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Abstract: Particulate matter (PM) degrades air quality and negatively impacts human health. The
spatial–temporal heterogeneity of PM (PM2.5 and PM10) concentration in Heilongjiang Province
during 2014–2018 and the key impacting factors were investigated based on principal component
analysis-based ordinary least square regression (PCA-OLS), PCA-based geographically weighted
regression (PCA-GWR), PCA-based temporally weighted regression (PCA-TWR), and PCA-based
geographically and temporally weighted regression (PCA-GTWR). Results showed that six principal
components represented the temperature, wind speed, air pressure, atmospheric pollution, humidity,
and vegetation cover factor, respectively, contributing 87% of original variables. All the local models
(PCA-GWR, PCA-TWR, and PCA-GTWR) were superior to the global model (PCA-OLS), and PCA-
GTWR has the best performance. PM had greater temporal than spatial heterogeneity due to
seasonal periodicity. Air pollutants (i.e., SO2, NO2, and CO) and pressure were promoted whereas
temperature, wind speed, and vegetation cover inhibited the PM concentration. The downward trend
of annual PM concentration is obvious, especially after 2017, and the hot spot gradually changed
from southwestern to southeastern cities. This study laid the foundation for precise local government
prevention and control by addressing both excessive effect factors (i.e., meteorological factors, air
pollutants, vegetation cover) and spatial-temporal heterogeneity of PM.

Keywords: PCA; GTWR; GWR; TWR; particulate matter; meteorological factors; NDVI

1. Introduction

Particulate matter (PM) is dispersed throughout the atmosphere, decreasing visibility,
and interfering with plant photosynthesis [1–4]. In addition, numerous studies have
demonstrated that airborne particulate matter has a negative impact on human health,
increasing the chance of children’s breathing problems [5]. It has been established that
PM2.5 and PM10 (atmospheric particles with aerodynamic diameters of 2.5 µm and 10 µm,
respectively) are associated with an increased risk of human mortality [6]. According to the
Global Burden of Disease 2010 comparative risk assessment (GBD), ambient air pollution
from PM2.5 was ranked as the sixth highest overall risk factor for worldwide premature
death [7].

According to the Global Urban Air Quality Index (AQI) Report, with the rapid ur-
banization and industrialization over the past three decades, Chinese cities have suf-
fered serious air pollution challenges [8]. In January 2013, smog blanketed more than
1.3 million km2 of China, impacting approximately 850 million people [9]. In the same
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year, China released the Air Pollution Prevention and Control Action Plan, which estab-
lished a quantifiable goal for decreasing PM10 concentrations in cities at the prefecture
level and established a goal to reduce emissions by more than 10% by 2017, as compared
to 2012 emission levels [10]. Some studies have claimed that China’s air pollution emis-
sions have been reduced as a result of its reduction program, such as those examining
Heilongjiang Province [4,11,12]. Except for Harbin and Suihua, the proportion of excel-
lent days (the fraction of monitoring days with excellent and good ambient air quality
indices in the effective monitoring days) in other cities of Heilongjiang Province exceed
90% in 2021 (http://sthj.hlj.gov.cn/kqzlxx/21080.jhtml (accessed on 12 September 2022)).
Although the air quality in Heilongjiang Province has improved, further study is required
to properly adopt more effective measures for the province. Furthermore, there have been
minimal studies that have investigated air pollution in Heilongjiang Province compared to
the economically developed regions in China, such as Beijing-Tianjin-Hebei, the Yangtze
River Delta, and the Pearl River Delta [13–17]. In addition, the principal pollutants in
Heilongjiang Province’s cities are inhalable particulate matter (PM10) and fine particulate
matter (PM2.5) [18]. As a consequence, the particulate matter in Heilongjiang Province is
the focus of this study (in this article, the particulate matter investigated are PM2.5 and
PM10, which are referred to collectively as PM).

Both in China and abroad, numerous studies have conducted ecotoxicological anal-
yses and chemical composition analyses of PM [19–22], while others have focused on
the temporal and geographical characteristics of PM [23–25], as well as their influencing
factors [26,27]. In general, both machine learning models and statistical models are com-
monly used to study the temporal and spatial distribution of PM. Artificial neural networks
(ANNs), regression trees (RTs), support vector machines (SVMs), random forests (RFs),
and XGBoost are classic examples of machine learning models. Although the accuracy of
machine learning models has steadily increased in recent years, using a machine learning
model to determine the link between explanatory and response variables is difficult [28–31].
In contrast, the statistical model can be used to investigate the relationship between ex-
planatory and response variables. Global and local statistical models are the two types of
statistical models. The global model applies a unique model for the entire study area; while
the local model constructs various models for different times or locations and could explain
the changes in the explanatory factors and the response variables through time and space.
Ordinary least square regression (OLS) and geographically weighted regression (GWR)
are one of the most classic global and local statistical models, respectively [32]. Typically,
GWR uses a bandwidth and distance weight function to establish a model for a specific
location. It can successfully cope with large-scale geographic data [33], and characterize
the spatial non-stationarity of PM based on temporal stationarity. However, GWR may not
be applicable to a large number of spatial occurrences over time. A recent study extended
GWR to include a temporal component, and the extended GWR is otherwise known as
the geographically and temporally weighted regression (GTWR) [34], which improves the
fitting and forecasting accuracy by handling non-stationarity geographic data in time and
space. When the space is stable, the spatial parameter of GTWR is neglected, so temporally
weighted regression (TWR) was developed, which can successfully cope with geographic
data throughout time [4]. Thus, the local model provides great potential for further in-
vestigating the relationship between PM and its influencing factors on both spatial and
temporal scales.

There are many factors that influence PM, including atmospheric pollutants (e.g., SO2,
NO2, CO, etc.), meteorological factors (e.g., temperature, humidity, and wind speed), and
vegetation factors [4,35–37]. Considering that Heilongjiang has a forest cover of 47.3%
and a total forest area of 21.47 million hectares, the incorporation of vegetation factors
would enhance model fitting. However, a large of variables would easily complicate the
model and cause “the curse of dimensionality (or Hughes phenomenon [38])”, and high
computational cost [39]. As a result, various methods are used to reduce the dimensions
of the variables. A principal component analysis (PCA) is typically used to reduce the
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dimensions [40,41]. A PCA cannot only reduce the dimensionality but also retain more
information. Its purpose is to construct a set of new orthogonal variables known as the
principal components for replacing the original high-dimensional dataset [42–45].

This study integrates a principal component analysis (PCA) into the local models
to efficiently investigate the temporal and spatial heterogeneity of PM (PM2.5 and PM10)
and explains the key factors that influence it simultaneously. Specifically, the objectives
include the following: (1) to conduct a PCA on the most relevant variables (including
air pollutants, meteorological factors, and vegetation factors); (2) to establish a principal
component analysis-based geographically weighted regression (PCA-GWR), a temporally
weighted regression (PCA-TWR), and a geographically and temporally weighted regression
(PCA-GTWR) and compare them to the corresponding global model, a principal component
analysis-based ordinary least square regression (PCA-OLS); and (3) to explore the spa-
tiotemporal characteristics of PM and the key influencing factors on them in Heilongjiang
Province in recent years. This research provides a scientific foundation and technical sup-
port for a better understanding of the temporal and spatial heterogeneities of PM as well as
the factors that drive PM, all of which are critical for future PM prevention and control.

