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Abstract: China’s rapid urbanization and industrialization process has triggered serious air pollution.
As a main air pollutant, PMj; 5 is affected not only by meteorological conditions, but also by land
use in urban area. The impacts of urban landscape on PM; 5 become more complicated from a
three-dimensional (3D) and land function zone point of view. Taking the urban area of Nanchang
city, China, as a case and, on the basis of the identification of urban land function zones, this study
firstly constructed a three-dimensional landscape index system to express the characteristics of
3D landscape pattern. Then, the land-use regression (LUR) model was applied to simulate PM; 5
distribution with high precision, and a geographically weighted regression model was established.
The results are as follows: (1) the constructed 3D landscape indices could reflect the 3D characteristics
of urban landscape, and the overall 3D landscape indices of different urban land function zones were
significantly different; (2) the effects of 3D landscape spatial pattern on PM, 5 varied significantly
with land function zone type; (3) the effects of 3D characteristics of landscapes on PMj 5 in different
land function zones are expressed in different ways and exhibit a significant spatial heterogeneity.
This study provides a new idea for reducing air pollution by optimizing the urban landscape pattern.

Keywords: three-dimensional landscape; landscape pattern; land function zone; PM; 5

1. Introduction

Since the reform and opening up policy was established, China’s urbanization rate has
maintained rapid growth, from 17.92% in 1978 to 59.58% in 2018, and it is expected to reach
70% by 2035 [1]. The rapid urbanization has led to dramatic changes in land use/land cover.
A large number of natural land-use regions have been replaced by artificial landscapes
in cities, resulting in a series of environmental problems. In particular, the severe haze
pollution that has continued to erupt in many cities of China in recent years has aroused
great concern [2—4]. PM; 5 is considered to be the main pollutant causing haze. It is easy to
accumulate toxic and harmful substances to enter the bronchial and alveolar network of the
human body through the respiratory route, penetrating into the blood and causing diseases
in the internal respiratory tract and cardiovascular system of the human body [5,6]. It can
also damage human cardiopulmonary function and even affect the health of the nervous
system [7].

In the urban environment, activities such as industrial production and traffic trans-
portation can create PM, 5 pollution [8,9]. Moreover, since all human activity is concentrated
in a small built-up area with dense population, people are more vulnerable to PM; 5 propa-
gation [9]. Therefore, exploring the spatial distribution of PM; 5 and its influencing factors is
of great significance for controlling urban air pollution and protecting urban public health.
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Numerous studies have shown that PM, 5 concentration and distribution at the re-
gional scale are mainly affected by both meteorological condition and land use [10-13].
Compared to the research on the influence of meteorological condition, the research of the
impacts of land use on PM, 5 is relatively weak and limited. At the regional scale, research
on the effects of land use on PM; 5 has always focused on land-use types and land-use pat-
terns [14-17]. Studies based on land-use types often concluded that PM; 5 concentrations in
construction land were high, while PM,; 5 concentrations in non-construction land such as
forest land were low [18,19], which can give little guidance for land-use pattern optimiza-
tion. How to express “land use” in urban environments is of great significance to solving
this problem. Land function zone is viewed as the limited area possessing an obvious urban
function dominated by one land-use type. It is defined from the land function rather than
the land-use type point of view [20]. Our research showed that, in urban center areas, land
function zone rather than land-use type can affect PM; 5 more visibly from the land use
point of view [20]. Moreover, current studies on the impact of landscape pattern on PM; 5
are mostly on the two-dimensional level. With the rapid process of urbanization, cities in
China continue to expand vertically, and three-dimensional (3D) features become more and
more obvious. The 3D urban landscape patterns and building forms are crucial to better
understand the effects of land use on PM; 5, which require further in-depth study [21,22].

Spatial precise simulation of PM; 5 is a precondition to conduct research on the im-
pact of land use on PM; 5 pollution. However, gaining enough PM, 5 data creates a big
challenge. Several approaches have been developed over the last decade to solve this
problem, including spatial interpolation, air dispersion model, and land-use regression
(LUR) model. The spatial interpolation method should be based on dense monitoring sites.
However, in reality, the monitoring sites are often too sparse to meet the needs due to the
limited local budget. Dispersion models are often infeasible at a high spatial resolution
and are extremely dependent on accurate input data [23]. The LUR model is a statistical
regression model based on a geographical information system (GIS) platform. It can be
used to predict the concentration of atmospheric pollutants at a given site by establishing a
statistical relationship between pollutant and predictor variables, e.g., land use, traffic, and
physical characteristics. In recent years, the LUR model has been proven to be a valid and
cost-effective approach [23].

