the actual land-use situation according to the division of the consistency of the
kappa index range proposed by Landis and Koch [55]. When K≤ 0, there is no consistency;
when 0 < K ≤ 0.2, it has a very low consistency; when 0.2 < K ≤ 0.4, it has a general
consistency; when 0.4 < K ≤ 0.6, it has a medium consistency; when 0.6 < K ≤ 0.8, it has
high consistency; and when 0.8 < K ≤ 1, it is almost completely consistent.

This study selects Chengdu, China, a garden city with the target of developing new-
type urbanization, as the study area. Based on the current situation and deficiency of urban
land-use structure and spatial arrangement, as well as regional development strategies, this
study aims to achieve the following objectives: (1) obtaining the transition rules of land-
use change by SAR fitting technology and evaluating the goodness of the fit. This work
can deepen the excavation and enhance the learning of land systems. (2) The transition
probability matrix is acquired by a Markov chain. Integrating the results of the Markov
chain and SAR fitting into CA, the land-use suitability map is provided with pixel-level
arrangement. (3) The spatial land use pattern of Chengdu in 2025 and 2035 are further
obtained with the accuracy allowed. The framework of the optimized simulation process is
shown in Figure 5. Meanwhile, China is in the process of conducting supply-side structural
reform. In 2019, the central committee of the communist party of China and the state
council issued a number of opinions on establishing a national territory development-plan
system and supervising its implementation. There is a lot of discussion about it in China,
and the results of this study can provide theoretical support for its formulation and raise
awareness of optimizing urban-space structures.



Int. J. Environ. Res. Public Health 2022, 19, 11732 9 of 16Int. J. Environ. Res. Public Health 2022, 19, x  9 of 16 
 

 

 

Figure 5. The framework of the optimized simulation process. 

4. Results 

4.1. Transition Rules 

As shown in Table 1, the fitting performance of the spatial variables shows that the 

average value of the residuals under the SAR model is −4 × 10−8, which is close to 0, reveal-

ing the reasonable residual distribution and fitting effect. The residuals’ Moran’s I index 

is 0.0225 and the p-value is 0.3087, making it clear that the residuals’ spatial autocorrela-

tion is not very high. The CA parameters obtained by SAR regression are shown in Table 

2. The spatial lag parameter λ is 0.9125 and the constant term θ is 16.3855. The influence 

of spatial variables from strong to weak is distance to water (Dwater, −16.5288), slope (Slope, 

14.4775), population density (Population, 14.2627), GDP (GDP, 10.5513), distance to major 

roads (Droads, 10.2794), distance to railways (Drailways, −7.1392), and distance to the center of 

the county (district) (Dcenter, 2.7102). We can see that slope has become one of the main 

contributors, being different from many other cities, which can be attributed to the geo-

graphical conditions of Chengdu. The existing core construction area is located in a rela-

tively gentle plain, while the fringe area of Chengdu is situated in a hilly region, on which 

it is difficult to build owing to the steep incline. According to the relevant regulations on 

grading technology of terrain and slope in the second national land survey, land with a 

slope exceeding 25° is not suitable for construction, which is in keeping with the result 

obtained from the statistical analysis of the slope of the existing built-up area in Chengdu. 

Therefore, for Chengdu, the slope is an important geographical factor that affects the ur-

ban spatial growth. The transition probability P_r affected by the spatial variables at 100 

m resolution is obtained by applying the established transition rules. The overall transi-

tion probability map of the cells is made by multiplying P_r with the other terms in Equa-

tion (5), as shown in Figure 6. It can be seen from the figure that Pengzhou, Dayi, Qionglai, 

Pujiang, Longquanyi, and part of Dujiangyan have low transition probability, while that 

of Chongzhou, Xinjin, Wenjiang, Pidu, and part of Xindu and Jintang is high. Except for 

the built-up central town, the highest transition probability of Chengdu appears in 

Shuangliu and Dujiangyan, which also have predominant prospects for development. 
  

Figure 5. The framework of the optimized simulation process.