2. Materials and Methods
2.1. Study Area

The present study was conducted in Heilongjiang Province, China, which is located in
the northernmost region of China, within the longitudes of 121◦11′ E to 135◦05′ E and the
latitudes of 43◦26′ N to 53◦33′ N (Figure 1). Heilongjiang has a mountainous topography
in the northwest, north, and southeast and flat land in the northeast and southwest [4]. The
climate of Heilongjiang Province is a cold temperate zone in continental monsoon climate.
The major climatic features include warm and dry springs, hot and humid summers, dry
autumns, and cold and lengthy winters, resulting in a protracted heating season. With
a forest area of 21.47 million hectares and a forest coverage of 47.3%, Heilongjiang Province
has a considerable forest area. The forest coverage rate of the different cities varies greatly,
with some cities having greater forest coverage rates, such as Da Xing’an Mountain, Heihe,
Yichun, and Mudanjiang, while others have lower forest coverage rates [46].

2.2. Data
2.2.1. Air Pollutants Data

For this study, daily records of 6-criterion air pollutants from 2014 to 2018, including
SO2, NO2, PM10, CO, O3, and PM2.5, were collected by the Environmental Monitoring
Station of Heilongjiang Province based on the 57 environmental monitoring sites in Hei-
longjiang Province. The details of measuring air pollutants was described in Ambient air
quality standards of P.R. China [47]. Apart from CO (mg/m3), all of the pollutants were
measured in µg/m3.

2.2.2. Meteorological Data

Sixteen meteorological variables were received from the Resource and Environmental
Science and Data Center’s (http://www.resdc.cn/, (accessed on 12 September 2022)) daily
data collection of meteorological station observations during the same time period. These
included the average pressure (hPa), the maximum pressure (hPa), the minimum pressure
(hPa), the average temperature (◦C), the daily maximum temperature (◦C), the daily mini-
mum temperature (◦C), the average relative humidity, the cumulative precipitation from
8 pm to the next-day 8 pm (daily cumulative precipitation, mm), the average wind
speed (m/s), the maximum wind speed (m/s), the extreme wind speed (m/s), the sunshine
hours (h), the average surface temperature (◦C), the daily maximum surface
temperature (◦C), and the daily minimum surface temperature (◦C). Maximum wind
speed is the maximum of average 10-min wind speed in a given time period. Extreme wind
speed is the maximum instantaneous wind speed in a given period of time.

http://www.resdc.cn/
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Figure 1. The location of Heilongjiang Province, People’s Republic of China (containing the Da
Xing’an Mountain, Drawing review No: GS (2020)4619). Note: Jiagedaqi is a special residen-
tial neighborhood in which the Da Xing’an Mountain region’s environmental monitoring facility
is located.

2.2.3. MODIS NDVI

The NASA Earth Observing System (EOS) Terra and Aqua satellites are equipped with
the moderate resolution imaging spectroradiometer (MODIS) [48]. It includes two types of
satellites (i.e., Terra and Aqua) and the Aqua satellite was used in this study.

The less cloudy MODIS L1B data of Heilongjiang Province with spatial resolutions
of 1 km from 2014 to 2018 were selected and preprocessed (https://ladsweb.modaps.
eosdis.nasa.gov/ (accessed on 12 September 2022)). First, radiometric calibration and
a geometric correction were performed to correct and eliminate the “bow” effect and
other deformations [49,50]. Then, the atmospheric correction of MODIS was performed
and the atmospheric correction used the simplified dark pixel method [51]. Finally, the
normalized difference vegetation index (NDVI), which captures the forest ecosystem’s
structural information, was extracted using the binary classification approach. The NDVI
equation is as follows [52]:

NDVI =
(IR− R)
(IR + R)

(1)

where IR and R is the pixel value in the infrared band and the red band, respectively.
The NDVI data were integrated with the air pollutants and meteorological data of

57 sites (i.e., 20 variables per site, one or two NDVI data per site per month, and
5945 records in total). The statistical indicators of the explanatory factors and the de-
pendent variables are shown in Table 1.

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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Table 1. Descriptive statistics of the variables used in this study.

Category Variables Min Mean Max SD Kurtosis Skewness

Dependent variable PM2.5 (µg/m3) 4.00 41.08 262.00 37.17 6.59 2.35
PM10 (µg/m3) 10.00 66.74 341.00 46.82 3.95 1.85

Air pollutants

SO2 (µg/m3) 2.00 20.66 191.00 21.34 13.80 3.03
NO2 (µg/m3) 2.00 28.37 101.00 16.15 1.94 1.31
CO (mg/m3) 0.00 0.78 5.00 0.45 9.46 2.24
O3 (µg/m3) 4.00 73.71 215.00 29.01 1.13 0.92

Meteorological factors

ARH 0.24 0.62 0.94 0.13 −0.13 −0.37
HCP (mm) 0.00 0.50 23.64 1.76 41.32 5.78

SH(h) 0.00 7.81 13.93 2.99 −0.16 −0.40
MaxP (hPa) 951.36 996.44 1029.09 11.83 −0.04 −0.28

AP (hPa) 947.56 993.94 1026.41 11.98 0.00 −0.28
MinP (hPa) 943.96 991.08 1021.70 12.13 0.02 −0.31
MaxT (◦C) −26.57 7.47 36.06 15.81 −1.38 0.00

AT (◦C) −36.47 1.13 28.70 15.57 −1.33 −0.02
MinT (◦C) −43.67 −4.86 23.72 15.31 −1.25 −0.01

MaxWS (m/s) 1.77 5.58 13.03 1.73 0.52 0.60
AWS (m/s) 0.56 2.64 7.23 1.03 1.01 0.85
EWS (m/s) 2.59 8.97 20.60 2.88 0.12 0.49
MaxST (◦C) −16.33 17.34 63.06 21.19 −1.39 0.24

AST (◦C) −18.09 6.01 36.37 14.39 −1.25 0.35
MinST (◦C) −23.40 −1.22 23.36 10.43 −0.92 0.42

Vegetation coverage NDVI −0.31 −0.07 0.78 0.12 9.08 2.73

Note: ARH—daily average relative humidity; HCP—daily cumulative precipitation; SH—daily sun hours;
MaxP—daily maximum air pressure; AP—daily average air pressure; MinP—daily minimum air pressure;
MaxT—daily maximum temperature; AT—daily average temperature; MinT—daily minimum temperature;
MaxWS—daily maximum wind speed; AWS—daily average wind speed; EWS—daily extreme wind speed;
MaxST—daily maximum surface temperature; AST—daily average surface temperature; MinST—daily minimum
surface temperature.

2.3. Methods

To reduce the dimensionality and multicollinearity of variables, a principal component
analysis (PCA) was conducted on the most relevant variables (including air pollutants,
meteorological factors, and vegetation factors). Based on PCA, the global model (PCA-OLS)
and local models (PCA-GWR, PCA-GTWR, and PCA-TWR) were established.