Using a 3D landscape index to characterize the urban 3D landscape pattern is a
common method used in landscape ecology. Because 3D features are the overall attributes
of the whole landscape, 3D landscape indices always focus on landscape levels. For
example, landscape height indices are established on the basis of building height, while
landscape volume indices are calculated on the basis of building volume per unit area.
The landscape height index, such as the average building height and staggered degree,
can better reflect the overall height characteristics of a certain landscape and the degree
of difference [24,25]. Landscape volume index, such as average building volume and
congestion, can reflect the crowded and undulation characteristics of the landscape in 3D
space [26-28]. At present, studies on the effects of 3D landscape pattern on atmospheric
environment mainly focus on the influence of 3D pattern on urban heat island effects, local
climate change, and pollutant transportation [29-31]. The effect of 3D landscape pattern on
the distribution of PM; 5 is rarely studied.

Taking the central urban area of Nanchang as an example, we first established a system
of 3D landscape indices containing landscape height, congestion, undulation, and diversity
for further analysis. Then, four types of land function zone (commercial, residential,
industrial, and educational) were identified following the Regulations for the Evaluation
of the Intensive Use of Construction Land (TD/T 1018-2008), and 3D landscape indices
were calculated to illustrate the landscape pattern characteristics of each land function
zone. We applied analysis of variance and multiple comparisons to analyze how the 3D
landscape indices of different type of function zone differ from each other. Lastly, the
land-use regression (LUR) model [32-34] was used to simulate the spatial variation of
PM, 5 concentration, and correlation analysis and geographic weighted regression (GWR)
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models were used to study the impact of urban 3D pattern on PM; 5 distribution and its
spatial heterogeneity. This study aims to explore the impact of the 3D urban landscape
pattern on the distribution of PM; 5 according to PM, 5 concentration simulations using the
LUR model. This research can be helpful to provide a theoretical and methodological basis
for optimizing the urban landscape pattern to alleviate PM; 5 pollution.

2. Date and Methods
2.1. Study Area

Nanchang is the capital city of Jiangxi province (Figure 1) and is one of the core cities
in the middle reaches of the Yangtze River. It is located within 28°10'-29°11' N and 115°27'-
116°35’ E on the southwest bank of Poyang Lake, the largest freshwater lake in China.
Ganjiang River passes through the city. It is characterized by a subtropical monsoon climate
with abundant heat, rainfall, and light. The whole territory of Nanchang is dominated by
plains, where the southeastern region is relatively flat and the northwestern is relatively
hilly. The city covers six districts and three counties with a total area of 7402.36 km?. The
study area is the central urban area defined by the land-use master plan, with an area
of 562.46 km?. The Nanchang Meteorological Bureau has established nine national air
quality automatic monitoring sites and 14 provincial ones for monitoring main atmospheric
pollutants such as PMj 5, SO,, CO, and NOy day and night, in which 16 monitoring sites are
covered within the study area. In recent years, as with other cities in China, the urbanization
and industrialization process of Nanchang has been accelerating, and the urbanization
level has been increasing. However, many environment problems, especially air pollution,
have become more and more serious.
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Figure 1. Location of the study area: (a) location of Jiangxi Province in China; (b) location of urban
central area; (c) monitoring sites and land function zones in the study area.

2.2. Data Sources and Methods
2.2.1. Data Sources

The air pollution data used in this study came from the daily average concentration
of PM, 5 monitored by the 16 national and provincial automatic air quality monitoring
sites covered by the central urban area of Nanchang city in 2019. The meteorological data
for 2019 came from the China Meteorological Science Data Sharing Service Network. The
relevant land-use data was taken from the urban cadastral map of Nanchang City. The
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3D data came from Baidu’s real-world map, Nanchang’s 3D map, combined with field
survey data.

2.2.2. Identification of Urban Land-Use Function Zones

The land function zone is viewed as the limited area possessing an obvious urban
function dominated by one land-use type. It is defined from the land function rather than
land-use type point of view [20]. In this study, land-use function zones were identified
referring to the Regulations for the Evaluation of the Intensive Use of Construction Land
(TD/T 1018-2008). The area proportion of the dominant land-use type is regulated, i.e., resi-
dential, commercial, and educational land-use types in their corresponding function zone
must account for more than 50%, and industrial land use in the industrial function zone
must account for more than 40%. Four types of function zone, i.e., residence, industry,
education, and commerce, were identified in the study area. Only the areas with distinct
land-use function were identified and used in this study. Other areas with mixed land-use
functions were not used for sake of analyzing the impacts on PM; 5 with high accuracy.
After considering the urban master plan, land-use master plan, and urban function zone
identification through an investigation, the land function zones in the urban central area
were identified as shown in Figure 1, covering nearly 1% of the study area.