4. Results
4.1. Transition Rules

As shown in Table 1, the fitting performance of the spatial variables shows that the
average value of the residuals under the SAR model is −4 × 10−8, which is close to 0,
revealing the reasonable residual distribution and fitting effect. The residuals’ Moran’s I
index is 0.0225 and the p-value is 0.3087, making it clear that the residuals’ spatial autocor-
relation is not very high. The CA parameters obtained by SAR regression are shown in
Table 2. The spatial lag parameter λ is 0.9125 and the constant term θ is 16.3855. The influ-
ence of spatial variables from strong to weak is distance to water (Dwater, −16.5288), slope
(Slope, 14.4775), population density (Population, 14.2627), GDP (GDP, 10.5513), distance to
major roads (Droads, 10.2794), distance to railways (Drailways, −7.1392), and distance to the
center of the county (district) (Dcenter, 2.7102). We can see that slope has become one of the
main contributors, being different from many other cities, which can be attributed to the
geographical conditions of Chengdu. The existing core construction area is located in a
relatively gentle plain, while the fringe area of Chengdu is situated in a hilly region, on
which it is difficult to build owing to the steep incline. According to the relevant regulations
on grading technology of terrain and slope in the second national land survey, land with
a slope exceeding 25◦ is not suitable for construction, which is in keeping with the result
obtained from the statistical analysis of the slope of the existing built-up area in Chengdu.
Therefore, for Chengdu, the slope is an important geographical factor that affects the urban
spatial growth. The transition probability P_r affected by the spatial variables at 100 m
resolution is obtained by applying the established transition rules. The overall transition
probability map of the cells is made by multiplying P_r with the other terms in Equation
(5), as shown in Figure 6. It can be seen from the figure that Pengzhou, Dayi, Qionglai,
Pujiang, Longquanyi, and part of Dujiangyan have low transition probability, while that of
Chongzhou, Xinjin, Wenjiang, Pidu, and part of Xindu and Jintang is high. Except for the
built-up central town, the highest transition probability of Chengdu appears in Shuangliu
and Dujiangyan, which also have predominant prospects for development.
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Table 1. Fitting performance for spatial variables.

Model
Residuals’ Descriptive Statistics Residuals’ Space Autocorrelation

Average Value Sum of Squares Moran’s I p-Value

SAR −4 × 10−8 2797.8751 0.0225 0.3087

Table 2. The CA parameters obtained by SAR.

λ θ Dcenter Droads Drailways Dwater GDP Population Slope

0.9125 16.3855 2.7102 10.2794 −7.1392 −16.5288 10.5513 14.2627 14.4775
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4.2. Simulation Based on CA and Markov Chains

According to the principles of multi-criteria evaluation and dual-objective planning,
the land-use change model is established on the basis of CA and Markov chains (Equations
(1)–(3)). The proportion of spatial variables is adjusted, taking into account the spatial
autocorrelation. Therefore, in this study, under natural development scenarios that are only
based on their own development process without considering changes of factor, such as
human activities and natural conditions, we take the land-use pattern in 2005 as the initial
state and use the CA model to simulate and set the time interval between the simulation
period and the base period as 10 years. Assign 0.0 to the background area in the output
conditional probability map to keep the area as the background and set a permissible error
ratio of 0.05 within the normal range (0.15). The larger the error ratio, the more likely it
is to overestimate the amount of land-use change, thereby exacerbating the deviation of
the simulation. The simulated land-use pattern in 2015 is obtained by comparing with the
actual one in 2015 after calculation, as shown in Figures 4 and 7. Tested by the kappa index,
the accuracy of the built-up land spatial simulation is 0.7634, while the kappa index of
non-built-up land spatial simulation is 0.9157, indicating that the simulation result of the
model has a good accuracy and a certain reference value. Adopt the urban land-use pattern
in 2015 as the initial state and use the constructed transition rules to get further simulations
of the land use in 2025 and 2035, as shown in Figures 8 and 9, respectively.
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5. Discussions

A cellular automata (CA) model based on spatial autoregressive (SAR) and Markov
chain is established, and the simulation of the urban spatial simulation of Chengdu is
completed by combining with GIS technology. CA–Markov is a model widely used in
similar research topics but it is difficult to effectively address the problem of the spatial
autocorrelation of spatial variables. At the same time, compared with the FLUS [59]
model and the CLUE-S [24] model widely used at present, the model constructed in this
paper can not only simulate the spatial change of land use with higher precision but also
dig out the influence degree of different spatial variable factors on urban spatial change,
thereby providing a certain reference significance for the formulation of urban development
planning. Thus, a SAR-based CA–Markov can not only express a more reasonable pattern
of urban space, but it also promotes the formulation of urban development strategies by
effectively considering spatial autocorrelation based on previous research. If we fail to
reject the spatial autocorrelation hypothesis, it cannot be ruled out. In fact, we cannot
ensure that this assumption would be rejected in other pilot areas, for different cities in
China have different conditions, orientations, and development concepts. Based on the
new-type urbanization pilot project and garden city construction, Chengdu has avoided
the excessive density of space, compared with developed coastal areas. While the transition
behaviors in this study are applicable to other scenarios, they should be combined with
specific rules.