2.3.1. Principal Component Analysis

Principal component analysis is a statistical analysis method that transforms multiple
variables into a set of mutually orthogonal vectors (i.e., principal components). These
principal components (PCs) retain most of the information of the original variables, which
are usually expressed as the linear combination of the original variables. The relationship
between principal component yi and original variable xi is as follows [42,53,54]:

yi = ai1x1 + ai2x2 + ai3x3 + . . . + aipxp , i = 1, 2 . . . , p (2)

Among them, yi is the ith PC, (x1, x2, x3, . . . , xp) are the original variables, aij represents
the linear correlation coefficient for the ith principal component and the jth original variable,
which is also known as the loading of the variable on the common factor. The PCs are
independent of one another [55], so that:

Cov
(
yi, yj

)
= 0 (i 6= j, i, j = 1, 2, . . . , p) (3)

Among them, yi and yj are the two PCs, and Cov
(
yi, yj

)
is the covariance between them.
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The variance of PCs decreases in turn, and the first PC contains the most information.
the cumulative variance contribution rate is as follows:

c =
λk

∑
p
i=1 λ

(k = 1, 2, . . . , p) (4)

Among them, λk(k = 1, 2, . . . , p) is the variance of the kth PC, ∑
p
i=1 λ is the sum of

variances for p variables.
The cumulative variance contribution rate of the first m variables is as follows:

b =
∑m

i=1 λ

∑
p
i=1 λ

(m = 1, 2, . . . , p) (5)

Among them, ∑m
i=1 λ is the sum of variances for the first m variables. When b reaches

a certain value (in this study, b is not less than 85%), the first m components are selected
as PCs. To make the PCs interpretable, they are rotated using the maximum variance
orthogonal rotation approach.

Prior to PCA, the Kaiser-Meyer-Olikin (KMO) and Bartlett sphericity tests was used to
determine whether the commonality of the variables was high. If KMO > 0.5 and p < 0.01,
the variables are suitable for PCA [54].

2.3.2. Global Model (PCA-OLS)

The principal component analysis-based ordinary least square regression (PCA-OLS)
is a global model used to describe the linear relationship between the response and inde-
pendent variables [56], that is, PCs in this study. Its formula is as follows:

Yi = β0 + β1X1 + β2X2 + . . . + βkXk + εi (k = 1, 2, . . . , p− 1, i = 1, 2, . . . , n) (6)

where Yi is the response variable (i.e., PM2.5, PM10 in this study), Xk(k = 1, 2, . . . , p− 1)
represents the effective or selected PCs. p is the total number of parameters to be estimated
and n is the number of samples (in this study, n = 5945). βk is the model parameter, εi is the
model error term, with an expected value of zero and a normal distribution. Since PCA-OLS
is a global model, model parameters βk are estimated by using data of the entire study area
and the model coefficient vector βT = [β0, β1, β2, . . . , βk] of PCA-OLS is estimated by

β̂ = (XTX)
−1

XTY (7)

where X and Y are the vectors of PCs and PM, the superscript T denotes the transpose of
a matrix.

2.3.3. Local Models
PCA-GWR Model

To explore geographical nonstationarity, principal component analysis-based geo-
graphically weighted regression (PCA-GWR) is conducted in this study. PCA-GWR extends
the PCA-OLS regression framework as follows [57]:

Yi = β0(ui, vi) + ∑p−1
k=1 βk(ui, vi)Xik + εi i = 1, 2, . . . , n (8)

where Yi is the response variable (i.e., PM2.5, PM10 in this study), (ui, vi) is the spatial
coordinates of position i. β0(ui, vi) and βk(ui, vi)(k = 1, 2, . . . p− 1) are the intercept and
a set of p − 1 slope parameters at the ith observation. Xik(k = 1, 2,..., p− 1) are a set of
p − 1 PC at the ith location, p is the total number of parameters to be estimated, εi is the
error term of ith observation.
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β(ui, vi) could be estimated by the local least square method as follows [58]:

β̂(ui, vi) =
[

XTW(ui, vi)X
]−1

XTW(ui, vi)Y (9)

where β̂(ui, vi) is the vector of estimated coefficients for observation i, W(ui, vi) is a diagonal
matrix in which the off-diagonal components are zero and the diagonal elements represent
the geographic weights at the observation i, and the matrix is as follows:

W(ui ,vi)
=


wi1 0 . . . 0
0 wi2 . . . 0

. . . . . .
. . . . . .

0 0 . . . win

 (10)

Among them, wij is spatial weight and it is determined by the spatial kernel function,
also called a distance-decay function.

A spatial kernel function is often classified into two types: fixed kernels and adaptive
kernels [34]. The adaptive bisquare function is utilized to produce geographic weights in
this study and the formula is as follows [59]:

wij =


[

1− (
dij
hi
)

2
]2

, i f dij < hi

0, otherwise
(11)

where hi is a non-negative metric known as bandwidth, dij is the distance between locations
i and j and it is calculated as follows:

(dS
ij)

2
= λ

[(
ui − uj

)2
+ (vi − vj)

2
]
+ µ(ti − tj)

2 (12)

As the distance between the two locations increases, the spatial effect between the
two gradually decays and disappear beyond the bandwidth, that is, wij = 0 [58]. The
Cross-validation (CV) score and Akaike Information Criterion (AICc) criterion are standard
metrics for determining optimal bandwidth [60,61].

PCA-GTWR and PCA-TWR Model

While temporal variability is considered, principal component analysis-based geo-
graphically and temporally weighted regression (PCA-GTWR) is conducted with a weight
matrix among i and other points is calculated in spatial and temporal space. The PCA-
GTWR model can be expressed as follows [34]:

Yi = β0(ui, vi, ti) + ∑p−1
k=1 βk(ui, vi, ti)Xik + εi i = 1, 2, . . . , n (13)

where Yi is the response variable (i.e., PM2.5, PM10 in this study), (ui, vi, ti) are the spatial
coordinates of position i at specific time t. β0(ui, vi, ti) and βk(ui, vi, ti)(k = 1, 2, . . . , p− 1)
are the intercept and the parameter at the ith observation with the spatio-temporal coordi-
nate of (ui, vi, ti), respectively. Xik(k = 1, 2,..., p) is the kth PC at the ith observation, εi is the
error term of observation i. The estimation of β(ui, vi, ti) is as follows:

β̂(ui, vi, ti) =
[

XTW(ui, vi, ti)X
]−1

XTW(ui, vi, ti)Y (14)

The estimation of β(ui, vi, ti) is similar to that in PCA-GWR (Equation(8)).
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Because the spatio-temporal dimension is taken into account, a spatial–temporal
weight matrix is constructed based on a spatio-temporal distance. In this study,
spatio–temporal distance is as follows:

(dST
ij )

2
= λ

[(
ui − uj

)2
+ (vi − vj)

2
]
+ µ(ti − tj)

2 (15)

where λ and µ are scaling factors used to balance the different effects of space and time,
dST

ij is the distance between point (ui, vi, ti) and point
(
uj, vj, tj

)
.