2.2.3. The 3D Landscape Indices Adopted

Many studies have applied a 3D landscape index to quantify urban building mor-
phology. Commonly, a 3D landscape index is defined in terms of height, congestion, and
fluctuation (Table 1). For example, average building height, average volume density, land-
scape spatial dispersion, and landscape fluctuation are most frequently used in the study of
3D landscape patterns (Table 2). They can better represent the landscape height, congestion,
and fluctuation. However, the diversity of landscape is also the core manifestation of land-
scape heterogeneity. In this study, two indices of building diversity and building uniformity
were supplemented to express the equilibrium degree of the diversity and distribution of
buildings of different height categories. Together with commonly used landscape indices, a
more complete 3D landscape pattern index system was formed to characterize 3D spatial
features (Tables 1 and 2).

Table 1. Features and methods of 3D landscape pattern description.

3D Feature Schematic Diagram Methods Description
Height is the most basic and intuitive feature that
Height distinguishes 3D space from the 2D plane. It can be reflected

by the average value of building height.
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Table 1. Cont.

3D Feature Schematic Diagram

Methods Description

Congestion

Congestion denotes the density of buildings in the sample
area. The different volume, shape, floor area, and peripheral
outline of urban buildings will affect the architectural
landscape pattern of the area. The openness of buildings
plays an important role in atmospheric diffusion. The
degree of congestion can be calculated from the ratio of the
sum of the building volume and the maximum height of the
building multiplied by the area of the sample area.

Fluctuation

Fluctuation shows the difference in the building height in
the sample area. The fluctuation feature is also a basic
indicator to describe the 3D feature of the landscape. It can
be calculated from the difference between the highest value
and the lowest value of the building height in the
sample area.

Diversity

Diversity indicates the number of buildings with different
heights in the sample area. The diversity index in the 2D
plane is often used to calculate the heterogeneity of the
community. In the 3D environment, after dividing the
building into different categories according to height, the
spatial characteristics can be measured from the spatial
heterogeneity. The buildings are divided into different
categories according to their height, and the heterogeneity
of the architectural landscape can be calculated using the
Shannonville diversity index and uniformity index.

Table 2. Formulas of 3D landscape indices.

3D Feature 3D Landscape Index

Description

Height Landscape height density

Congestion Landscape volume density

Landscape spatial dispersion

Fluctuation

Landscape fluctuation LHR = Hpax —

Representing the average height of the
architectural landscape. H; is the height of
building i, and n is the number of buildings in
the sample area.

V;j is the volume of building i, Hmay is the
maximum height of the building in the sample
area, and S is the area of the sample area.

1y (Hi—H) Representing the degree of dispersion of

building height. H; is the height of building i.

Hmax is the maximum building height in the

Hunin landscape, and Hy, is the minimum building

height in the landscape.
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Table 2. Cont.

3D Feature

3D Landscape Index Formula Description

Diversity

P; is the percentage of the area occupied by

Building diversity S —_ E (P; x InP;) buildings of type i, and m is the total number of

i=0 building types in the landscape.

Representing the uniformity of building
S

Building uniformity E = 2 x100% distribution. Smay is the maximum diversity

Smax

index in the landscape.

For the calculation of the 3D landscape index, we obtained the number of floors in each
function zone according to Baidu’s real-world map, Nanchang’s 3D map, and a field survey.
With reference to the building construction standards, the height of each building in all
function zones was estimated in accordance with the standard house floor height of 2.8 m
and plant floor height of 5.0 m. According to the regulation of Residential Design Code
(GB 50096-2011) and Design of Civil Buildings (GB 50352-2005), the architectural landscape
was divided into eight categories, namely, bungalows (2.8-5.0 m), low-rise (5.6-10.0 m),
multistory (11.2-15.0 m), and high-rise (19.6-28.0 m), high-rise one (30.8-50.4 m), high-rise
two (53.2-70.0 m), high-rise three (73.2-98.0 m), and super high-rise (>100 m). The volume
of the building was equal to the product of the contour area of the top floor of the building
and the building height. The top contour of the building was obtained through remote
sensing using a combination of area-based object classification and artificial interpretation.

2.2.4. LUR Modeling

The LUR model, i.e., land-use regression model, is a commonly used method to
simulate the spatial and temporal differentiation of urban air pollution [35], and many
researchers have conducted productive studies using this model [35,36]. The theoretical
basis of this method is that the spatial distribution of atmospheric pollutants is related
to geospatial factors such as land use. Regression equations are constructed through the
pollutant data monitored by ground monitoring sites and the surrounding geospatial
elements to predict the concentration of pollutants in other regions [37,38]. The regression
equationy = g + B1 X 1 + ... + BiX; is gained as a map by multiplying all cells in the
contributing variable layers (xj, ... , i) by their associated coefficients (31, ... , i) with the
constant intercept 30.

According to the research of Yang Haiou [20], six buffers (500 m, 1000 m, 1500 m,
2000 m, 3000 m, 4000 m, and 5000 m) were built around the 16 monitoring sites in the central
urban area of Nanchang City. The buffers were overlaid and analyzed with the urban
cadastral data and road networks, and the predictive variables in each buffer were extracted.
According to the relevant geographical variables commonly used in the construction of
the LUR model, the population, traffic factors, land use, and meteorological factors were
selected as the independent variables of the models (Table 3).