Moreover, the study results suggest that the fitting residuals are randomly distributed
with very weak spatial autocorrelation characteristics and the SAR model is excellent in
terms of the descriptive statistics of residuals and the spatial autocorrelation effect. The
fitting parameters reveal that the effects of distance to water and major roads contribute
much to the parameters; that is, the closer land is to water and major roads, the more
likely it is to develop into built-up land. In addition, social effects such as population
density and GDP are well-reflected in space, and land with greater population density
and higher GDP tends to develop into built-up land more easily. According to the kappa
index validation, the accuracy of space simulation of built-up land in 2015 is 0.7634, while
that of the non-built-up land is 0.9157, which demonstrates the good accuracy and certain
reference significance of the simulation results. After the further simulation, the simulation
results of the land-use pattern of Chengdu in 2025 and 2035 are obtained, and the results are
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basically in line with the current development strategy of “advancing eastward, expanding
southward, controlling westward, renovating northward and optimizing center” by refer-
ence to the Overall Urban Planning of Chengdu (2016–2035) and the Chengdu Chongqing
Urban Agglomeration Development Plan (2016). Meanwhile, Jintang and Longquan, the
regional centers on the development axis of Chongqing and Chengdu, would work as
other engines for the economic and social development of Chengdu. The southern area
would develop into an urban functional expansion zone, becoming the source of high-tech
industries. The north–south city on the central axis of the new growth pole, together with
the central town, constitutes the core functional area of Chengdu. The west is the func-
tional area of a modern agricultural and ecological reserve consisting of the three satellite
cities of Dujiangyan, Pidu, and Wenjiang and the five regional center cities of Pengzhou,
Chongzhou, Dayi, Qionglai, and Pujiang, strictly limiting the development intensity of
the west to 23%. The development of the northern industrial area focuses on speeding
up the transformation of old industrial bases and communities and improving the basic
public service functions and the livable environment. Consequently, it mainly focuses on
internal optimization. In 2010, Chengdu implemented a series of functional dredgings of
wholesale markets, warehouses, and industrial activities to guide the outward transfer of
parts of the population and industries, thereby relieving the pressure of the central town.
As a result, based on the spatial pattern, the simulation results are in line with the overall
north–south development of Chengdu, and the simulation accuracy is great. In summary,
the SAR–CA–Markov model can effectively obtain the main driving forces behind the
rapid development of a garden city and determine their contributions. In future research,
the integration of various techniques, theories, and models could help to obtain effective
simulation ways for practical application.

6. Conclusions

This study develops a modeling framework for simulating the urban growth of
Chengdu, a garden city, by integrating Markov chain and cellular automata with spa-
tial autoregression. In terms of the model, the integrated model fully considers the spatial
autocorrelation of various factors. It can also determine and select the appropriate driving
factors according to the micro behavior pattern. Besides, it infers the possible situation
of urban growth from the bottom up and analyzes the contribution of land policies that
cannot be ignored in urban development. This framework combines Markov chain and CA
with spatial autoregression, while inheriting their corresponding merits. Meanwhile, the
objective of this framework is to simulate the pattern and form of land use that will appear
soon considering spatial autocorrelation.

The results suggest that the development of the circle layer and the north–south
axis in Chengdu are the consequences of adapting to and making full use of the physical
geographical conditions, the development goals and requirements, and the historical
stage of urban development. The results also imply that mastering the driving forces of
urban development is the first step to improving land management. In addition to slope
limitation, the closer land is to water and major roads, the more likely it is to develop into
built-up land, and land with a higher population density and higher GDP is more likely
to develop into built-up land. The simulated map and the actual image passed the kappa
test after validation, for which the integrated model is an effective tool for simulating the
development pattern and direction of a garden city. The integrated spatial autoregressive
model was applied to a land-use planning practice in Chengdu, China, and obtained a
series of results, which could effectively support the government and decision-makers in
formulating appropriate policies for land-use planning in Chengdu, China. Furthermore,
this case study has proven the effectiveness, superiority, and practicability of this model.
Fully considering the development conditions and objectives of the research area and the
difficulty of data collection, the model can be applied around the world.

Moreover, GIS technology, GeoDa software, and other tools were also used throughout
the process. However, some research gaps in the discussion part still need to be bridged in



Int. J. Environ. Res. Public Health 2022, 19, 11732 14 of 16

future studies. Last, but not least, this framework has not been applied to other cities or
regions, for which we plan to verify this framework by using it in more practical cases.
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