In this study, an adaptive Gaussian distance–decay function was applied to construct
the spatial–temporal weight matrix, and the formula is as follows:

wij = exp

− (dST
ij )

2

h2
ST

 = exp

− (dS
ij)

2

h2
S

× exp

− (dT
ij)

2

h2
T

 (16)

where h2
ST is a parameter of spatio-temporal bandwidth, and h2

S and h2
T are spatial and

temporal bandwidth. When geographical variation is neglected (λ = 0), Equation (15) is
changed as follows:

(dT
ij)

2
= µ(ti − tj)

2 (17)

where dT
ij is the temporal distance. Based on dT

ij , principal component analysis-based
temporally weighted regression (PCA-TWR) is conducted [4]. PCA-TWR and PCA-GWR
are special cases of PCA-GTWR without considering either spatial or temporal variation.

2.3.4. Model Assessment

Akaike’s information criterion (AICc), adjusted coefficient of determination (R2
a), root

mean squared errors (RMSE), and mean absolute error (MAE) are used to assess the model
performance. The formula of AICc is shown as follows:

AICc = 2n ln(σ̂) + n ln(2π) + n
[

n + tr(S)
n− 2− tr(S)

]
(18)

Among them, n is the number of samples, σ̂ is the estimated standard deviation of the
error term, and tr(S) is the trace of hat matrix S(i.e., Ŷ = SY). In the GWR model, the hat
matrix is as follows:

S = X(XTW(ui, vi)X)
−1

XTW(ui, vi) (19)

R2
a will not exaggerate the explained percentage compared to the coefficient of deter-

mination (R2), and the formula is as follows:

R2
a = 1−

(n− 1)
(
1− R2)

(n− p)
(20)

where n is the number of the sample, and p is the number of coefficients (including all
predictor coefficients and the intercept).

The root mean squared errors (RMSE) and mean absolute errors (MAE) are also used
in this study, and the formula is as follows:

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(21)

MAE =
∑n

i=1|yi − ŷi|
n

(22)

where yi is the observed values of the response variable and ŷi is the predicted values of
the response variable.
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3. Results
3.1. Principal Component Analysis

The Kaiser-Meyer-Olikin (KMO) and Bartlett sphericity tests were conducted prior
to the PCA, and the results (KMO = 0.76 > 0.5 and p < 0.01) revealed that the original
20 variables were highly correlated and PCA was appropriate. As shown in Table 2, the first
six PCs were chosen due to the cumulative variance contribution rate of 87%. According to
the principal component loadings, PC1~PC6 could represent the temperature, wind speed,
air pressure, atmospheric pollution (SO2, NO2, CO), humidity, and vegetation cover from
the original dataset, respectively.

Table 2. Principal component loadings of each PC after the maximum variance orthogonal
rotation approach.

PCs PC1 PC2 PC3 PC4 PC5 PC6

SO2 (µg/m3) −0.36 −0.10 0.09 0.77 0.03 0.04
NO2 (µg/m3) −0.07 −0.20 0.24 0.85 −0.02 −0.15
CO (mg/m3) −0.23 −0.19 0.15 0.72 0.09 −0.07
O3 (µg/m3) 0.56 0.10 −0.14 −0.11 −0.46 −0.27

ARH 0.03 −0.46 0.02 0.14 0.74 0.08
HCP (mm) 0.25 0.05 −0.13 −0.12 0.69 −0.08

SH (h) 0.49 −0.06 0.00 −0.18 −0.69 0.09
MaxP (hPa) −0.27 −0.02 0.94 0.18 −0.04 −0.06

AP (hPa) −0.26 −0.08 0.94 0.17 −0.04 −0.05
MinP (hPa) −0.25 −0.13 0.94 0.16 −0.03 −0.05
MaxT (◦C) 0.95 0.05 −0.21 −0.14 −0.06 0.07

AT (◦C) 0.95 0.07 −0.18 −0.17 0.00 0.07
MinT (◦C) 0.94 0.10 −0.16 −0.18 0.09 0.07

MaxWS (m/s) 0.02 0.97 −0.11 −0.12 −0.04 −0.01
AWS (m/s) 0.00 0.94 0.02 −0.15 −0.06 0.00
EWS (m/s) 0.12 0.95 −0.13 −0.16 −0.06 0.01
MaxST (◦C) 0.94 0.01 −0.19 −0.17 −0.12 0.06

AST (◦C) 0.96 0.00 −0.19 −0.14 −0.02 0.07
MinST (◦C) 0.92 −0.02 −0.18 −0.12 0.18 0.08

NDVI 0.20 −0.02 −0.12 −0.14 −0.04 0.92

Meaning
of PCs

(Cumulative
Proportion)

Temperature
(40%)

Wind speed
(57%) Pressure (67%)

Atmospheric
pollutants

(75%)

Humidity
(82%)

Vegetation
cover (87%)

3.2. Globel Model (PCA-OLS)

The stepwise PCA-OLS model for PM, a global model, was applied as a baseline for
model comparison in this study. According to Table 3, the PM was negatively correlated
with temperature (PC1), wind speed (PC2), and vegetation (PC6). PC5 was excluded for
PM10 due to its nonsignificance. PM2.5 was positively correlated with pressure (PC3),
atmospheric pollutants (PC4), and humidity (PC5), whereas PM10 was only positively
correlated with pressure (PC3) and pollutants (PC4). The PCA-OLS models modestly fitted
the data according to the R2

a, i.e., 61% and 54% of the total variation of PM2.5 and PM10 can
be explained by the PCA-OLS models.

3.3. Local Models

To characterize the spatial and temporal heterogeneities, local models (i.e., PCA-GWR,
PCA-TWR, and PCA-GTWR model) were utilized. The adaptive bisquare function was
used, and AICc was employed to select a number of neighbors. Tables 4 and 5 summarize
the statistics of the parameter estimates of the PCA-GWR, PCA-TWR, and PCA-GTWR for
PM2.5 and PM10, respectively.
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Table 3. PCA-OLS model’s parameter estimations for PM (p< 0.01).

PM2.5 Estimate t-Test p-Value PM10 Estimate t-Test p-Value

Intercept 41.08 136.27 <2 × 10−16 Intercept 66.74 162.13 <2 × 10−16

PC1 −7.39 −24.50 <2 × 10−16 PC1 −4.60 −11.18 <2 × 10−16

PC2 −5.18 −17.17 <2 × 10−16 PC2 −1.83 −4.45 8.81× 10−6

PC3 6.85 22.72 <2 × 10−16 PC3 4.72 11.47 <2 × 10−16

PC4 26.41 87.60 <2 × 10−16 PC4 33.43 81.20 <2 × 10−16

PC5 2.68 8.88 <2 × 10−16 PC6 −4.67 −11.33 <2 × 10−16

PC6 −3.03 −10.05 <2 × 10−16

R2
a 0.61 R2

a 0.54
AICc 54,275.10 AICc 57,976.60

Table 4. PCA-GWR, PCA-TWR, and PCA-GTWR parameter estimates of PM2.5 (the models are fitted
by an adaptive neighbor selection algorithm).