Table 3. Independent variables of LUR modelling.

Factor

Assumed

Variable Description Unit Correlation

Road

MROAD Proportion of main road length to buffer area m +
SROAD Proportion of secondary road length to buffer area m +
TAL Proportion of total road length to buffer area m +
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Table 3. Cont.

Factor Variable Description Unit Assum(.ed
Correlation
Proportion of ecological area (forest, water, etc.) to o
VEG Yo -
buffer area

Land use INDU Proportion of industrial land area to buffer area % +

WAT Proportion of water area to buffer area % -
RAR Proportion of arable land area to buffer area % -

Population Por Proportion of residential land area to buffer area % +
PRS Air pressure hPa -
PRS_Sea Sea pressure hPa -
. WIN Wind speed m/s -
Meteorological factor TEM Temperature oC -
RHU Relative humidity % -
PRE_1h Hourly precipitation mm -

2.2.5. Impact of 3D Landscape Pattern on PM; 5

The average value of PM; 5 in residential, commercial, industrial, and educational
function zones was calculated in this study. Correlation was analyzed between PM, 5 in
the functional zone and the 3D landscape index. Traditionally, statistics-based nonspatial
global models, such as the linear homeopathic model and exponential model, were used
for discovering how the landscape pattern can affect PM;5 [39,40]. In fact, landscape
pattern’s effects on PM; 5 usually present with spatial heterogeneity on local scale. Even
for the same landscape, the responses of PMj; 5 to the different arrangement layouts will
be different. Hence, the local spatial model can more appropriately reflect the coupling
relationship between them [35,37]. Compared to statistics-based nonspatial global models,
GWR considers the local effects of spatial objects and has a higher degree of advantage
for exploring the coupling relationship between pattern and process at the local spatial
scale [38]. The model formula is as follows:

NgE

Yi = BO(ui/ Vi) + (ui/ Vi)Xik + &i, (1)

k

1

where (uj, v;) is the coordinate of sampling point i, and By (uj, v;) is the k-th regression
coefficient at sampling point i. In order to further explore the influence mode and degree of
landscape spatial pattern on PM; 5 concentration, a geographic weighted regression model
was used to couple the spatial pattern with PM, 5 concentration. Considering that there
may be a problem of collinearity between the 3D landscape indices, only one index in each
feature with the strongest correlation with PM; 5 participated the model construction. The
standardized residuals of the geographic weighted regression model were verified using
Moran’s I index. A p-value result greater than 0.05 indicates that the standardized residuals
of the model were discrete, and the model results were credible.

3. Results
3.1. Distribution of Land-Use Function Zones

Figure 1 shows the land-use function zones identified in Nanchang City. The res-
idential function zone and commercial function zone were closely distributed, mainly
concentrated in Honggutan District, a newly developed area of Nanchang City, Donghu
District, the center of the old city, and Qingyunpu District. The commercial function zones
were mainly distributed in a strip shape along with the residential function zones. The
industrial function zones and educational function zones were mainly distributed around
the residential and commercial function zones. The industrial function zones were mainly
located in the south of city, where various development zones were established for the de-
velopment of industry. Educational function zones were mainly distributed in Honggutan
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District and Yaohu area, where the universities and research institutes were concentrated.
The statistical features of the function zones are shown in Table 4.

Table 4. Statistical features of the function zones.

Type Number Max (km?) Min (km?) Mean (km?)
Industrial function zone 16 2.88 0.37 0.84
Educational function zone 14 2.93 0.40 1.05
Residential function zone 18 1.13 0.50 0.70
Commercial function zone 13 0.73 0.31 0.39

3.2. The 3D Characteristics of Land-Use Function Zone

The 3D landscape indices of the land function zone were calculated. Then, we used
one-way ANOVA and LSD post-hoc multiple comparison analysis methods to analyze
if there were significant differences in the 3D characteristics in different function zones
(Tables 5 and 6).

Table 5. Results of one-way ANOVA analysis.

Type III Sum of Degree of

Variable Squares Freedom Mean Square F Significance
Landscape height density 344.637 3 114.879 5.253 0.003
Landscape volume density 31.167 3 10.389 6.993 0.000
Landscape spatial dispersion 1.085 3 0.362 5.082 0.003
Landscape fluctuation 16,998.259 3 5666.086 11.356 0.000
Building diversity 1.933 3 0.644 4116 0.010
Building uniformity 1.027 3 0.136 3.894 0.015

Table 6. Multiple comparison results of 3D landscape index in land-use function zones.

Variable Function Zone (I)  Function Zone (J) Mean Difference Standard Error Significance
Residential —0.996 1.702 0.561
Commercial Educational —0.362 1.772 0.839
Industrial 4818 * 1.746 0.008
Commercial 0.996 1.702 0.561
Residential Educational 0.635 1.635 0.699
Landscape height Industrial 5.814 % 1.607 0.001
density Commercial 0.362 1.772 0.839
Educational Residential —0.635 1.635 0.699
Industrial 5.179 * 1.681 0.003
Commercial —4.818 * 1.746 0.008
Industrial Residential —5.814 % 1.607 0.001
Educational —5.179 % 1.681 0.003
Residential 0.378 0.444 0.398
Commercial Educational 1.758 * 0.462 0.000
Industrial 1.441* 0.455 0.002
Commercial —0.378 0.444 0.398
Residential Educational 1.381* 0.426 0.002
Landscape Industrial 1.063 * 0.419 0.014
volume density Commercial —~1.758 * 0.462 0.000
Educational Residential —1.381* 0.426 0.002
Industrial —0.318 0.438 0.471
Commercial —1.441* 0.455 0.002
Industrial Residential —1.063 * 0.419 0.014

Educational 0.318 0.438 0.471
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Table 6. Cont.

Variable Function Zone (I)  Function Zone (J)  Mean Difference Standard Error Significance
Residential 0.017 0.097 0.860
Commercial Educational 0.230 * 0.101 0.027
Industrial 0.305 * 0.100 0.003
Commercial —0.017 0.097 0.860
Residential Educational 0.213* 0.093 0.026
Landscape Industrial 0.288 * 0.092 0.003
spatial dispersion Commercial 0230 0.101 0.027
Educational Residential —0.213 * 0.093 0.026
Industrial 0.076 0.096 0.434
Commercial —0.305 * 0.100 0.003
Industrial Residential —0.288 * 0.092 0.003
Educational —0.076 0.096 0.434
Residential —2.874 8.130 0.725
Commercial Educational 20.055 * 8.464 0.021
Industrial 37.428 * 8.341 0.000
Commercial 2.874 8.130 0.725
Residential Educational 22.929 * 7.809 0.005
Landscape Industrial 40301 * 7.675 0000
fluctuation Commercial —20.055 * 8.464 0.021
Educational Residential —22.930 % 7.809 0.005
Industrial 17.372 % 8.028 0.035
Commercial —37.428 * 8.341 0.000
Industrial Residential —40.301 % 7.675 0.000
Educational —17.372% 8.028 0.035
Residential 0.027 0.144 0.852
Commercial Educational 0.176 0.150 0.246
Industrial 0.443 * 0.148 0.004
Commercial —0.027 0.144 0.852
Residential Educational 0.149 0.138 0.287
Building Industrial 0.416* 0.136 0.003
diversity Commercial —0.176 0.150 0.246
Educational Residential —0.149 0.138 0.287
Industrial 0.267 0.142 0.065
Commercial —0.443 * 0.148 0.004
Industrial Residential —0416* 0.136 0.003
Educational —0.267 0.142 0.065
Residential 0.022 * 0.079 0.059
Commercial Educational 0.016 0.082 0.158
Industrial 0.151 * 0.081 0.003
Commercial —0.022 0.079 0.059
Residential Educational —0.006 0.076 0.227
Building Industrial 0.129 * 0.075 0.001
uniformity Commercial —0.016 0.082 0.158
Educational Residential 0.006 0.076 0.227
Industrial 0.135* 0.078 0.050
Commercial —0.151 0.081 0.003
Industrial Residential —0.129 * 0.075 0.001
Educational —0.135* 0.078 0.050

Note: * p < 0.05.
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It can be seen from the above tables that the industrial function zone was significantly
different from the other function zones. The educational function zone was significantly
different from the residential and commercial function zones in landscape volume density,
but not significantly different from the industrial function zone. It differed from the
residential, commercial, and industrial function zones in landscape spatial variation and
architectural diversity. In addition, the educational function zone was not significantly
different from the commercial function zone in terms of building uniformity, but it was
different from the industrial and the residential function zones in terms of varying degrees.
There was a significant difference in building uniformity between the residential and
commercial function zones. It can be seen that the 3D landscape indices constructed could
better reflect the 3D characteristics and differences in different land function zones.

3.3. Spatial Heterogeneity of PMy 5 Using LUR Model

We used the monthly average value, i.e., panel data from 16 monitoring sites, as the
dependent variable for LUR modeling. Accordingly, a total of 16 x 12 = 192 groups of data
were used for the model construction, in which three-quarters were randomly selected for
modeling, and the remainder were used for cross-validation. The model-building algorithm
adopted in this study was proposed in accordance with Henderson et al. [38]. Firstly, we
calculated the correlation of the respective variables with PMj 5, selected the highest ranked
variable in each subcategory, and discarded the subcategory with a correlation coefficient
greater than 0.6 for that variable. Secondly, all remaining variables were used to construct
multiple stepwise linear regression equations, where the variables that did not have a
significant {-statistic at a 90% confidence level were removed. The entire process was
repeated until the convergence was obtained, and the optimal model was regarded as the
final model. The prediction errors of all models were tested by comparing the predicted
and measured values with the average absolute error rate and RMSE.