Models Variables Min Mean Max SD Kurtosis Skewness Model Fitting
Information

PCA-GWR (Num of
Neighbors = 1041)

intercept 7.43 35.76 48.95 15.09 −0.64 −1.04

R2
a : 0.68

AICc: 53,295.1

PC1 −13.61 −5.75 −0.18 4.29 −1.37 −0.25
PC2 −6.46 −3.88 −0.98 1.81 −1.42 0.14
PC3 2.05 12.01 26.14 8.40 −1.02 0.70
PC4 15.17 30.05 37.55 5.74 0.68 −0.95
PC5 −2.74 3.63 8.86 2.88 −0.83 0.11
PC6 −21.18 −7.64 −1.48 6.06 −1.13 −0.71

PCA-TWR (Num of
Neighbors = 595)

intercept 5.18 39.68 95.87 13.87 4.50 0.87

R2
a : 0.75

AICc: 51,804.3

PC1 −25.34 −3.72 53.83 12.88 6.66 1.98
PC2 −14.13 −4.17 8.21 4.40 −0.01 0.09
PC3 −12.00 5.08 12.97 4.60 2.39 −0.98
PC4 1.20 22.77 59.16 11.46 1.07 0.67
PC5 −9.79 5.35 24.28 7.48 −0.46 0.67
PC6 −32.19 −4.41 6.96 7.63 3.01 −1.83

PCA-GTWR (Num
of Neighbors = 595)

intercept 23.64 41.86 59.43 6.47 −0.56 −0.04

R2
a : 0.76

AICc: 51,607.2

PC1 −27.94 −8.35 22.70 5.56 0.49 0.37
PC2 −19.60 −4.64 10.77 4.41 1.71 0.13
PC3 −6.68 5.90 26.56 4.83 2.50 0.85
PC4 8.64 28.79 51.43 8.41 −0.24 0.43
PC5 −13.17 3.37 22.37 5.90 1.15 0.88
PC6 −35.30 −5.04 8.47 7.56 2.89 −1.87

The sign of the global model parameters matches the average value of the local model
parameters for both PM2.5 and PM10. It indicates that the local models follow the same
trend as the corresponding global model: PM positively correlated with air pressure, other
atmospheric pollutants, and humidity, while negatively correlated with temperature, wind,
and vegetation cover. The number of neighbors of PCA-GWR is roughly twice that of the
PCA-GTWR model, whereas that between PCA-GWR and PCA-GTWR is quite similar (i.e.,
around 600) for both PM2.5 and PM10. After considering spatial and temporal variation,
PCA-GTWR performed better than PCA-GWR and PCA-TWR for PM according to the
goodness-of-fit (i.e., R2

a and AICc). However, the local model of PM2.5 is superior (i.e.,
higher R2

a) than the corresponding model of PM10.
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Table 5. PCA-GWR, PCA-TWR, and PCA-GTWR parameter estimates of PM10 (the models are fitted
by an adaptive neighbor selection algorithm).

Models Variables Min Mean Max SD Kurtosis Skewness Model Fitting
Information

PCA-GWR (Num of
Neighbors = 937)

intercept 27.39 62.51 85.65 19.74 −0.88 0.26

R2
a : 0.63

AICc: 56,894.4

PC1 −12.54 −2.01 9.20 6.36 −0.89 0.08
PC2 −8.22 −0.14 6.69 4.75 −1.34 0.06
PC3 −1.77 11.45 25.94 8.29 −0.65 0.11
PC4 23.41 40.44 45.95 6.13 2.02 0.08
PC6 −20.11 −8.67 −2.41 4.64 −0.83 0.06

PCA-TWR (Num of
Neighbors = 602)

intercept 0.56 66.42 155.0 22.90 6.32 1.38

R2
a : 0.71

AICc: 55,447.7

PC1 −24.92 1.12 84.12 20.42 6.80 2.36
PC2 −15.84 −3.22 21.88 8.36 0.46 0.87
PC3 −21.35 3.70 14.46 6.36 4.30 −1.70
PC4 1.36 30.63 69.10 12.93 0.70 0.38
PC6 −32.82 −5.32 11.66 8.26 2.70 −1.54

PCA-GTWR (Num
of Neighbors = 595)

intercept 39.12 69.63 114.6 11.16 −0.63 0.18

R2
a : 0.73

AICc: 55,114.7

PC1 −31.98 −5.83 45.62 8.41 2.03 0.79
PC2 −21.94 −2.82 22.36 6.87 0.83 0.52
PC3 −13.21 3.65 27.61 6.36 1.16 0.18
PC4 9.26 38.04 60.40 10.78 −0.43 −0.10
PC6 −36.97 −6.44 12.97 8.81 2.37 −1.60

3.4. Model Assessment

Table 6 depicts the goodness-of-fit of the PCA-based local and global models. No
matter if it was the PM2.5 or PM10, PCA-GTWR performed the best (largest R2

a, smallest
AICc, RMSE and MAE), followed by PCA-GWR, PCA-TWR, and PCA-OLS. The PCA-
TWR is much superior to the PCA-GWR, with a greater R2

a, a lower AICc, RMSE, and
MAE. This demonstrates that the PM’s temporal nonstationarity is more noticeable than its
spatial nonstationarity.

Table 6. Comparison of PCA-OLS, PCA-GWR, PCA-TWR, PCA-GTWR.

Model PM2.5 PM10

AICc R2
a

RMSE
(µg/m3)

MAE
(µg/m3) AICc R2

a
RMSE

(µg/m3)
MAE

(µg/m3)

PCA-OLS 54,275.10 0.61 23.23 0.30 57,976.60 0.54 31.72 0.41
PCA-GWR 53,295.10 0.68 21.16 0.27 56,892.60 0.63 28.62 0.37
PCA-TWR 51,804.30 0.75 18.59 0.24 55,836.90 0.69 26.16 0.34

PCA-GTWR 51,607.20 0.76 18.20 0.24 55,365.10 0.71 25.04 0.33

3.5. Spatial Characteristics of PCA-GTWR Parameter Estimates for PM

According to Figure 2, each PC factor had a difference influence in various locations
for PM2.5. Temperature (Figure 2a) was the inhibitor of PM2.5 in most of Heilongjiang
province. The inhibition was strong and obvious in the eastern area but weak in the
west (e.g., Da Xing’an Mountain, Heihe, Qiqihar, Daqing, and Harbin). Wind speed
(Figure 2b) primarily suppressed PM2.5, and the total inhibitory impact was comparable
to temperature. Air pressure (Figure 2c) mostly promoted PM2.5, with a relative weak
influence in Daqing, Harbin, Hegang, Jiamusi, and Shuangyashan. Atmospheric pollutants
(Figure 2d) positively correlated with PM2.5, with three strata of correlations. The largest
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impact was observed the west of Harbin and the southern part around Daqing and Shuihua,
whereas the smallest impact was observed in Da Xing’an Mountain, Heihe, and Qiqiha’er,
and other places falling somewhere in the middle. Humidity (Figure 2e) had the ability
to both enhance and inhibit PM2.5 levels. In the western cities, especially Harbin, Daqing,
Suihua, and Qiqiha’er, humidity plays a role of promoting PM2.5; whereas in the eastern
cities (e.g., Yichun, Hegang, Jiamusi, Shuangyashan, Qitaihe, and Jixi), it had a substantial
negative effect. Vegetation cover (Figure 2f) obviously restricted PM2.5 concentration. The
restriction trend decreased towards the east, with the smallest impact in Hegang, Jiamusi,
and Shuangyashan.
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Figure 2. The PCA-GTWR parameter estimates of PM2.5 interpolated by Inverse Distance Weighted
(IDW) method: (a) PC1 (temperature); (b) PC2 (wind speed); (c) PC3 (pressure); (d) PC4 (atmospheric
pollutant); (e) PC5 (humidity); (f) PC6 (vegetation coverage). Note: HRB—Harbin; MDJ—Mudanjiang;
QTH—Qitaihe; JX—Jixi; SYS—Shuangyashan; JMS—Jiamusi; HG—Hegang; YC—Yichun;
SH—Suihua; DQ—Daqing; QQHE—Qiqiha’er; HH—Heihe; DXAM—Da Xing’an Mountain.