The LUR model of PM; 5 was finally built (Table 7). Only four independent variables,
i.e.,, XVEG5000, XPRE, XPRS_Sea, and XINDUS500, were significant in the constructed
model. It can be seen that the adjusted R? value of the model was 0.917, indicating that
the constructed model had good adaptability and strong ability to explain the spatial
variation. In addition, the average absolute error rate and the root-mean-square error
(RMSE) indicated that the model had higher verification accuracy. In terms of land use, we
can also see from Table 7. that ecological land and industry land distribution had significant
effects on the spatial distribution of PMj; 5. The simulation results of the spatial distribution
of PMj, 5 are shown in Figure 2. They indicate that, in general, the distribution of PM; 5 in
the study showed obvious spatial heterogeneity, and the concentration of PM; 5 gradually
decreased from the central area to the periphery. Together with the spatial distribution
of land use, we can see that high-PM, 5 areas occurred in the industrial zones in the east,
northwest, and south, where the industrial parks of Nanchang city were concentrated.
Low-PM; 5 areas were distributed along Ganjiang river and in the Meiling National Nature
Reserve Park densely populated with forest. However, how land use affects PM; 5 from the
land function zone point of view still needs deeper studies.

Table 7. Results of LUR model.

Goodness of Average
Variable Land Use Regression Model Fit (R?) Adjusted R? Absolute RMSE
Error Rate
PM, 5 Y =41.308 — 5.921XVEG5000 + 40.316XPRE — 0.958 0.917 0,094 4583

26.102XPRS_Sea + 4.088XINDUS500

VEG5000: proportion of ecological area in 5000 m buffer zone; PRE: hourly precipitation; PRS_Sea: sea-level
pressure; INDU500: 500 m proportion of industrial land area in 500 m buffer zone.
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Figure 2. Spatial distribution of PM; 5 concentration.

3.4. Inference of 3D Indices on PM; 5 in Different Land Function Zones

On the basis of the simulation results of PM; 5 distribution, we calculated the average
PM, 5 concentration in each function zone of residence, commerce, industry, and education,
and we analyzed the correlation between PM; 5 and the 3D landscape index. The correlation
coefficients are shown in Table 8.

In the industrial function zone, all 3D landscape indices were positively correlated
with the concentration of PM, 5. The landscape height density, building diversity, and
building uniformity were significantly positively correlated with PM,5 concentration
at the 0.05 significance level. This indicated that the average height and distribution
of buildings in industrial function zone had a significant effect on the concentration of
PMj; 5. In the educational and residential function zones, the landscape height density and
PM, 5 concentration were significantly negatively correlated (p < 0.05), indicating that the
building height had an important effect on PM; 5 concentration. In the commercial function
zone, all 3D landscape indices were negatively correlated with the concentration of PM; 5.
Among them, building uniformity, building diversity, and landscape spatial variation were
significantly negatively correlated with PM; 5 concentration (p < 0.05).

Table 8. Correlation between 3D landscape index of functional zones and PM; 5 concentration.

3D Landscape Index Industrial Function Educational Residential Commercial
Zone Function Zone Function Zone Function Zone
Landscape height density 0.518 * —0.556 * —0.546 * —0.061
Landscape volume density 0.048 0.325 —0.095 —0.270
Landscape spatial dispersion 0.342 0.112 —0.051 —0.574 %
Landscape undulation 0.454 —0.262 —0.263 —0.473
Building diversity 0.589 * —-0.211 —0.304 —0.602 *
Building uniformity 0.482* 0.108 —0.358 —0.635*

Note: * p < 0.05.

3.5. The Spatial Variance of 3D Indices Using GWR Model

In order to improve the modeling accuracy and remove the collinear effects of 3D
landscape indices, we chose one index with the strongest correlation and another with a
correlation coefficient less than 0.6 for each type of land function zone as independent vari-
ables to participate in model construction according to the independent variable screening
method proposed in Section 3.2. That is, the industrial function zone selected landscape
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diversity and landscape unevenness, the educational and residential function zones se-
lected landscape height density and building uniformity, and the commercial function zone
selected landscape spatial dispersion and building uniformity for GWR modeling [41-43].
Table 9 shows the fitting and testing results of the GWR model of the four function zones.

Table 9. Results of GWR model.