Similar to PM2.5, different PC factors had various influences on PM10 in space
(Figure 3). However, the magnitude of parameter estimates for PM10 was much larger than
that for PM2.5. Temperature (Figure 3a) could both enhance and inhibit PM10. Temperature
tended to promote PM10 in Da Xing’an Mountain, Harbin, and Heihe. Whereas in other
places, it played an inhibitory role. The inhibitory impact was stronger in the eastern area
(i.e., Hegang, Jiamusi, Shuangyashan, Jixi) than the western area (e.g., Qiqiha’er, Daqing,
Suihua, and Yichun). Wind speed (Figure 3b) had an inhibitory influence on PM10, and
the inhibitory effect was fairly uniform across the region. Both pressure (Figure 3c) and
atmospheric pollutants (Figure 3d) positively correlated with PM10. The positive correlation
between PM10 and pressure tended to decrease from south to north, while its correlation
with atmospheric pollutants presented the opposite trend. Vegetation cover (Figure 3e)
inhibited PM10, with strong suppression in the cities of Qiqihar, Daqing, Suihua, Harbin,
and Mudanjiang, and the suppression became weaker towards the east.
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(b) PC2 (wind speed); (c) PC3 (pressure); (d) PC4 (atmospheric pollutant); (e) PC6 (vegetation cov-
erage). Note: HRB—Harbin; MDJ—Mudanjiang; QTH—Qitaihe; JX—Jixi; SYS—Shuangyashan;
JMS—Jiamusi; HG—Hegang; YC—Yichun; SH—Suihua; DQ—Daqing; QQHE—Qiqiha’er;
HH—Heihe; DXAM—Da Xing’an Mountain.

3.6. Temporal Characteristics of PCA-GTWR Parameter Estimates for PM

Figure 4 shows that influence of each PC on PM has temporal non-stationarity
and periodicity, particularly PC3 (air pressure) and PC4 (atmospheric pollutants). For
PM, the GTWR parameter estimates of PC3 and PC4 in the heating (i.e., winter) and
non-heating (i.e., spring, summer, autumn seasons) periods differed and periodically
changed during the course of a year: high in the heating season (usually from
October to April next year) and low in the non-heating seasons. This is because the higher
concentrations of atmospheric pressure and other air pollutants in winter are correlated
with higher PM concentrations than those in summer.

The parameter estimates of PC1 (temperature) and PC2 (wind speed) has larger
temporal periodicity for PM10 than PM2.5. The inhibitory effect of PC2 (wind speed)
in autumn (September, October, and November) tends to be larger than that in other
seasons. Due to the climate characteristics of Heilongjiang Province (cold temperate, and
a temperate continental monsoon climate), the high wind speed in autumn tends to increase
the inhibitory effect on PM. The inhibitory effect PC6 (vegetation coverage) on PM was
obvious in 2014 but decrease and became stable afterwards. The impact of PC5 (humidity)
on PM2.5 is not stable because PC5 is comprehensive factor that mainly controlled by daily
average relative humility, daily cumulative humility and daily sun hours.
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4. Discussion
4.1. The Key Influencing Factors of PM

Recently, many studies have investigated the connections between PM and a num-
ber of variables, including air pollutants, meteorological variables (such as temperature,
wind speed, and relative humidity), the normalized difference vegetation index (NDVI)
derived from satellite imagery, aerosol optical depth (AOD), human activities (such as
transportation emission variables, the density of industrial plants, land use, GDP), and
topographical factors and more [62–67]. Although it tends to improve PM predictions using
more factors, it is difficult to remove multicollinearity among these factors and interpret the
spatio-temporal relationship between PM and a number of factors. In this study, PCA was
used to reduce the dimension of independent variables (i.e., from 20 original variables to
6 PCs) and remove the multicollinearity, and then OLS, GWR, TWR, and GTWR mod-
els were conducted based on the PCs to predict and explore the temporal and spatial
heterogeneity of PM in Heilongjiang Province. Air pollutants (mainly SO2, NO2, and
CO) represented by PC4 in this study have the largest influence on both PM2.5 and PM10
(see Tables 2 and 3). Temperature expressed by PC1 had the second greatest impact on
PM2.5, followed by air pressure (PC3), wind speed (PC2), vegetation cover (PC6), and
humidity factor (PC5). Whereas the impacts of temperature, pressure, and vegetation cover
on PM10 are roughly equivalent, followed by wind speed.

Although PM2.5 and PM10 are closely correlated [68], this study still shows some
differences in the correlation between PM2.5/PM10 and the influenced factors. The main
distinction is that, in contrast to PM2.5, the humidity factor (PC5) is not significant for
PM10 and is eliminated in the global model. This may be because the humidity factor in
this study is a combined variable of daily average relative humidity (positive), cumula-
tive precipitation (positive), and sun hours (negative). It is challenging to demonstrate
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a meaningful relationship between the mixed variable and the comparatively large particle
(PM10). The second factor contributing to the difference was wind speed. The dilution effect
of wind speed on PM2.5 is stronger than that of PM10 due to the relatively light quality,
which is consistent with the previous study [68].

In general, PM is positively related to other air pollutants (mainly SO2, NO2, and CO).
It is similar to the finding that 5 criteria air pollutants (i.e., PM10, SO2, NO2, CO, O3) had a
positive impact on PM2.5, except O3, in the previous study [4]. The concentration of PM
reduces as the temperature (PC1) rises. When the temperature is high, the atmospheric
tropospheric motion becomes more intense, resulting in the upward transport of PM, and
the high temperature encourages Brownian particle motion, which is more favorable to
diffusion [26]. Not surprisingly, the wind speed (PC2) has a negative effect on PM, which is
consistent with previous studies [69,70]. This is because that the higher the wind speed,
the stronger the particle dispersion capacity and the lower the particle concentration [71].
Atmospheric pressure (PC3) plays a positive role in increasing PM centration. When
an area is subjected to high pressure, air convection is reduced, allowing contaminants
to accumulate more easily, and vice versa [26,72]. The ability of the forest’s complex
canopy structure to absorb particulate matter has long been recognized as a critical tool
for controlling PM [73,74]. In this study, vegetation cover (PC6) also has a considerable
inhibitory influence on PM. The absolute magnitude of the coefficient indicates that it has a
significant impact on preventing PM increases. The explanation could be that vegetation
intercepts and absorbs particulate matter via Brownian diffusion, interception, and gravity
deposition [75,76].

4.2. Global and Local Models

In the constructed model, the problem of the PCA-OLS model is that it uses a global
model to represent the relationship between dependent and independent variables, ig-
noring the spatial or temporal effect of the studied variables. This spatial or temporal
effect (spatial/temporal autocorrelation and heterogeneity) may violate the assumption
of independent observation or constant variance, resulting in the biases of estimates of
standard errors and imprecision of coefficient estimates [77,78]. PCA-GWR was better than
PCA-OLS by considering spatial heterogeneity (11% and 17% improvement of adjusted R2

of PM2.5 and PM10, respectively). PCA-TWR was also superior to PCA-OLS by considering
temporal heterogeneity (23% and 28% improvement of adjusted R2 of PM2.5 and PM10,
respectively). The temporal heterogeneity is more significant than the spatial heterogeneity
due to the obvious seasonal variation of PM, which is consistent with the previous study [4].
The PCA-GTWR model that considers both temporal and spatial heterogeneity has the
best performance (compared with PCA-OLS, the adjusted R2 increases by 25% and 31%
for of PM2.5 and PM10, respectively). However, the improvements of PCA-GTWR from
PCA-TWR are very limited, especially for PM2.5. It indicates that temporal information is
more effective than spatial information for modeling PM based on PCA.

4.3. The Spatial and Temporal Distribution of PM Concentrations in Heilongjiang Province

Heilongjiang Province is located in northern China and is noted for its high lati-
tude and harsh winters. Heilongjiang Province is one of China’s largest provinces, with
a north-south latitude range of approximately 10◦ and an east-west longitude range
of approximately 4◦. According to Figures 5 and 6, the PM content in the southern
area is significantly higher whereas that in the northern region is rather low due to the
large population and coal burning in the south. Furthermore, the PM concentrations
remained high from 2014 to 2017, especially in 2017. From spatio-temporal perspective,
the hot spot of PM2.5 concentration gradually changed from southwestern (e.g., Harbin,
Daqing) to southeastern cities (e.g., Harbin, Mudanjiang, Qitaihe, and Jixi). According to
Figures 5f and 6f, it can be seen that the temporal distribution of PM in Heilongjiang
Province has heterogeneity and periodicity (high in winter and low in summer). The PM
concentration in Heilongjiang Province grows dramatically during the heating season (from
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October to April next year). Coal-fired heating not only consumes energy but also harms
the environment. However, due to the Heilongjiang Province’s policies (Air Pollution
Prevention and Control Action Plan) [10], the downward trend of annual PM concentration
is obvious, especially after 2017, which indicates the progress in the prevention and control
of air pollution in Heilongjiang. In the future, Heilongjiang Province should implement a
multi-energy integrated heating system that makes full use of renewable energy sources
such as wind, water, and solar energy. Additionally, it is critical to consider advancing
science and technology, discovering methods to store renewable energy, and even storing
energy in the summer for use in winter heating. Finally, increasing the rate of urban green-
ing, focusing on forest ecosystem protection, and enhancing the ecosystem’s ecological
benefits are all necessary.
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HRB—Harbin; MDJ—Mudanjiang; QTH—Qitaihe; JX—Jixi; SYS—Shuangyashan; JMS—Jiamusi;
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5. Conclusions

In this study, the spatial-temporal heterogeneity of PM (PM2.5 and PM10) concentration
in Heilongjiang Province during 2014–2018 and the key impacting factors were investigated
based on PCA-based local and global models. Six PCs with a contribution rate of 87% were
selected, and each PC’s (PC1–PC6) meaning was obvious after rotation, representing the
temperature, wind speed, air pressure, atmospheric pollution, humidity, and vegetation
cover, respectively. According to the model assessment, all the PCA-based local models
(PCA-GWR, PCA-TWR, and PCA-GTWR) were superior to the PCA-based global (PCA-
OLS) model, in which PCA-GTWR performed the best. Air pollutants (mainly SO2, NO2,
and CO) have the largest influence on both PM2.5 and PM10. The temperature has the
second greatest impact on PM2.5, followed by air pressure, wind speed, vegetation cover,
and humidity factor, whereas the impacts of temperature, pressure, and vegetation cover
on PM10 are roughly equivalent, followed by wind speed. In general, PM is positively
related to other air pollutants (mainly SO2, NO2, and CO) and air pressure, and negatively
correlated to temperature, wind speed, and vegetation cover.

This study demonstrated that the temporal heterogeneity was more pronounced than
the spatial heterogeneity of PM in Heilongjiang Province. This work provides temporal and
spatial heterogeneity evidence of the relationship between PM and meteorological factors,
air pollutants, and vegetation cover. Furthermore, this work addresses both excessive
impact factors and temporal and spatial heterogeneity and provides a theoretical foundation
for precise local government prevention and control.

Author Contributions: Conceptualization, L.F.; Data curation, Q.W. (Qingbin Wei); Formal analysis,
L.F.; Investigation, L.F., Q.W. (Qibang Wang) and J.L.; Methodology, L.F. and J.L.; Project adminis-
tration, Z.Z. and Q.W. (Qingbin Wei); Software, Q.W. (Qibang Wang); Supervision, Z.Z.; Validation,
J.L.; Visualization, Q.W. (Qibang Wang); Writing—original draft, L.F.; Writing—review & editing,
H.J., Z.Z. and Q.W. (Qingbin Wei). All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Key Laboratory of Forest Plant Ecology, Ministry of
Education Northeast Forestry University (K2020C02), National Undergraduate Training Program
for Innovation and Entrepreneurship (202110225060). This study was also supported by China
Scholarship Council (CSC-No. 202006605008).

Institutional Review Board Statement: Not applicable.



Int. J. Environ. Res. Public Health 2022, 19, 11627 18 of 20

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, (Z.Z. or Q.W.), upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yin, H.; Brauer, M.; Zhang, J.; Cai, W.; Navrud, S.; Burnett, R.; Howard, C.; Deng, Z.; Kammen, D.M.; Schellnhuber, H.J.; et al.

Population ageing and deaths attributable to ambient PM2.5 pollution: A global analysis of economic cost. Lancet Planet. Health
2021, 5, e356–e367. [CrossRef]

2. Wang, H.; Zhang, L.; Cheng, I.; Yao, X.; Dabek-Zlotorzynska, E. Spatiotemporal trends of PM2.5 and its major chemical components
at urban sites in Canada. J. Environ. Sci. 2020, 103, 1–11. [CrossRef] [PubMed]

3. Choi, H.G.; Lee, C.H.; Yoo, D.M.; Min, C.; Park, B.; Kim, S.Y. Effects of short- and long-term exposure to air pollution and
meteorological factors on Meniere’s disease. Sci. Rep. 2021, 11, 16063. [CrossRef] [PubMed]

4. Wei, Q.; Zhang, L.; Duan, W.; Zhen, Z. Global and Geographically and Temporally Weighted Regression Models for Modeling
PM2.5 in Heilongjiang, China from 2015 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 5107. [CrossRef] [PubMed]

5. Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine Particulate Air Pollution and Hospital
Admission for Cardiovascular and Respiratory Diseases. JAMA 2006, 295, 1127–1134. [CrossRef]

6. Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74.
7. Apte, J.S.; Marshall, J.D.; Cohen, A.J.; Brauer, M. Addressing global mortality from ambient PM2.5. Environ. Sci. Technol. 2015, 49,