Variable Goodness of Fit (R?) Adjusted R? Moran’s Index p-Value
Industrial function zone 0.8832 0.7145 0.1181 0.3431
Commercial function zone 0.7938 0.6852 0.0123 0.6876
Educational function zone 0.5295 0.4569 —0.2052 0.4625
Residential function zone 0.3129 0.2145 0.1440 0.3091

The adjusted R? values of the models of the industrial and commercial function zones
were all above 50%, indicating the model performed well and could better explain the
relationship between the independent variable and PM; 5 concentration. The adjusted R?
value of the residential function zone was low, and the model fitting effect was limited.
According to the results of Moran’s I verification, the p-values of the four models were less
than 0.5, which indicated that the standardized residuals were in a random distribution
state and the model results were credible.

Figures 3—-6 show the independent variable regression coefficients of the GWR model
for each function zone. In the industrial function zone, the regression coefficients of
building diversity and landscape spatial dispersion were generally positive, indicating that
the PM; 5 concentration increased with the increase in the type of buildings and the degree
of dispersion. In the education function zone, the landscape height density had a negative
effect on PM; 5 concentration, while the building uniformity mainly had a positive effect on
PM, 5 concentration, and the impact intensity gradually decreased from west to east. In the
residential function zone, the regression coefficients of both the landscape height density
and the building uniformity were negative, indicating that they had a negative effect on the
PM; 5 concentration. This also demonstrated that, in the central area of the city with higher
building density and higher building height, the PM; 5 concentration decreased with the
increase in average building height and the increase in building uniformity level. In the
commercial function zone, the regression coefficients of landscape spatial variation and
building uniformity were also negative, and the absolute value of the regression coefficient
gradually increased from north to south. It can be seen that the landscape spatial dispersion
and building uniformity had a negative effect on PM; 5 concentration, and the intensity
of the effect gradually increased from north to south. In addition, in the commercial
function zone, the absolute value of the regression coefficient of the building uniformity
was significantly higher than the building uniformity, which indicated that the degree
of influence of the building uniformity PM; 5 concentration was higher than that of the
landscape space.

Legend

Building diversity
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0.9699 - 1.2365
1.2365 - 1.3532

Legend
Landscape spatial dispersion
05173 -0.5434
05434 - 0.5910
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- 13532 - 1.5703 - 0.6430 - 0.7523
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Figure 3. GWR results for industrial function zone.
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4. Discussion

Many studies discovered that PM; 5 concentration and distribution at the regional
scale were mainly affected by both meteorological condition and land use. Compared
to studies on meteorological condition, the research of the impacts of land use on PM; 5
was relatively limited, especially in urban areas. How to express “land use” in an urban
environment is of great significance to solving this problem. At present, studies on the
effects of land use on PMj; 5 always focus on land-use type. The results often concluded
that PM; 5 concentrations in construction land were high, while PM; 5 concentrations in
non-construction land such as forest land were low, which can provide little guidance for
land-use optimization, especially for urban land use. In this study, we put forward the idea
of land function zone instead of land-use type to analyze the relationship between land use
and PM; 5. It is expected that this new and innovative approach will deepen understanding
of the coupling relation between land use and PM; 5 in urban area. Furthermore, with the
development of the urbanization process, city landscape 3D characteristics became more
and more obvious. Studies have shown that the 3D index was more descriptive than the
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two-dimensional index, and it could better reflect the complexity of the city [24]. On the
basis of the existing 3D landscape index, a 3D landscape index system with six indices
reflecting the height, congestion, fluctuation, and diversity characteristics of the urban land
use was constructed for analyzing the 3D spatial pattern of the central area in Nanchang
city based on land function zone. Some studies used the arc—chord ratio rugosity index
(ACR) to quantify the complexity of the 3D landscape structure [44]. Considering the
difficulty of obtaining data, these indices were not used in this study.

It was found that the 3D landscape indices of industrial and educational function
zones were significantly different from those of the other types of function zones, i.e.,
residential function zone and commercial function zone. The results of this study were
consistent with the actual situation of the city. The land function zone of a city refers to a
certain type of social economic activity at the dominant space, and it plays an important
role in the urban economic and social functions [45]. Due to the high population density,
high rents, and huge benefits driven by residential and commercial function zone, the
space will become more and more crowded. The industrial function zones are mainly
distributed on the periphery of the city, and the land rent and space congestion are much
lower than those in the city center. The educational function zone is mainly composed
of independent universities and research institutions, with dense buildings among the
industrial, residential, and commercial function zones. Thus, different land function zones
in the city will present different 3D characteristics. Therefore, the constructed 3D landscape
index system can accurately distinguish the differences among them. Overall, the 3D
landscape index system constructed in this study can better reflect the spatial heterogeneity
of the 3D landscape features of different function zones in Nanchang city.

Previous studies all agreed that the number of monitoring sites did have an important
impact on the results of LUR modeling; however, in reality, the monitoring sites are often
too sparse to meet the needs due to the limited local budget. At present, the LUR model is
generally recognized as an economic and effective method for simulating the concentration
of air pollutants in urban areas [46-48]. However, a consensus has not been reached on
how many monitoring sites are required for this method. Many studies believed that the
number of sites should be determined in combination with the population and scale of the
city (Hoek, et al., 2008). In this paper, only the data from 16 monitoring sites were used for
LUR modeling, which is really a limitation of our study. Although the number of sites was
not large, there was one site for every 35 km?. Compared to previous studies, the density
of sites in this study was the same or even higher [20,37,38]. Furthermore, the monthly
average concentration data, i.e., panel data, were used for modeling, indicating that a total
of 16 x 12 = 192 groups of data were used for the model construction, in which three-
quarters were used for modeling and the remainder were used for verification. This could
supplement the limitation of monitoring sites in some cases. Nevertheless, supplementing
the monitoring sites requires extensive costly labor and material inputs which are difficult
to achieve at present, but this could represent a research direction to improve precision of
the study in the future.

In this study, the traffic variables were not significant in modeling. This is in contrast
to the conclusion of previous studies [35,49,50]. One possible reason is that the study
area is located in the central area of Nanchang City, mostly covered by built-up areas
with a complete transportation system, and the road density around monitoring sites did
not significantly differ. Accordingly, it did not significantly affect the heterogeneity of
PMj 5 distribution, but this does not necessarily mean that traffic variables do not affect
PMj, 5 concentration. Another reason could be that we used monthly average PM; 5 data
rather than daily data, whose difference was averaged, and the spatial heterogeneity
was depressed.

In previous studies, the adjusted R? value of the LUR model was mostly less than
0.8 [37,51-53]. The adjusted R? value of the LUR model constructed in this study reached
0.9, indicating that the model performed well in explaining the spatial variability of PM; 5
concentrations. Early studies focused on analyzing the impact of single building and block
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changes on air pollution, and they rarely analyzed the impact of 3D landscape spatial
pattern on air pollutant [54]. This study found that, in the industrial function zone, both
building diversity and landscape spatial dispersion had a positive effect on PM, 5, of which
building diversity had a greater impact. Considering that the types of buildings in the
industrial function zone were relatively simple and the average height was low, when
the height and type of buildings increased, the pollutant emissions in the industrial zone
increased, and the PMj; 5 concentration increased accordingly. This conclusion is consistent
with industrial pollution and emissions being the main sources of PM; 5 pollution [15,55].
Landscape height density and building uniformity had a negative effect on PM; 5 concen-
tration in the residential and commercial function zones, which indicated that the increase
in the height of some buildings and the improvement of uniformity were beneficial to
the diffusion of PM; 5. This result is similar to the research of urban canopy rugosity on
pollution diffusion [56]. The correlation between rugosity and wind speed changed with
the height of the building. When the building height was higher than a certain critical
value, it was negatively correlated with the wind speed, whereas, when it was below the
critical value, it was positively correlated with the wind speed [56]. In addition, changes
in building height had an impact on the storage and release of heat, which also indirectly
affected the photochemical ability and diffusion of pollutants [56].

5. Conclusions

This paper firstly constructed a 3D landscape index system from the 3D perspective
of height, congestion, fluctuation, and diversity characteristics. Then, by means of land
function zone identification, the 3D pattern difference in different land function zones
was analyzed taking Nanchang City’s central urban area as a case. On the basis of the
LUR simulation of PMj 5, the relationship between 3D characteristics of land function
zone and PM; 5 was analyzed. Furthermore, a geographic weighted regression model was
constructed to explore the heterogeneity of the impact of 3D urban landscape pattern on
the distribution of PMj; 5, yielding the following indications:

(1) The analysis of variance and multiple comparison tests showed that there were
significant differences in the overall 3D landscape pattern in different urban land func-
tion zone, indicating that the 3D landscape index system constructed can reflect the 3D
characteristics of different urban land use.

(2) Correlation analysis results indicated that the impact of landscape spatial pattern
on PM, 5 concentration distribution varied with land function zone. In the industrial
function zone, building diversity and landscape spatial dispersion had a positive effect on
PM; 5 concentrations. The landscape height density in the educational function zone had
a negative effect on PM; 5 concentration, while the building uniformity played a positive
role. Landscape height density and building uniformity had a negative effect on PM; 5
concentration in the residential function zone. In the commercial function zone, landscape
spatial dispersion and building uniformity had a negative effect on PM; 5 concentration.

(3) In addition, the results of GWR models showed that the 3D characteristics of
landscapes in different land-use function zones affect PM, 5 concentrations in different
ways and degrees, exhibiting significant spatial heterogeneity.

This study can provide some suggestions for city planners to reduce PM; 5 pollution
by means of optimizing 3D urban landscape pattern from the congestion, fluctuation, and
diversity points of view.
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