8057–8066. [CrossRef]
8. Gu, K.; Zhou, Y.; Sun, H.; Dong, F.; Zhao, L. Spatial distribution and determinants of PM2.5 in China’s cities: Fresh evidence from

IDW and GWR. Environ. Monit. Assess. 2020, 193, 15. [CrossRef]
9. Wang, Y.; Yao, L.; Wang, L.; Liu, Z.; Ji, D.; Tang, G.; Zhang, J.; Sun, Y.; Hu, B.; Xin, J. Mechanism for the formation of the January

2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2013, 57, 14–25. [CrossRef]
10. The State Council of China. Air Pollution Prevention and Control Action Plan. 10 September 2013. Available online: http:

//www.gov.cn/zhengce/content/2013-09/13/content_4561.htm (accessed on 19 June 2022).
11. Li, G.; Fang, C.; Wang, S.; Sun, S. The effect of economic growth, urbanization, and industrialization on fine particulate matter

(PM2.5) concentrations in China. Environ. Sci. Technol. 2016, 50, 11452–11459. [CrossRef]
12. Lim, C.H.; Ryu, J.; Choi, Y.; Jeon, S.W.; Lee, W.K. Understanding global PM2.5 concentrations and their drivers in recent decades

(1998–2016). Environ. Int. 2020, 144, 106011. [CrossRef]
13. Liu, J.; Li, W.; Wu, J.; Liu, Y. Visualizing the intercity correlation of PM2.5 time series in the Beijing-Tianjin-Hebei region using

ground-based air quality monitoring data. PLoS ONE 2018, 13, e0192614. [CrossRef]
14. Wang, J.; Qu, W.; Li, C.; Zhao, C.; Zhong, X. Spatial distribution of wintertime air pollution in major cities over eastern China:

Relationship with the evolution of trough, ridge and synoptic system over East Asia. Atmos. Res. 2018, 212, 186–201. [CrossRef]
15. Yang, Y.; Christakos, G.; Yang, X.; He, J. Spatiotemporal characterization and mapping of PM2.5 concentrations in southern

Jiangsu Province, China. Environ. Pollut. 2018, 234, 794–803. [CrossRef] [PubMed]
16. Xu, F.; Xiang, N.; Higano, Y. How to reach haze control targets by air pollutants emission reduction in the Beijing-Tianjin-Hebei

region of China? PLoS ONE 2017, 12, e0173612. [CrossRef]
17. Zhang, H.; Wang, Y.; Hu, J.; Ying, Q.; Hu, X.-M. Relationships between meteorological parameters and criteria air pollutants in

three megacities in China. Environ. Res. 2015, 140, 242–254. [CrossRef]
18. Wu, Y. Source Apportionment of Atmospheric Particle Matter of Cities in Heilongjiang Province; China Environment Publishing House:

Beijing, China, 2017; pp. 238–258.
19. Theodosi, C.; Grivas, G.; Zarmpas, P.; Chaloulakou, A.; Mihalopoulos, N. Mass and chemical composition of size-segregated

aerosols (PM2.5, PM10) over Athens, Greece: Local versus regional sources. Atmos. Chem. Phys. 2011, 11, 11895–11911. [CrossRef]
20. Liu, G.; Li, J.; Wu, D.; Xu, H. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China.

Particuology 2015, 18, 135–143. [CrossRef]
21. Ye, B.; Ji, X.; Yang, H.; Yao, X.; Chan, C.; Cadle, S.; Chan, T.; Mulawa, P. Concentration and chemical composition of PM2.5 in

Shanghai for a 1-year period. Atmos. Environ. 2003, 37, 499–510. [CrossRef]
22. Cheng, Y.; Lee, S.; Gu, Z.; Ho, K.; Zhang, Y.; Huang, Y.; Chow, J.C.; Watson, J.G.; Cao, J.; Zhang, R. PM2.5 and PM10-2.5 chemical

composition and source apportionment near a Hong Kong roadway. Particuology 2013, 18, 96–104. [CrossRef]
23. Hajiloo, F.; Hamzeh, S.; Gheysari, M. Impact assessment of meteorological and environmental parameters on PM2.5 concentrations

using remote sensing data and GWR analysis (case study of Tehran). Environ. Sci. Pollut. Res. 2018, 26, 24331–24345. [CrossRef]
[PubMed]

24. Chu, H.; Huang, B.; Lin, C.Y. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmos. Environ. 2015,
102, 176–182. [CrossRef]

25. Zou, B.; Fang, X.; Feng, H.; Zhou, X. Simplicity versus accuracy for estimation of the PM2.5 concentration: A comparison between
LUR and GWR methods across time scales. J. Spat. Sci. 2019, 66, 279–297. [CrossRef]

http://doi.org/10.1016/S2542-5196(21)00131-5
http://doi.org/10.1016/j.jes.2020.09.035
http://www.ncbi.nlm.nih.gov/pubmed/33743892
http://doi.org/10.1038/s41598-021-95491-9
http://www.ncbi.nlm.nih.gov/pubmed/34373509
http://doi.org/10.3390/ijerph16245107
http://www.ncbi.nlm.nih.gov/pubmed/31847317
http://doi.org/10.1001/jama.295.10.1127
http://doi.org/10.1021/acs.est.5b01236
http://doi.org/10.1007/s10661-020-08749-6
http://doi.org/10.1007/s11430-013-4773-4
http://www.gov.cn/zhengce/content/2013-09/13/content_4561.htm
http://www.gov.cn/zhengce/content/2013-09/13/content_4561.htm
http://doi.org/10.1021/acs.est.6b02562
http://doi.org/10.1016/j.envint.2020.106011
http://doi.org/10.1371/journal.pone.0192614
http://doi.org/10.1016/j.atmosres.2018.05.013
http://doi.org/10.1016/j.envpol.2017.11.077
http://www.ncbi.nlm.nih.gov/pubmed/29247942
http://doi.org/10.1371/journal.pone.0173612
http://doi.org/10.1016/j.envres.2015.04.004
http://doi.org/10.5194/acp-11-11895-2011
http://doi.org/10.1016/j.partic.2014.03.011
http://doi.org/10.1016/S1352-2310(02)00918-4
http://doi.org/10.1016/j.partic.2013.10.003
http://doi.org/10.1007/s11356-018-1277-y
http://www.ncbi.nlm.nih.gov/pubmed/29497943
http://doi.org/10.1016/j.atmosenv.2014.11.062
http://doi.org/10.1080/14498596.2019.1624203


Int. J. Environ. Res. Public Health 2022, 19, 11627 19 of 20

26. Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their
Relation to Meteorological Factors. Atmosphere 2015, 6, 150–163. [CrossRef]

27. Zhang, X.; Shi, M.; Li, Y.; Pang, R.; Xiang, N. Correlating PM2.5 concentrations with air pollutant emissions: A longitudinal study
of the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2018, 179, 103–113. [CrossRef]

28. Suleiman, A.; Tight, M.; Quinn, A. Applying machine learning methods in managing urban concentrations of traffic-related
particulate matter (PM10 and PM2.5). Atmos. Pollut. Res. 2018, 10, 134–144. [CrossRef]
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